Connecting Obstacles in Vertex-Disjoint Paths

Marwan Al-Jubeh
Mashhood Ishaque
Csaba D. Toth

Gill Barequet
Diane L. Souvaine
Andrew Winslow
Outline

1. Problem Definition.
2. Lower Bound Constructions.
3. Upper Bound (Algorithm).
Problem Definition

Given:

- k disjoint polygonal obstacles
- Triangular container

Add Straight Line, and
Non-Crossing Edges:

such that each obstacle has
3 vertex-disjoint paths to
container vertices.
Problem Definition

Given:

- k disjoint polygonal obstacles
- Triangular container

Add Straight Line, and Non-Crossing Edges:

- such that each obstacle has 3 vertex-disjoint paths to container vertices.
Problem Definition

Given:

- k disjoint polygonal obstacles
- Triangular container

Add Straight Line, and Non-Crossing Edges:

such that each obstacle has 3 vertex-disjoint paths to container vertices.
Problem Definition

Questions:
• Is it always possible?
• For k obstacles, how many edges are necessary?
• How many edges are enough?
Is Augmentation Always Possible?

For non-convex obstacles:
Is Augmentation Always Possible?

For non-convex obstacles:

No.

The innermost obstacle sees only the vertices of a single obstacle.

There cannot be three vertex-disjoint paths unless we can add edges in an obstacle’s interior.
Is Augmentation Always Possible?

For convex obstacles:
Is Augmentation Always Possible?

For convex obstacles:

Yes.

Triangulation of the free space is 3-connected. [TV09]

Is Augmentation Always Possible?

For convex obstacles:

Yes.

Augment the triangulation with nodes p and q. The augmented graph is 3-connected.

→ 3 vertex-disjoint paths between nodes p and q.

→ 3 vertex disjoint paths between the obstacle and the container.
Problem Definition

Given:
- \(k\) disjoint convex polygonal obstacles
- Triangular container

Add Straight Line, and Non-Crossing Edges:
- such that each obstacle has 3 vertex-disjoint paths to container vertices.
Outline

1. Problem Definition.
2. Lower Bound Constructions.
3. Upper Bound (Algorithm).
How Many Edges are Necessary?

For \(k \) convex obstacles:

\[3k - 1 \text{ edges}. \]
How Many Edges are Necessary?

For \(k \) convex obstacles:

\[3k - 1 \text{ edges.} \]

A big obstacle (\(k \)-gon).
One obstacle hidden behind each side (except the base).

Hidden obstacles need 3 edges each.
\(k \)-gon needs 2 edges.

For a single obstacle, trivial lower bound of 3.
How Many Edges are Necessary?

For k convex obstacles, each with at most s sides:

$$3k - \frac{(k-1)}{(s-1)}$$ edges.
How Many Edges are Necessary?

For k convex obstacles, each with at most s sides:

$$3k - \frac{(k-1)}{(s-1)}$$ edges.

Hide obstacles recursively. A complete $(s-1)$-ary tree. No. of leaves = $k - \frac{(k-1)}{(s-1)}$.

Each leaf obstacle need 3 edges. All other obstacles need 2.

$$3 \left(k - \frac{(k-1)}{(s-1)} \right) + 2 \left(\frac{(k-1)}{(s-1)} \right)$$
How Many Edges are Necessary?

For k convex obstacles, each with at most s sides:

$$3k - \frac{(k-1)}{(s-1)}$$ edges.

For $s = 3$:

$$\frac{5}{2} k$$ edges are necessary.
Outline
1. Problem Definition.
2. Lower Bound Constructions.
3. Upper Bound (Algorithm).
How Many Edges are Enough?

For k convex obstacles:

$3k$ edges.
Augmentation Algorithm (skeleton)

Given: A polygon P with 3-connected triangulation, and three unique colored vertices on its boundary.

- Pick an arbitrary obstacle.
- Find 3 vertex-disjoint paths.
- Shorten paths if necessary.
- Generate sub-problems.
- Handle 2-Cuts if necessary.
- Recurse.
Augmentation Algorithm (skeleton)

Given: A polygon P with 3-connected triangulation, and three unique colored vertices on its boundary.

- Pick an arbitrary obstacle.
- Find 3 vertex-disjoint paths.
- Shorten paths if necessary.
- Generate sub-problems.
- Handle 2-Cuts if necessary.
- Recurse.
Augmentation Algorithm (skeleton)

Given: A polygon P with 3-connected triangulation, and three unique colored vertices on its boundary.

- Pick an arbitrary obstacle.
- Find 3 vertex-disjoint paths.
- Shorten paths if necessary.
- Generate sub-problems.
- Handle 2-Cuts if necessary.
- Recurse.
Augmentation Algorithm (skeleton)

Given: A polygon P with 3-connected triangulation, and three unique colored vertices on its boundary.

- Pick an arbitrary obstacle.
- Find 3 vertex-disjoint paths.
- **Shorten paths if necessary.**
- Generate sub-problems.
- Handle 2-Cuts if necessary.
- Recurse.
Augmentation Algorithm (skeleton)

Given: A polygon P with 3-connected triangulation, and three unique colored vertices on its boundary.

• Pick an arbitrary obstacle.
• Find 3 vertex-disjoint paths.
• Shorten paths if necessary.
• Generate sub-problems.
• Handle 2-Cuts if necessary.
• Recurse.
Augmentation Algorithm (skeleton)

Given: A polygon P with 3-connected triangulation, and three designated vertices on its boundary.

- Pick an arbitrary obstacle.
- Find 3 vertex-disjoint paths.
- Shorten paths if necessary.
- Generate sub-problems.
- Handle 2-Cuts if necessary.
- Recurse.
Shorten Path Algorithm

Given: 3 vertex-disjoint paths π_R, π_G, and π_B.

For a path π_i if the two non-adjacent vertices v_1 and v_2 see each other or are incident on the same obstacle:

- Create a simple polygon Q using the sub-path between v_1 and v_2, and the segment v_1v_2. (Q is empty of other paths.)
- Find geodesic path between v_1 and v_2 inside Q.

![Diagram showing paths and obstacles]
Shorten Path Algorithm

Given: 3 vertex-disjoint paths π_R, π_G, and π_B.

For a path π_i if the two non-adjacent vertices v_1 and v_2 see each other or are incident on the same obstacle:

- Create a simple polygon Q using the sub-path between v_1 and v_2, and the segment v_1v_2. (Q is empty of other paths.)
- Find geodesic path between v_1 and v_2 inside Q.
Shorten Path Algorithm

Given: 3 vertex-disjoint paths π_R, π_G, and π_B.

For a path π_i if the two non-adjacent vertices v_1 and v_2 see each other or are incident on the same obstacle:

- Create a simple polygon Q using the sub-path between v_1 and v_2, and the segment v_1v_2. (Q is empty of other paths.)
- Find geodesic path between v_1 and v_2 inside Q.
Shorten Path Algorithm

Given: 3 vertex-disjoint paths \(\pi_R, \pi_G, \) and \(\pi_B \).

For a path \(\pi_i \) if the two non-adjacent vertices \(v_1 \) and \(v_2 \) see each other or are incident on the same obstacle:

- Create a simple polygon \(Q \) using the sub-path between \(v_1 \) and \(v_2 \), and the segment \(v_1v_2 \). (\(Q \) is empty of other paths.)
- Find geodesic path between \(v_1 \) and \(v_2 \) inside \(Q \).
Shorten Path Algorithm

Given: 3 vertex-disjoint paths π_R, π_G, and π_B.

For a path π_i if the two non-adjacent vertices v_1 and v_2 see each other or are incident on the same obstacle:

- Create a simple polygon Q using the sub-path between v_1 and v_2, and the segment v_1v_2. (Q is empty of other paths.)
- Find geodesic path between v_1 and v_2 inside Q.
Shorten Path Algorithm

Given: 3 vertex-disjoint paths π_R, π_G, and π_B.

For a path π_i if the two non-adjacent vertices v_1 and v_2 see each other or are incident on the same obstacle:

- Create a simple polygon Q using the sub-path between v_1 and v_2, and the segment v_1v_2.
 (Q is empty of other paths.)
- Find geodesic path between v_1 and v_2 inside Q.
Shorten Path Algorithm

Given: 3 vertex-disjoint paths \(\pi_R \), \(\pi_G \), and \(\pi_B \).

For a path \(\pi_i \) if the two non-adjacent vertices \(v_1 \) and \(v_2 \) see each other or are incident on the same obstacle:
- Create a simple polygon \(Q \) using the sub-path between \(v_1 \) and \(v_2 \), and the segment \(v_1v_2 \). (\(Q \) is empty of other paths.)
- Find geodesic path between \(v_1 \) and \(v_2 \) inside \(Q \).
Handle 2-Cuts Algorithm

Given: A subpolygon P' such that every triangulation of P' contain a 2-Cut.

- Find an extremal 2-cut C_1.
- C_1 divides P' into P_1' and P_2'.
- Designate vertices on P_1'.
- Recurse on P_1'.
- Handle 2-Cuts in P_2' if necessary.
- Otherwise recurse on P_2'.

Handle 2-Cuts Algorithm

Given: A subpolygon P’ such that every triangulation of P’ contain a 2-Cut.

- Find an extremal 2-cut C_1.
- C_1 divides P’ into $P_1’$ and $P_2’$.
- Designate vertices on $P_1’$.
- Recurse on $P_1’$.
- Handle 2-Cuts in $P_2’$ if necessary
- Otherwise recurse on $P_2’$.
Augmentation Algorithm (skeleton)

Given: A polygon P with 3-connected triangulation, and three unique colored vertices on its boundary.

- Pick an arbitrary obstacle.
- Find 3 vertex-disjoint paths.
- Shorten paths if necessary.
- Generate sub-problems.
- Handle 2-Cuts if necessary.
- Recurse.
How Many Edges are Enough?

For k convex obstacles:

3k edges.

- Edges along obstacles are free.
- Each path π_i enters and leaves an obstacle at most once.
- Each obstacle is charged for the leaving edge.
- Each obstacle is charged at most three times, once for each color.
- Each edge is charged to some obstacle.
Connecting polygonal obstacles in 3 vertex-disjoint paths

- Not always possible for non-convex obstacles.
- Triangulation of the free space around convex obstacles contains desired augmentation.
- For k convex obstacles, 3k-1 edges are necessary.
- For k convex obstacle, each with at most s sides: 3k – (k-1)/(s-1) edges are necessary.
- There is an augmentation using only 3k edges.
Open Problems

For k triangular obstacles, we need:

$$\frac{5}{2} k$$ edges.

Find an augmentation that matches the lower bound.
Open Problems

Augmenting a 3-augmentable 2-regular graph to a 3-connected graph
Open Problems

Augmenting a 3-augmentable 2-regular graph to a 3-connected graph

A graph is 3-augmentable iff:
1) Not all vertices in convex position
2) No chord. [TV09]
Open Problems

Augmenting a 3-augmentable 2-regular graph to a 3-connected graph

A 3-augmentable graph on n vertices.

Upper bound for general graphs: 3n – 5
• n-1 edges, to get connected graph
• n-2 edges, to get connected to 2-connected graph
• n-2 edges, to get 2-connected to 3-connected graph

Lower bound for general graph: 2n - 2

Special case of 2-regular graphs?
Thanks for Listening.