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Many popular programming languages, including Ruby, JavaScript, and Python,

feature dynamic type systems, in which types are not known until runtime. Dynamic

typing provides the programmer with flexibility and allows for rapid program devel-

opment. In contrast, static type systems, found in languages like C++ and Java,

help catch errors early during development, enforce invariants as programs evolve,

and provide useful documentation via type annotations. Many researchers have ex-

plored combining these contrasting paradigms, seeking to marry the flexibility of

dynamic types with the correctness guarantees and documentation of static types.

However, many challenges remain in this pursuit: programmers using dynamic

languages may wish to verify more expressive properties than basic type safety; op-

erations for commonly used libraries, such as those for databases and heterogeneous

data structures, are difficult to precisely type check; and type inference—the process

of automatically deducing the types of methods and variables in a program—often

produces type annotations that are complex and verbose, and thus less usable for

the programmer. To address these issues, I present four pieces of work that aim to



increase the expressiveness and usability of static types for dynamic languages.

First, I present RTR, a system that adds refinement types to Ruby: basic types

extended with expressive predicates. RTR uses assume-guarantee reasoning and a

novel idea called just-in-time verification—in which verification is deferred until

runtime—to handle dynamic program features such as mixins and metaprogramming.

We found RTR was useful for verifying key methods in six Ruby programs.

Second, I present CompRDL, a Ruby type system that allows library method

type signatures to include type-level computations (or comp types). Comp types can

be used to precisely type check database queries, as well as operations over hetero-

geneous data structures like arrays and hashes. We used CompRDL to type check

methods from six Ruby programs, enabling us to check more expressive properties,

with fewer manually inserted type casts, than was possible without comp types.

Third, I present InferDL, a Ruby type inference system that aims to produce

usable type annotations. Because the types inferred by standard, constraint-based

inference are often complex and less useful to the programmer, InferDL comple-

ments constraints with configurable heuristics that aim to produce more usable

types. We applied InferDL to four Ruby programs with existing type annotations

and found that InferDL inferred 22% more types that matched the prior annotations

compared to standard inference.

Finally, I present SimTyper, a system that builds on InferDL by using a novel

machine learning-based technique called type equality prediction. When standard

and heuristic inference produce a non-usable type for a position (argument/return/-

variable), we use a deep similarity network to compare that position to other posi-



tions with usable types. If the network predicts that two positions have the same

type, we guess the usable type in place of the non-usable one, and check the guess

against constraints to ensure soundness. We evaluated SimTyper on eight Ruby

programs with prior annotations and found that, compared to standard inference,

SimTyper finds 69% more types that match programmer-written annotations.

In sum, I claim that RTR, CompRDL, InferDL, and SimTyper represent promising

steps towards more expressive and usable types for dynamic languages.
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Chapter 1: Introduction

Dynamic type systems are featured in many popular programming languages

including Ruby, Python, and JavaScript. The lack of static type enforcement means

programmers can write code that is verbose and flexible, and that takes advantage

of highly dynamic features such as metaprogramming. All of this allows for rapid

prototyping and development of programs.

Yet there is a clear trade off. Static type systems are useful for catching

bugs early in the development process, enforcing invariants, and providing useful

documentation in the form of type annotations. These features become all the more

beneficial as programs grow in size and are maintained by larger teams of developers.

Thus, a growing area of research has examined ways to add static typing to dynamic

languages [1, 2, 3, 4, 5, 6, 7]. The goal is to maintain the flexibility of dynamic type

systems, while gaining some of the correctness guarantees of static types.

Such hybrid systems—typically deemed gradual typing when the system en-

sures soundness, and optional typing otherwise—have been explored for a growing

number of languages, including Ruby [4, 5, 8], Racket [3, 9, 10], Python [11, 12, 13],

JavaScript [14, 15, 16], and more. TypeScript, a typed superset of JavaScript which

includes optional typing, was declared by GitHub to be the 4th most popular lan-
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guage in 2020 [17]. Moreover, recent versions of Ruby [18] and Python [19] include

syntax for type annotations, which can serve as documentation and can be used in

type-based analyses.

However, there are many common features and constructs behind programs

written in dynamic languages that are challenging or not possible to capture with

prior type systems. Programmers may wish to verify more expressive properties

of programs than basic type correctness, such as the functional correctness proper-

ties of arithmetic operations. Moreover, the operations for many libraries popular

in dynamic languages, such as libraries for database operations and heterogeneous

data structures, cannot be precisely type checked using standard type systems. And

finally, the process of annotating programs with static types itself can be quite bur-

densome for the programmer. But the standard solution to this problem—type

inference based on constraint solving—often generates types that are verbose, con-

fusing, and less useful to the programmer.

These challenges have motivated the research presented in this dissertation. In

particular, I have explored these challenges through the design and implementation

of new type systems for the Ruby language. However, the systems and methodologies

I have contributed to are generalizable to other dynamic, and in some cases even

static, languages.

I present the following thesis:

New mechanisms can be added to conventional type systems to make these

systems more expressive and usable. Refinement types can be used to express and

enforce stronger properties of programs, and combined with a just-in-time verification
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approach, can be flexible enough to handle common dynamic features like mixins and

metaprogramming. Type-level computations can express more precise properties for

library methods, especially those for databases and heterogeneous data structures.

And standard, constraint-based type inference can be complemented with heuristic

rules and type equality prediction to produce more usable type annotations.

To substantiate this thesis, I present four novel type systems for Ruby: RTR,

CompRDL, InferDL, and SimTyper. These four systems build on RDL, an existing

Ruby type checker which I have contributed to. In the remainder of this chapter,

I first provide an overview of RDL (§ 1.1), and then I briefly introduce each of the

aforementioned novel type systems (§ 1.2).

1.1 RDL: A Ruby Type Checker

RDL [20] is an existing type and contract checking system for Ruby that I

have extensively contributed to. We begin with a brief description of RDL, as it

is foundational to the remainder of the work in this dissertation. Consider the

following example:

type ’( Integer ) → Integer ’ , typecheck: :later
def incr_sec(x) if (x==59) then 0 else x+1 end; end

On the second line of this example, we define a simple Ruby method incr_sec,

which takes a value x representing a second, and increments it by 1, wrapping back

around to 0 when necessary. Above this method, we have written an RDL type

annotation, which says that incr_sec should take and return an Integer. RDL will

check incr_sec against this type and determine that the method is type safe.

3



Notably, RDL performs type checking by statically analyzing code, but it does

so at runtime. Indeed, in the example, type is actually a method that we are calling,

with a String argument representing the type of the subsequently defined method; in

Ruby, methods can be called without enclosing parentheses around the arguments.

This String argument will be parsed into RDL’s type system and stored in a global

table that maintains a program’s type environment. We also pass the type method

the label :later — in Ruby, strings prefixed by colons are symbols, which are interned

strings. This label specifies the time that a method should be type checked. When

the program subsequently calls RDL.do_typecheck :later (call omitted above), RDL

will type check the source code of all methods whose type annotations are labeled

:later.

This design allows RDL to support the metaprogramming that is common in

Ruby and ubiquitous in Rails. For example, the programmer can perform type

checking after metaprogramming code has run, when corresponding type definitions

are available. See Ren and Foster [5] for more details.

RDL uses an expressive type language, including nominal, singleton, union,

intersection, generic, variable, and structural types. It also includes special precise

types for two of Ruby’s data structures: tuple types for fixed-sized arrays, which

give the exact types for each element in an array; and finite hash types, which give

the names of keys and types of values in a hash. In the coming chapters, we will

see how we can piggyback off RDL’s expressive type language and unique design to

implement refinement type checking, type-level computations, and expressive type

inference.
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1.2 Novel Type Systems

I now briefly introduce four novel type systems: RTR (§ 1.2.1), CompRDL (§ 1.2.2),

InferDL (§ 1.2.3), and SimTyper (§ 1.2.4).

1.2.1 RTR: Refinement Types for Ruby

While RDL is useful for establishing the type safety of a program, its basic types

alone cannot verify more expressive properties. To address this, we built RTR [21],

a system that extends RDL with refinement types, which are types extended with

expressive logical predicates. For example, recall the method incr_sec defined in

Section 1.1. Below, we once again define the method, this time annotating it with

refinement types:

type ’( Integer x { 0 ≤ x < 60 }) → Integer r { 0 ≤ r < 60}’
def incr_sec(x) if (x==59) then 0 else x+1 end; end

In addition to enforcing basic type safety, the above refinement types enforce

bounds on the method input and output: both the input (named x), and the output

(named r) should be in the range [0,60). Effectively, these refinement types encode

pre- and postconditions on the method, which are more expressive than basic types

alone. Checking such a specification is beyond the scope of traditional type checkers,

and would typically have to be done using dynamic checks, which can be tedious

and miss program paths. Using RTR, we can verify this specification statically for

all paths through the method.

RTR works by encoding its verification problems into Rosette, a solver-aided
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host language. RTR is able to achieve verification in the face of some of Ruby’s highly

dynamic features, such as mixins and metaprogramming, using a combination of

assume-guarantee reasoning and a novel approach we call just-in-time verification.

We formalized RTR by showing a translation from a core, Ruby-like language with

refinement types into Rosette. We evaluated RTR by applying it to six Ruby pro-

grams and using it to verify a range of functional correctness properties, and we

found that RTR can successfully verify key methods in these programs, taking only a

few minutes in the worst case to perform verification. We provide a full discussion

of RTR in Chapter 2.

1.2.2 CompRDL: Type-Level Computations for Ruby Libraries

Because Ruby is commonly used for web development, Ruby programs fre-

quently interact with a database. However, type checking database queries is a

challenging problem. The types of database operations often depend on program

values, such as the names of tables or columns being queried, in a way that tradi-

tional type systems cannot capture. We found similar issues arise in type checking

other Ruby libraries as well, such as those for arrays and hashes.

To address this issue, we developed CompRDL, a type system for Ruby that

allows library method type signatures to include type-level computations (or comp

types for short). Combined with singleton types for table and column names, comp

types let us give database query methods type signatures that compute a table’s

schema to yield very precise type information. Comp types for hash, array, and
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string libraries can also increase precision and thereby reduce the need for type

casts.

We formalized CompRDL using a core, Ruby-like language, and proved its type

system sound. Its soundness relies on both a lightweight termination checker and

the use of dynamic checks to enforce the non-checked comp types. We evaluated

CompRDL by writing annotations with type-level computations for several Ruby core

libraries and database query APIs. We then used those annotations to type check

two popular Ruby libraries and four Ruby on Rails web apps. We found the type

annotations were relatively compact and we were able to successfully type check 132

methods across our subject programs. The use of type-level computations allowed

us to check more expressive properties, with fewer manually inserted casts, than was

possible without type-level computations. In the process, we found three errors that

were confirmed by the developers. Chapter 3 gives a full presentation of CompRDL.

1.2.3 InferDL: Sound, Heuristic Type Annotation Inference for Ruby

The aforementioned type systems are useful systems for ensuring the correct-

ness of programs, but they still require the programmer to manually write type

annotations. This process can be burdensome and time-consuming, especially for

larger, more complex code bases. The standard solution to this problem is type

inference, which traditionally uses constraint solving to catch type errors in a pro-

gram without needing type annotations. We can take this process a step further, not

only using constraint solving to catch bugs, but also to generate the most-general
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type annotations for program values. However, we have found that in practice, the

resulting type annotations are often overly general, resulting in type annotations

that are verbose, confusing, and less useful to the programmer.

Building on a prior proposal for heuristic Ruby type inference [22], we devel-

oped InferDL, a system for generating type annotations that uses heuristic rules

to refine the overly general types produced by constraint solving. For example,

InferDL can use a heuristic rule that guesses that a parameter whose name ends

in “count” is an Integer. InferDL works by first running standard type inference,

then applying heuristics to any positions for which standard type inference pro-

duced an overly general type. Heuristic guesses are added as constraints to the type

inference problem to ensure they are consistent with the rest of the program and

other heuristic guesses; inconsistent guesses are discarded. We formalized InferDL

in a core type and constraint language. To evaluate InferDL, we applied it to four

Ruby on Rails apps that had been previously type checked with RDL, and hence

had type annotations. We found that, when using heuristics, InferDL inferred 22%

more types that were as or more precise than the previous annotations, compared

to standard type inference without heuristics. We also found one new type error.

We further evaluated InferDL by applying it to six additional apps, finding five

additional type errors. Chapter 4 presents InferDL in full.
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1.2.4 SimTyper: Sound Type Inference for Ruby using Type Equality

Prediction

With InferDL, we demonstrated that heuristics can be useful for refining

constraint-based type inference. However, hard-coded heuristic rules, while use-

ful for their target programs, may generalize poorly to new programs. While in

theory a programmer can write new heuristics for each new program, in practice

this can be a burdensome and time-consuming process.

To improve on heuristic-based inference, we introduce SimTyper, a system that

builds on InferDL for the purpose of inferring usable annotations. The key novelty

of SimTyper is type equality prediction, a new, machine learning-based technique

that predicts when method arguments or returns are likely to have the same type.

SimTyper finds pairs of positions that are predicted to have the same type yet one

has a verbose, overly general solution and the other has a usable solution. It then

guesses the two types are equal, keeping the guess if it is consistent with the rest

of the program, and discarding it if not. In this way, like InferDL, types inferred

by SimTyper are guaranteed to be sound. Type equality prediction is performed

by a deep similarity (DeepSim) neural network, which follows the Siamese network

architecture and uses CodeBERT, a pre-trained model, to embed source tokens into

vectors that capture tokens and their contexts. DeepSim is trained on 100,000 pairs

of arguments/returns labeled with type similarity information extracted from 371

Ruby programs with manually documented, but not checked, types. We evaluated

SimTyper on eight Ruby programs and found that, compared to standard type
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inference, SimTyper finds 69% more types that match programmer-written type

information. Moreover, DeepSim can predict rare types that appear neither in the

Ruby standard library nor in the training data. Our results show that type equality

prediction can help type inference systems effectively produce more usable types.
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Chapter 2: Refinement Type for Ruby

This chapter introduces RTR, a refinement type system for Ruby. Refinement

types are a popular way to specify and reason about key program properties. RTR is

built on top of RDL, and it works by encoding its verification problems into Rosette,

a solver-aided host language. RTR is able to handle some of Ruby’s highly dynamic

features, such as mixins and metaprogramming, through a combination of assume-

guarantee reasoning, and a novel approach we call just-in-time verification.

2.1 Introduction

Refinement types combine types with logical predicates to encode program

invariants [23, 24]. Recall the method incr_sec from § 1.1, which increments a

second. We can write the following refinement type specification for this method:

type :incr_sec, ‘( Integer x { 0 ≤ x < 60 }) → Integer r { 0 ≤ r < 60}’

With this specification, incr_sec can only be called with integers that are valid

seconds (between 0 and 59) and the method will always return valid seconds.

Refinement types were introduced to reason about simple invariants, like safe

array indexing [23], but since then they have been successfully used to verify sophis-

ticated properties including termination [25], program equivalence [26], and correct-
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ness of cryptographic protocols [27], in various languages (e.g., ML [28], Racket [10],

and TypeScript [29]).

We introduce RTR, a tool that adds refinement types to RDL and verifies them

via a translation into Rosette [30], a solver-aided host language. Since Rosette is

not object-oriented, RTR encodes Ruby objects as Rosette structs that store object

fields and an integer identifying the object’s class. At method calls, RTR uses RDL’s

type information to statically overestimate the possible callees. When methods with

refinement types are called, RTR can either translate the callee directly or treat it

modularly by asserting the method preconditions and assuming the postcondition,

using purity annotations to determine which fields (if any) the method may mutate.

(§ 2.2)

In addition to standard object-oriented features, Ruby includes dynamic lan-

guage features that increase flexibility and expressiveness. In practice, this in-

troduces two key challenges in refinement type verification: mixins, which are

Ruby code modules that extend other classes without direct inheritance, and meta-

programming, in which code is generated on-the-fly during runtime and used later

during execution. The latter feature is particularly common in Ruby on Rails, a

popular Ruby web development framework.

To meet these challenges, RTR uses two key ideas. First, RTR incorporates

assume-guarantee checking [31] to reason about mixins. RTR verifies definitions of

methods in mixins by assuming refinement type specifications for all undefined, ex-

ternal methods. Then, by dynamically intercepting the call that includes a mixin

in a class, RTR verifies the appropriate class methods satisfy the assumed refine-
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ment types (§ 2.3.1). Second, RTR uses just-in-time verification to reason about

metaprogramming, following RDL’s just-in-time type checking [5]. In this approach,

(refinement) types are maintained at run-time, and methods are checked against

their types after metaprogramming code has executed but before the methods have

been called (§ 2.3.2).

We formalized RTR by showing how to translate λRB, a core Ruby-like language

with refinement types, into λI , a core verification-oriented language. We then discuss

how to map the latter into Rosette, which simply requires encoding λI ’s primitive

object construct into Rosette structs and translating some control-flow constructs

such as return (§ 2.4).

We evaluated RTR by using it to check a range of functional correctness proper-

ties on six Ruby and Rails applications. In total, we verified 31 methods, comprising

271 lines of Ruby, by encoding them as 1,061 lines of Rosette. We needed 73 type

annotations. Verification took a total median time (over multiple trials) of 506

seconds (§ 2.5).

Thus, we believe RTR is a promising first step toward verification for Ruby.

2.2 Overview

We begin with an overview of RTR, which extends RDL (§ 1.1) with refinement

types. In RTR, program invariants are specified with refinement types (§ 2.2.1) and

checked by translation to Rosette (§ 2.2.2). We translate Ruby objects to Rosette

structs (§ 2.2.3) and method calls to function calls (§ 2.2.4).
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2.2.1 Refinement Type Specifications

Refinement types in RTR are RDL types extended with logical predicates. For

example, consider the incr_sec method first introduced in § 1.1. We can tweak the

type annotation for this method to include refinement types:

type ‘( Integer x { 0 ≤ x < 60 }) → Integer r { 0 ≤ r < 60}’
def incr_sec(x) if (x==59) then 0 else x+1 end ; end

This type indicates the argument and result of incr_sec are integers in the range from

0 to 59. In general, refinements (in curly braces) may be arbitrary Ruby expressions

that are treated as booleans, and they should be pure, i.e., have no side effects,

since effectful predicates make verification either complicated or imprecise [32]. As

in RDL, the type annotation, which is a string, is parsed and stored in a global table

which maintains the program’s type environment.

2.2.2 Verification Using Rosette

RTR checks method specifications by encoding their verification into Rosette [30],

a solver-aided host language built on top of Racket. Among other features, Rosette

can perform verification by using symbolic execution to generate logical constraints,

which are discharged using Z3 [33].

For example, to check incr_sec, RTR creates the equivalent Rosette program:

( define (incr_sec x) ( if (= x 59) 0 (+ x 1)))
( define−symbolic x_in integer?)
( verify #:assume (assert 0 ≤ x < 60)
#:guarantee ( assert ( let ([ r (incr_sec x) ]) 0 ≤ r < 60)))

Here x_in is an integer symbolic constant representing an unknown, arbitrary integer
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argument. Rosette symbolic constants can range over the solvable types integers,

booleans, bitvectors, reals, and uninterpreted functions. We use Rosette’s verify

function with assumptions and assertions to encode pre- and postconditions, re-

spectively. When this program is run, Rosette searches for an x_in such that the

assertion fails. If no such value exists, then the assertion is verified.

2.2.3 Encoding and Reasoning about Objects

We encode Ruby objects in Rosette using a struct type, i.e., a record. More

specifically, we create a struct type object that contains an integer classid identifying

the object’s class, an integer objectid identifying the object itself, and a field for each

instance variable of all objects encountered in the source Ruby program (similar to

prior work [34, 35]).

For example, consider a Ruby class Time with three instance variables @sec,

@min, and @hour, and a method is_valid that checks all three variables are valid:

class Time
attr_accessor :sec, :min, :hour

def initialize ( s, m, h) @sec = s; @min = m; @hour = h; end

type ‘() → bool’
def is_valid 0 ≤ @sec < 60 ∧ 0 ≤ @min < 60 ∧ 0 ≤ @hour < 24; end

end

RTR observes three fields in this program, and thus it defines:

( struct object ([ classid ][ objectid ]
[@sec #:mutable] [@min #:mutable] [@hour #:mutable]))

Here object includes fields for the class ID, object ID, and the three instance vari-
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ables. Note since object’s fields are statically defined, our encoding cannot handle

dynamically generated instance variables, which we leave as future work.

RTR then translates Ruby field reads or writes as getting or setting, respectively,

object’s fields in Rosette. For example, suppose we add a method mix to the Time

class and specify it is only called with and returns valid times:

type :mix, ‘(Time t1 { t1. is_valid }, Time t2 { t2. is_valid },
Time t3 { t3. is_valid }) → Time r { r . is_valid }’

def mix(t1,t2,t3) @sec = t1.sec ; @min = t2.min; @hour = t3.hour; self ; end

Initially, type checking fails because the getters’ and setters’ (e.g., sec and sec=)

types are unknown. Thus, we add those types:

type :sec, ‘() → Integer i { i == @sec }’
type :sec=, ‘( Integer i ) → Integer out { i == @sec }’

(Note these annotations can be generated automatically using our approach to meta-

programming, described in § 2.3.2.) This allows RTR to proceed to the translation

stage, which generates the following Rosette function:

( define (mix self t1 t2 t3)
(set−object−@sec! self (sec t1))
(set−object−@min! self (min t2))
(set−object−@hour! self (hour t3))
self )

(Asserts, assumes, and verify call omitted.) Here (set-object-x! y w) writes w to the

x field of y and the field selectors sec, min, and hour are uninterpreted functions.

Note that self turns into an explicit additional argument in the Rosette definition.

Rosette then verifies this program, thus verifying the original Ruby mix method.
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2.2.4 Method Calls

To translate a Ruby method call e.m(e1, .., en), RTR needs to know the callee,

which depends on the runtime type of the receiver e. RTR uses RDL’s type information

to overapproximate the set of possible receivers. For example, if e has type A in

RDL, then RTR translates the above as a call to A.m. If e has a union type, RTR

emits Rosette code that branches on the potential types of the receiver using object

class IDs and dispatches to the appropriate method in each branch. This is similar

to class hierarchy analysis [36], which also uses types to determine the set of possible

method receivers and construct a call graph.

Once the method being called is determined, we translate the call into Rosette.

As an example, consider a method to_sec that converts a Time object to seconds,

after it calls the method incr_sec from § 2.2.1.

type ‘(Time t { t.is_valid }) → Integer r { 0≤r<90060 }’
def to_sec(t) incr_sec( t.sec ) + 60 ∗ t.min + 3600 ∗ t.hour; end

RTR’s translation of to_sec could simply call directly into incr_sec’s transla-

tion. This is equivalent to inlining incr_sec’s code. However, inlining is not always

possible or desirable. A method’s code may not be available because the method

comes from a library, is external to the environment (§ 2.3.1), or has not been de-

fined yet (§ 2.3.2). The method might also contain constructs that are difficult to

verify, like diverging loops.

Instead, RTR can model the method call using the programmer provided method

specification. To precisely reason with only a method’s specification, RTR follows
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Dafny [37] and treats pure and impure methods differently.

Pure methods. Pure methods have no side effects and return the same result

for the same inputs, satisfying the congruence property ∀x, y.x = y ⇒ m(x) =

m(y) for a given method m. Thus, pure methods can be encoded using Rosette’s

uninterpreted functions. The method incr_sec is indeed pure, so we can label it as

such:

type :incr_sec, ‘( Integer x { 0≤x<60 }) → Integer r { 0≤r<60 }’, :pure

With the pure label, the translation of to_sec treats incr_sec as an uninterpreted

function. Furthermore, it asserts the precondition 0 ≤ x < 60 and assumes the

postcondition 0 ≤ r < 60, which is enough to verify to_sec.

Impure methods. Most Ruby methods have side effects and thus are not pure.

For example, consider incr_min, a mutator method that adds a minute to a Time:

type ‘(Time t { t.is_valid ∧ t.min < 59 }) → Time r { r.is_valid }’ ,
modifies: { t: @min, t: @sec }

def incr_min(t)
if t.sec<59 then t.sec=incr_sec(t.sec) else t.min+=1; t.sec=0 end
return t

end

A translated call to incr_min generates a fresh symbolic value as the method’s output

and assumes the method’s postcondition on that value. Because the method may

have side effects, the modifies label is used to list all fields of inputs which may be

modified by the method. Here, a translated call to incr_min will havoc (set to fresh

symbolic values) t’s @min and @sec fields.

We leave support for other kinds of modifications (e.g., global variables, tran-
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sitively reachable fields), as well as enforcing the pure and modifies labels, as future

work.

2.3 Just-In-Time Verification

Next, we show how RTR handles code with dynamic bindings via mixins (§ 2.3.1)

and metaprogramming (§ 2.3.2).

2.3.1 Mixins

Ruby implements mixins via its module system. A Ruby module is a collection

of method definitions that are added to any class that includes the module at runtime.

Interestingly, modules may refer to methods that are not defined in the module but

will ultimately be defined in the including class. Such incomplete environments pose

a challenge for verification.

Consider the following method that has been extracted and simplified from

the Money library, used in our evaluations (§ 2.5).

module Arithmetic
type ‘( Integer x)→ Float r { r == x/value }’
def div_by_val(x) x/value; end

end

The module method div_by_val divides its input x by value. RTR’s specification for

/ requires that value cannot be 0.

Notice that value is not defined in Arithmetic. Rather, it must be defined

wherever Arithmetic is included. Therefore, to proceed with verification in RTR, the

programmer must provide an annotation for value:
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type :value, ‘() → Float v { 0 < v }’, :pure

Using this annotation, RTR can verify div_by_value. Then when Arithmetic is in-

cluded in another class, RTR verifies value’s refinement type. For example, consider

the following code:

class Money
include Arithmetic
def value()

if (@val > 0) then ( return @val) else ( return 0.01) end
end

end

RTR dynamically intercepts the call to include and then applies the type an-

notations for methods not defined in the included module, in this case verifying

value against the annotation in Arithmetic. Thus, RTR follows an assume-guarantee

paradigm [31]: it assumes value’s annotation while verifying div_by_val and then

guarantees the annotation once value is defined.

2.3.2 Metaprogramming

Metaprogramming in Ruby allows new methods to be created and existing

methods to be redefined on the fly, posing a challenge for verification. RTR addresses

this challenge using just-in-time checking [5], in which, in addition to code, method

annotations can also be generated dynamically.

We illustrate the just-in-time approach using an example from Boxroom, a

Rails app for managing and sharing files in a web browser (§ 2.5). The app defines

a class UserFile that is a Rails model corresponding to a database table:

class UserFile < ActiveRecord::Base
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belongs_to :folder
...
type ‘( Folder target ) → Bool b { folder == target }’
def move(target) folder = target; save! ; end
...

end

Here calling belongs_to tells Rails that every UserFile is associated with a folder

(another model). The move method updates the associated folder of a UserFile and

saves the result to the database. We annotate move to specify that the UserFile’s

new folder should be the same as move’s argument.

This method and its annotation are seemingly simple, but there is a problem.

To verify move, RTR needs an annotation for the folder= method, which is not

statically defined. Rather, it is dynamically generated by the call to belongs_to.

To solve this problem in RTR, we instrument belongs_to to generate type an-

notations for the setter (and getter) method, as follows:

module ActiveRecord::Associations::ClassMethods
pre(:belongs_to) do |∗args |

name = args[0].to_s
cname = name.camelize
type "#{name}" , "() → #{cname} c", :pure
type "#{name}=", "(#{cname} i) →#{cname} o { #{name} == i }"
true

end
end

We call pre, an RDL method, to define a precondition code block (i.e., an anonymous

function) which will be executed on each call to belongs_to. First, the block sets

name and cname to be the string version of the first argument passed to belongs_to

and its camelized representation, respectively. Then, we create types for the name

and name= methods. Finally, we return true so the contract will succeed. In our
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example, this code generates the following two type annotations upon the call to

belongs_to:

type ‘ folder ’ , ‘() → Folder c’ , :pure
type ‘ folder =’, ‘( Folder i ) → Folder o { folder == i }’

These annotations will be generated when belongs_to is invoked with the :folder

argument, which happens exactly after the UserFile class is loaded. Thus, not only

will the call to belongs_to generate getter and setter methods, but it also generates

useful annotations for these methods. With these annotations, verification of the

initial move method succeeds.

2.4 From Ruby to Rosette

In this section, we formally describe our verifier and the translation from Ruby

to Rosette. We start (§ 2.4.1) by defining λRB, a Ruby subset that is extended

with refinement type specifications. We give (§ 2.4.2) a translation from λRB to an

intermediate language λI , and then (§ 2.4.3) we discuss how λI maps to a Rosette

program. Finally (§ 2.4.5), we use this translation to construct a verifier for Ruby.

2.4.1 Core Ruby λRB and Intermediate Representation λI

2.4.1.1 λRB

Figure 2.1 defines λRB, a core Ruby-like language with refinement types. Con-

stants consist of nil, booleans, and integers. Expressions include constants, vari-

ables, assignment, conditionals, sequences, and the reserved variable self, which
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Constants c ::= nil | true | false | 0, 1,−1, . . .

Expressions e ::= c | x | x:=e | if e then e else e | e ; e
| self | f | f :=e | e.m(e) | A.new | return(e)

Refined Types t ::= {x : A | e }
Program P ::= · | d, P | a, P

Definition d ::= def A.m(t)::t; l = e

Annotation a ::= A.m :: (t)→ t ; l with l 6= exact
Labels l ::= exact | pure | modifies[x.f ]

x ∈ var ids, f ∈ field ids, m ∈ meth ids, A ∈ class ids

Figure 2.1: Syntax of the Ruby Subset λRB.

refers to a method’s receiver. Also included are references to an instance variable

f and instance variable assignment; we note that in actual Ruby, field names are

preceded by a “@”. Finally, expressions include method calls, constructor calls A.new

which create a new instance of class A, and return statements.

Refined types {x : A | e } refine the basic type A with the predicate e. The

basic type A is used to represent both user defined and built-in classes including nil,

booleans, integers, floats, etc. The refinement e is a pure, boolean valued expression

that may refer to the refinement variable x. In the interest of greater simplicity for

the translation, we require that self does not appear in refinements e; however,

extending the translation to handle this is natural, and our implementation allows

for it. Sometimes we simplify the trivially refined type {x : A | true } to just A.

A program is a sequence of method definitions and type annotations over meth-

ods. A method definition def A.m({x1 : A1 | e1 }, . . . , {xn : An | en })::t; l = e de-

fines the method A.m with arguments x1, . . . , xn and body e. The type specification

of the definition is a dependent function type: each argument binder xi can appear
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inside the arguments’ refinements types ej for all 1 ≤ j ≤ n, and can also appear

in the refinement of the result type t. A method type annotation A.m :: (t)→ t ; l

binds the method named A.m with the dependent function type (t) → t. λRB in-

cludes both method annotations and method definitions because annotations are

used when a method’s code is not available, e.g., in the cases of library methods,

mixins, or metaprogramming.

A label l can appear in both method definitions and annotations to direct the

method’s translation into Rosette as described in § 2.2.4. The label exact states

that a called method will be exactly translated by using the translation of the body

of the method. Since method type annotations do not have a body, they cannot be

assigned the exact label. The pure label indicates that a method is pure and thus

can be translated using an uninterpreted function. Finally, the modifies[x.f ] label

is used when a method is impure, i.e., it may modify its inputs. As we saw earlier,

the list x.f captures all the argument fields which the method may modify.

2.4.1.2 λI .

Figure 2.2 defines λI , a core verification-oriented language that easily trans-

lates to Rosette. λRB methods map to λI functions, and λRB objects map to a

special object struct type. λI provides primitives for creating, altering, and refer-

encing instances of this type. Values in λI consist of constants c (defined identically

to λRB) and object(i1, i2, [f1 w1] . . . [fn wn]), an instantiation of an object type

with class ID i1, object ID i2, and where each field fi of the object is bound to value
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Values w ::= c | object(i, i, [f w])

Expressions u ::= w | x | x:=u | if u then u else u | u ; u
| let ([x u]) in u | x(u) | assert(u)
| assume(u) | return(u) | havoc(x.f) | x.f := u | x.f

Program Q ::= · | d,Q | v,Q
Definition d ::= define x(x) = u | define-sym(x, A)

Verification Query v ::= verify(u⇒ u)

x ∈ var ids, f ∈ field ids, A ∈ types, i ∈ integers

Figure 2.2: Syntax of the Intermediate Language λI .

wi. Expressions include let bindings (let ([xi ui]) in u) where each xi may appear

free in uj if i < j. They also include function calls, assert, assume, and return

statements, as well as havoc(x.f), which mutates x’s field f to a fresh symbolic

value. Finally, they include field assignment x.f := u and field reads x.f .

A program is a series of definitions and verification queries. A definition is

a function definition or a symbolic definition define-sym(x, A), which binds x to

either a fresh symbolic value if A is a solvable type (e.g., boolean, integer; see § 2.2.2)

or a new object with symbolic fields defined depending on the type of A. Finally,

a verification query verify(u⇒ u) checks the validity of u assuming u.

2.4.2 From λRB to λI

Figures 2.3 and 2.4 define the translation function e  u that maps expres-

sions and programs from λRB to λI .
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Expression Translation e u

c c T-Const x x T-Var
e1  u1 e2  u2

e1 ; e2  T-Seq

e1  u1 e2  u2 e3  u3
if e1 then e2 else e3  if u1 then u2 else u3

T-If
self self

T-Self

e u
x:=e x:=u T-VarAssn e u

return(e) return(u)
T-Ret

f ∈ F
f  self.f

T-Inst
f ∈ F e u

f :=e self.f := u
T-InstAssn

classId(A) = ic freshID(io) fi ∈ F
A.new object(ic, io, [f1 nil] . . . [f|F| nil])

T-New

typeOf(eF ) = A exact = labelOf(A.m)
A_m ∈M eF  uF ei  ui

eF .m(e) A_m(uF , u)
T-Exact

typeOf(eF ) = A pure = labelOf(A.m)
A_m ∈ U freshVar(x, r)

specOf(A.m) = ({x : Ax | ex })→ {r : Ar | er }
eF  uF e u ex  ux er  ur

eF .m(e) let ([x u][r A_m(uF , a)]) in assert(ux) ; assume(ur) ; r
T-Pure1

typeOf(eF ) = A modifies[p] = labelOf(A.m)
specOf(A.m) = ({x : Ax | ex })→ {r : Ar | er }

hx = {u.f | f ∈ F , x.f ∈ p} hF = {uF .f | f ∈ F , self.f ∈ p}
freshVar(x, r) eF  uF e u ex  ux er  ur

eF .m(e) 
let ([x u]) in define-sym(r, Ar);
assert(ux) ; havoc(hF ∪ hx) ; assume(ur) ; r

T-Impure1

Figure 2.3: Expression translation from λRB to λI . For simplicity rules T-Pure1
and T-Impure1 assume single argument methods.
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Program Translation P  Q

· · T-Emp
P  Q

A.m :: (x1:t1, . . . , xn:tn)→ t ; l, P  Q
T-Ann

ti = {xi : Axi | exi } t = {r : Ar | er }
e u exi  uxi er  ur P  Q 1 ≤ i ≤ n

def A.m(t1, . . . , tn)::t; l = e, P  

define A_m(self, x1, . . . , xn) = u;
define-sym(self, A);
define-sym(xi, Axi);
verify(ux1 , . . . , uxn ⇒ ur) ; Q

T-Def

Figure 2.4: Program translation from λRB to λI .

Global States. The translation uses setsM, U , and F , to ensure all the methods,

uninterpreted functions, and fields are well-defined in the generated λI term:

M ::= A1.m1, . . . , An.mn U ::= A1.m1, . . . , An.mn F ::= f1, . . . , fn

In the translation rules, we use the standard set operations x ∈ X and | X | to

check membership and size of the set X . Thus, the translation relation is defined

over these sets: M,U ,F ` e u. Since the rules do not modify these environments,

in Figures 2.3 and 2.4 we simplify the rules to e  u. Note that even though the

rules “guess” these environments by making assumptions about which elements are

members of the sets, in an algorithmic definition the rules can be used to construct

the sets.

Expressions. Figure 2.3 defines the translation function for expressions. The

rules T-Const and T-Var are identity while the rules T-If, T-Seq, T-Ret, and

T-VarAssn are trivially inductively defined. The rule T-Self translates self into
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the special variable named self in λI . The self variable is always in scope, since each

λRB method translates to a λI function with an explicit first argument named self .

The rules T-Inst and T-InstAssn translate a reference from and an assignment

to the instance variable f , to a read from and write to, respectively, the field f of

the variable self . Moreover, both the rules assume the field f to be in global field

state F . The rule T-New translates from a constructor call A.new to an object

instance. The classId(A) function in the premise of this rule returns the class ID

of A. The freshID(io) predicate ensures the new object instance has a fresh object

ID. Each field of the new object, f1, . . . , f|F|, is initially bound to nil.

Method Calls. To translate the λRB method call eF .m(e), we first use the func-

tion typeOf(eF ) to type eF via RDL type checking 1.1. If eF is of type A, we split

cases of the method call translation based on the value of labelOf(A.m), the label

specified in the annotation of A.m (as informally described in § 2.2.4).

The rule T-Exact is used when the label is exact. The receiver eF is trans-

lated to uF which becomes the first (i.e., the self ) argument of the function call to

A_m. Moreover, A.m is assumed to be in the global method name setM since it

belongs to the transitive closure of the translation.

We note that for the sake of clarity, in the T-Pure1 and T-Impure1 rules,

we assume that the method A.m takes just one argument; the rules can be ex-

tended in a natural way to account for more arguments. The rule T-Pure1 is used

when the label is pure. In this case, the call is translated as an invocation to the

uninterpreted function A_m, so A.m should be in the global set of uninterpreted

28



functions U . The specification specOf(A.m) of the method is also enforced. Let

({x : Ax | ex }) → {r : Ar | er } be the specification. We assume that the binders

in the specification are α-renamed so that the binders x and r are fresh. We use

x and r to bind the argument and the result, respectively, to ensure, via A-normal

form conversion [38], that they will be evaluated exactly once, even though x and r

may appear many times in the refinements. To enforce the specification, we assert

the method’s precondition ex and assume the postcondition er.

If a method is labeled with modifies[p] then the rule T-Impure1 is applied.

We locally define a new symbolic object as the return value, and we havoc the fields

of all arguments (including self ) specified in the modifies label, thereby assigning

these fields to new symbolic values. Since we do not translate the called method at

all, no global state assumptions are made.

Programs. Finally, we use the translation relation to translate programs from

λRB to λI , i.e., P  Q. This is shown in Figure 2.4. The rule T-Ann discards

type annotations. The rule T-Def translates a method definition for A.m to the

function definition A_m that takes the additional first argument self . The rule also

considers the declared type of A.m and instantiates a symbolic value for every input

argument. Finally, all refinements from the inputs and output of the method type

are translated and the derived verification query is made.
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2.4.3 From λI to Rosette

We write Q� R to encode the translation of the λI program Q to the Rosette

program R. This translation is straightforward, since λI consists of Rosette ex-

tended with some macros to encode Ruby-verification specific operators, like define-sym

and return. In fact, in the implementation of the translation (§ 2.5), we used

Racket’s macro expansion system to achieve this final transformation.

Handling objects. λI contains multiple constructs for defining and altering ob-

jects, which are expanded in Rosette to perform the associated operations over

object structs. The expressions object(ic, io, [f w]) and havoc(x.f), and the

definition define-sym(x, A), all described in § 2.4.1, are expanded to perform the

corresponding operations over values of the object struct type.

Control Flow. Macro expansion is used to translate return and assume state-

ments, and exceptions into Rosette, since those forms are not built-in to the lan-

guage. To encode return, we expand every function definition in λI to keep track

of a local variable ret, which is initialized to a special undefined value and re-

turned at the end of the function. We transform every statement return(e) to

update the value of ret to e. Then, we expand every expression u in a function

to unless-done(u), which checks the value of ret, proceeding with u if ret is

undefined or skipping u if there is a return value.

We used the encoding of return to encode more operators. For example,

assume is encoded in Rosette as a macro that returns a special fail value when
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assumptions do not hold. The verification query then needs to be updated with

the condition that fail is not returned. A similar expansion is used to encode and

propagate exceptions.

2.4.4 Primitive Types

λRB provides constructs for functions, assignments, control flow, etc, but does

not provide the theories required to encode interesting verification properties that,

for example, reason about booleans and numbers. On the other hand, Rosette

is a verification oriented language with special support for common theories over

built-in datatypes, including booleans, numeric types, and vectors. To bridge this

gap, we encode certain Ruby expressions, such as constants c in λRB, into Rosette’s

corresponding built-in datatypes.

Equality and Booleans. To precisely reason about equality, we encode Ruby’s

==method over arbitrary objects using the object class’ == method if one is defined.

If the class inherits this method from Ruby’s top class, BasicObject, then we encode

== using Rosette’s equality operator equal? to check equality of object IDs. We

encode Ruby’s booleans and operations over them as Rosette’s respective booleans

and their operators.

Integers and Floats. By default, we encode Ruby’s infinite-precision Integer

and Float objects as Rosette’s built-in infinite-precision integer and real datatypes,

respectively. The infinite-precision encoding is efficient and precise, but it may re-
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sult in undecidable queries involving non-linear arithmetic or loops. To perform

(bounded) verification in such cases, we provide, via a configuration flag, the option

of encoding Ruby’s integers as Rosette’s built-in finite sized bitvectors.

Arrays. Finally, we provide a special encoding for Ruby’s arrays, which are com-

monly used both for storing arbitrarily large random-access data and to represent

mixed-type tuples, stacks, queues, etc. We encode Ruby’s arrays as a Rosette

struct composed of a fixed-size vector and an integer representing the current size of

the Ruby array. Because we used fixed-size vectors, we can only perform bounded

verification over arrays. On the other hand, we avoid the need for loop invariants

for iterators and reasoning over array operations can be more efficient.

2.4.5 Verification of λRB

We define a verification algorithm RTRλ that, given a λRB program P , checks

if all the definitions satisfy their specifications. The pseudo-code for this algorithm

is shown below:

def RTRλ(P )
(F , U , M) := guess(P )
for (f ∈ F ) : add field f to object struct
for (u ∈ U ) : define uninterpreted function u
P  Q� R
return if (valid(R)) then SAFE else UNSAFE

end

First, we guess the proper translation environments. In practice (as discussed

in § 2.4.2), we use the translation of P to generate the minimum environments for

which translation of P succeeds. We define an object struct in Rosette containing
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one field for each member of F , and we define an uninterpreted function for each

method in U . Next, we translate P to a λI program Q via P  Q (§ 2.4.2) and

Q to a the Rosette program R, via Q� R (§ 2.4.3). Finally, we run the Rosette

program R. The initial program P is safe, i.e., no refinement type specifications are

violated, if and only if the Rosette program R is valid, i.e., all the verify queries

are valid.

We conclude this section with a discussion of the RTRλ verifier.

RTRλ is Partial. There exist expressions of λRB that fail to translate into a λI

expression. The translation requires at each method call eF .m(e) that the receiver

has a class type A. There are two cases where this requirement fails: (1) eF has a

union type or (2) type checking fails and so eF has no type. In our implementation

(§ 2.5), we extend the translation to handle the first two cases. Handling for (1) is

outlined in § 2.2.4. Case (2) can be caused by either a type error in the program

or a lack of typing information for the type checker. Translation cannot proceed in

either case.

RTRλ may Diverge. The translation to Rosette always terminates. All trans-

lation rules are inductively defined: they only recurse on syntactically smaller ex-

pressions or programs. Also, since the input program is finite, the minimum global

environments required for translation are also finite. Finally, all the helper functions

(including the type checking typeOf(·)) do terminate.

Yet, verification may diverge, as the execution of the Rosette program may
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diverge. Specifications can encode arbitrary expressions, thus it is possible to encode

undecidable verification queries. Consider, for instance, the following contrived

Rosette program in which we attempt to verify an assertion over a recursive method:

( define (rec x) (rec x))
( define−symbolic b boolean?)
( verify (rec b))

Rosette attempts to symbolically evaluate this program, and thus diverges.

RTRλ is Incomplete. Verification is incomplete and its precision relies on the

precision of the specifications. For instance, if a pure method A.m is marked as

impure, the verifier will not prove the congruence axiom.

RTRλ is Sound. If the verifier decides that the input program is safe, then all

definitions satisfy their specifications, assuming that (1) all the refinements are pure

boolean expressions and (2) all the labels are sound (i.e., methods match the spec-

ifications implied by the labels). The assumption (1) is required since verification

under diverging (let alone effectful) specifications is difficult [32]. The assumption

(2) is required since our translation encodes pure methods as uninterpreted func-

tions, while for the impure methods it havocs only the unprotected arguments.

2.5 Evaluation

We implemented the Ruby refinement type checker RTR1 by extending RDL

with refinement types. Table 2.1 summarizes the evaluation of RTR.
1Code available at: https://github.com/mckaz/vmcai-rdl
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Benchmarks. We evaluate RTR on six popular Ruby libraries:

• Money [39] performs currency conversions over monetary quantities and relies

on mixin methods,

• BusinessTime [40] performs time calculations in business hours and days,

• Unitwise [41] performs various unit conversions,

• Geokit [42] performs calculations over locations on Earth,

• Boxroom [43] is a Rails app for sharing files in a web browser and uses meta-

programming, and

• Matrix [44] is a Ruby standard library for matrix operations.

For verification, we forked the original Ruby libraries and provided manually written

method specifications in the form of refinement types. The forked repositories are

publicly available [45]. Experiments were conducted on a machine with a 3 GHz

Intel Core i7 processor and 16 GB of memory.

We chose these libraries because they combine Ruby-specific features chal-

lenging for verification, like metaprogramming and mixins, with arithmetic-heavy

operations. In all libraries we verify both (1) functional correctness of arithmetic

operations (e.g., no division-by-zero, the absolute value of a number should not

be negative) and (2) data-specific arithmetic invariants (e.g., integers representing

months should always be in the range from 1 to 12 and a data value added to an

aggregate should always fall between maintained @min and @max fields). In the Ma-

trix library, we verify a matrix multiplication method, checking that multiplying a
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matrix with r rows by a matrix with c columns yields a matrix of size r×c. Note this

method makes extensive use of array operations, since matrices are implemented as

an array of arrays.

Quantitative Evaluation. Table 2.1 summarizes our evaluation quantitatively.

For each application, we list every verified Method. In our experiment, we focused

on methods with interesting arithmetic properties.

The Ruby LoC column gives the size of the verified Ruby program. This met-

ric includes the lines of all methods and annotations that were used to verify the

method in question. For each verified method, RTR generates a separate Rosette

program. We give the sizes of these resulting programs in the Rosette LoC column.

Unsurprisingly, the LoC of the Rosette program increases with the size of the source

Ruby program.

We present the median (Time(s)) and semi-interquartile range (SIQR) of the

Verification Time required to verify all methods for an application over 11 runs.

For each verified method, the SIQR was at most 2% of the verification time, indicat-

ing relatively little variance in the verification time. Overall, verification was fast,

as might be expected for relatively small methods. The one exception was matrix

multiplication. In this case, the slowdown was due to the extensive use of array

operations mentioned above. We bounded array size (see § 2.4.4) at 10 for the eval-

uations. For symbolic arrays, this means Rosette must reason about every possible

size of an array up to 10. This burden is exacerbated by matrix multiplication’s use

of two symbolic two-dimensional arrays.
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Method Ru-LoC Ro-LoC Spec Verification Time

Time(s) SIQR
Money

Money::Arithmetic#-@ 7 29 4 5.69 0.14
Money::Arithmetic#eql? 11 40 3 5.74 0.03

Money::Arithmetic#positive? 5 24 3 5.40 0.01
Money::Arithmetic#negative? 5 24 2 5.42 0.01

Money::Arithmetic#abs 5 30 4 5.49 0.01
Money::Arithmetic#zero? 5 26 2 5.38 0.02

Money::Arithmetic#nonzero? 5 24 2 5.43 0.03
App Total 43 197 10 38.56 0.25

BusinessTime
ParsedTime#- 10 58 8 6.28 0.02

BusinessHours#initialize 5 26 2 5.36 0.04
BusinessHours#non_negative_hours? 5 26 2 5.4 0.01

Date#week 7 32 2 5.53 0.01
Date#quarter 5 28 2 5.47 0.00

Date#fiscal_month_offset 5 25 2 5.41 0.02
Date#fiscal_year_week 7 33 2 5.53 0.03

Date#fiscal_year_month 12 35 3 5.65 0.02
Date#fiscal_year_quarter 9 42 2 5.72 0.03

Date#fiscal_year 11 32 4 5.81 0.03
App Total 76 337 24 56.15 0.20

Unitwise
Unitwise::Functional.to_cel 4 25 2 5.42 0.03

Unitwise::Functional.from_cel 4 25 2 5.44 0.03
Unitwise::Functional.to_degf 4 22 1 5.41 0.01

Unitwise::Functional.from_degf 4 27 2 5.44 0.02
Unitwise::Functional.to_degre 4 27 2 5.44 0.01

Unitwise::Functional.from_degre 4 27 2 5.42 0.01
App Total 24 153 6 32.55 0.11

Geokit
Geokit::Bounds#center 7 31 4 5.4 0.02

Geokit::Bounds#crosses_meridian? 7 35 6 5.59 0.12
Geokit::Bounds#== 9 60 5 5.97 0.13

Geokit::GeoLoc#province 5 26 2 5.52 0.11
Geokit::GeoLoc#success? 5 26 2 5.51 0.05

Geokit::Polygon#contains? 26 68 10 10.8 0.07
App Total 59 246 21 38.80 0.50

Boxroom
UserFile#move 12 34 3 5.57 0.05

Matrix
Matrix.* 57 94 9 334.35 3.99

Total 271 1061 73 505.98 5.10

Table 2.1: Method gives the class and name of the method verified. Ru-LoC and
Ro-LoC give number of LoC for a Ruby method and the translated Rosette pro-
gram. Spec is the number of method and variable type annotations we had to
write. Verification Time is the median and semi-interquartile range of the time
in seconds over 11 runs. App Total rows list the totals for an app, without double
counting the same specs.
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Finally, Table 2.1 lists the number of type specifications required to ver-

ify each method. These are comprised of method type annotations, including the

refinement type annotations for the verified methods themselves, and variable type

annotations for instance variables. Note that we do not quantify the number of type

annotations used for Ruby’s core and standard libraries, since these are included in

RDL.

We observe that there is significant variation in the number of annotations

required for each application. For example, Unitwise required 6 annotations to verify

6 methods, while Geokit required 21 annotations for 6 methods. The differences

are due to code variations: To verify a method, the programmer needs to give a

refinement type for the method plus a type for each instance variable used by the

method and for each (non-standard/core library) method called by the method.

Case Study. Next we illustrate the RTR verification process by presenting the

exact steps required to specify and check the properties of a method from an existing

Ruby library. For this example, we chose to verify the « method of the Aggregate

library [46], a Ruby library for aggregating and performing statistical computations

over some numeric data. The method « takes one input, data, and adds it to the

aggregate by updating (1) the minimum @min and maximum @max of the aggregate,

(2) the count @count, sum @sum, and sum of squares @sum2 of the aggregate, and

finally (3) the correct bucket in @buckets.

def «(data)
if 0 == @count

@min = data ; @max = data
else
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@max = data if data > @max ; @min = data if data < @min
end
@count += 1 ; @sum += data ; @sum2 += (data ∗ data)
@buckets[to_index(data)] += 1 unless outlier? (data)

end

We specify functional correctness of the method « by providing a refinement

type specification that declares that after the method is executed, the input data

will fall between @min and @max.

type :«, ‘( Integer data) → Integer { @min≤data≤@max }’, verify: :bind

Here, the symbol :bind is an arbitrary label. To verify the specification, we

load the library and call the verifier with this label:

rdl_do_verify :bind

RTR proceeds with verification in three steps:

• first use RDL to type check the basic types of the method,

• then translate the method to Rosette (using the translation of § 2.4), and

• finally run the Rosette program to check the validity of the specification.

Initially, verification fails in the first step with the error

error : no type for instance variable ‘@count’

To fix this error, the user needs to provide the correct types for the instance variables

using the following type annotations.

var_type :@count, ‘ Integer ’
var_type :@min, :@max, :@sum, :@sum2, ‘Float’
var_type :@buckets, ‘Array<Integer>’
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The « method also calls two methods that are not from Ruby’s standard and core

libraries: to_index, which takes a numeric input and determines the index of the

bucket the input falls in, and outlier?, which determines if the given data is an

outlier based on provided specifications from the programmer. These methods are

challenging to verify. For example, the to_index method makes use of non-linear

arithmetic in the form of logarithms, and it includes a loop. Yet, neither of the

calls to_index or outlier? should affect verification of the specification of «. So, it

suffices to provide type annotations with a pure label, indicating we want to use

uninterpreted functions to represent them:

type :outlier?, ’( Float i ) → Bool b’ , :pure
type :to_index, ’( Float i ) → Integer out’ , :pure

Given these annotations, the verifier has enough information to prove the postcon-

dition on «, and it will return the following message to the user:

Aggregate instance method «is safe.

When verification fails, an unsafe message is provided, combined with a coun-

terexample consisting of bindings to symbolic values that causes the postcondition

to fail. For instance, if the programmer incorrectly specified that data is less than

the @min, i.e.,

type :«, ‘( Integer data) → Integer { data < @min }’

Then RTR would return the following message:

Aggregate instance method «is unsafe.
Counterexample: (model [real_data 0][real_@min 0] . . . )

This gives a binding to symbolic values in the translated Rosette program which
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would cause the specification to fail. We only show the bindings relevant to the spec-

ification here: when real_data and real_@min, the symbolic values corresponding to

data and @min respectively, are both 0, the specification fails.

2.6 Related Work

Verification for Ruby on Rails. Several prior systems can verify properties of

Rails apps. Space [47] detects security bugs in Rails apps by using symbolic execu-

tion to generate a model of data exposures in the app and reporting a bug if the

model does not match common access control patterns. Bocić and Bultan propose

symbolic model extraction [48], which extracts models from Rails apps at runtime,

to handle metaprogramming. The generated models are then used to verify data

integrity and access control properties. Rubicon [49] allows programmers to write

specifications using a domain-specific language that looks similar to Rails tests, but

with the ability to quantify over objects, and then checks such specifications with

bounded verification. Rubyx [50] likewise allows programmers to write their own

specifications over Rails apps and uses symbolic execution to verify these specifica-

tions.

In contrast to RTR, all of these tools are specific to Rails and do not apply

to general Ruby programs, and the first two systems do not allow programmers to

specify their own properties to be verified.

Rosette. Rosette has been used to help establish the security and reliability of

several real-world software systems. Pernsteiner et al. [51] use Rosette to build a

41



verifier to study the safety of the software on a radiotherapy machine. Bagpipe

[52] builds a verifier using Rosette to analyze the routing protocols used by Internet

Service Providers (ISPs). These results show that Rosette can be applied in a variety

of domains.

Types For Dynamic Languages. There have been a number of efforts to bring

type systems to dynamic languages including Python [11, 12], Racket [3, 9], and

JavaScript [16, 53, 54], among others. However, these systems do not support re-

finement types.

Some systems have been developed to introduce refinement types to scripting

and dynamic languages. Refined TypeScript (RSC) [29] introduces refinement types

to TypeScript [55, 56], a superset of JavaScript that includes optional static typing.

RSC uses the framework of Liquid Types [57] to achieve refinement inference. Re-

finement types have been introduced [10] to Typed Racket as well. As far as we are

aware, these systems do not support mixins or metaprogramming.

General Purpose Verification. Dafny [37] is an object-oriented language with

built-in constructs for high-level specification and verification. While it does not

explicitly include refinement types, the ability to specify a method’s type and pre-

and postconditions effectively achieves the same level of expressiveness. Dafny also

performs modular verification by using a method’s pre- and postconditions and la-

bels indicating its purity or arguments mutated, an approach RTR largely emulates.

However, unlike Dafny, RTR leaves this modular treatment of methods as an option
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for the programmer. Furthermore, unlike RTR, Dafny does not include features

such as mixins and metaprogramming.

2.7 Conclusion

We formalized and implemented RTR, a refinement type checker for Ruby pro-

grams using assume-guarantee reasoning and the just-in-time checking technique of

RDL. Verification at runtime naturally adjusts standard refinement types to handle

Ruby’s dynamic features, such as metaprogramming and mixins. To evaluate our

technique, we used RTR to verify numeric properties on six commonly used Ruby

and Ruby on Rails applications, by adding refinement type specifications to the ex-

isting method definitions. We found that verifying these methods took a reasonable

runtime and annotation burden, and thus we believe RTR is a promising first step

towards bringing verification to Ruby.

Our work opens new directions for further Ruby verification. One potential

area for future work is verification of purity and immutability labels, which are cur-

rently trusted by RTR. Another area would be refinement type inference by adapting

Hindley-Milner and liquid typing [57] to the RDL setting, and by exploring whether

Rosette’s synthesis constructs could be used for refinement inference. There is also

potential for extending the expressiveness of RTR by adding support for loop in-

variants and dynamically defined instance variables, among other Ruby constructs.

Finally, as Ruby is commonly used in the Ruby on Rails framework, it would be

interesting extend RTR with modeling for web-specific constructs such as access con-
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trol protocols and database operations to further support verification in the domain

of web applications.
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Chapter 3: Type-Level Computations for Ruby Libraries

The previous chapter introduced RTR, a system that extends RDL with re-

finement types. While RTR is useful for enforcing strong correctness properties of

programs, there are still many commonly used constructs in Ruby programs that

are out of RDL’s reach, even for basic type checking. For example, database queries,

as well as operations over heterogeneous data structures such as arrays and hashes,

can be difficult to tame with static types. In this chapter, we introduce CompRDL,

a system that adds type-level computations to RDL. This greatly increases the ex-

pressiveness of RDL’s types, and it allows us to type check many common operations

that were previously out of reach.

3.1 Introduction

While there is a large body of research on adding static typing to dynamic

languages [3, 4, 5, 8, 9, 11, 12, 16, 53, 54], existing systems have limited support

for the case when types depend on values. Yet this case occurs surprisingly often,

especially in Ruby libraries. For example, consider the following database query,

written for a hypothetical Rails app:

Person.joins (:apartments).where({name: ’Alice ’ , age: 30, apartments: {bedrooms: 2}})
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This query uses the ActiveRecord DSL to join two database tables, people1 and

apartments, and then filter on the values of various columns (name, age, bedrooms)

in the result.

We would like to type check such code, e.g., to ensure the columns exist and

the values being matched are of the right types. But we face an important problem:

what type signature do we give joins? Its return type—which should describe the

joined table—depends on the value of its argument. Moreover, for n tables, there

are n2 ways to join two of them, n3 ways to join three of them, etc. Enumerating

all these combinations is impractical.

To address this problem, in this chapter we introduce CompRDL, which extends

RDL to include method types with type-level computations, henceforth referred to

as comp types. More specifically, in CompRDL we can annotate library methods

with type signatures in which Ruby expressions can appear as types. During type

checking, those expressions are evaluated to produce the actual type signature, and

then typing proceeds as usual. For example, for the call to Person.joins, by using a

singleton type for :apartments, a type-level computation can look up the database

schemas for the receiver and argument and then construct an appropriate return

type.2

Moreover, the same type signature can work for any model class and any

combination of joins. And, because CompRDL allows arbitrary computation in types,

CompRDL type signatures have access to the full, highly dynamic Ruby environment.
1Rails knows the plural of person is people.
2The use of type-level computations and singleton types could be considered dependent typing,

but as our type system is much more restricted we introduce new terminology to avoid confusion
(see § 3.2.4 for discussion).
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This allows us to provide very precise types for the large set of Rails database

query methods. It also lets us give precise types to methods of finite hash types

(heterogeneous hashes), tuple types (heterogeneous arrays), and const string types

(immutable strings), which can help eliminate type casts that would otherwise be

required.

Note that in all these cases, we apply comp types to library methods whose

bodies we do not type check, in part to avoid complex, potentially undecidable rea-

soning about whether a method body matches a comp type, but more practically

because those library methods are either implemented in native code (hashes, arrays,

strings) or are complex (database queries). This design choice makes CompRDL a par-

ticularly practical system which we can apply to real-world programs. To maintain

soundness, we insert dynamic checks to ensure that these methods abide by their

computed types at runtime. (§ 2.2 gives an overview of typing in CompRDL.)

We introduce λC , a core, object-oriented language that formalizes CompRDL

type checking. In λC , library methods can be declared with signatures of the form

(a<:e1/A1)→ e2/A2, where A1 and A2 are the conventional (likely overapproximate)

argument and return types of the method. The precise argument and return types

are determined by evaluating e1 and e2, respectively, and that evaluation may refer

to the type of the receiver and the type a of the argument. λC also performs type

checking on e1 and e2, to ensure they do not go wrong. To avoid potential infinite

recursion, λC does not use type-level computations during this type checking process,

instead using the conventional types for library methods. Finally, λC includes a

rewriting step to insert dynamic checks to ensure library methods abide by their
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computed types. We prove λC ’s type system is sound. (See § 2.4 for our formalism.)

We implemented CompRDL on top of RDL (§ 1.1). Since CompRDL can include

type-level computation that relies on mutable values, CompRDL inserts additional

runtime checks to ensure such computations evaluate to the same result at method

call time as they did at type checking time. Additionally, CompRDL uses a lightweight

analysis to check that type-level computations (and thus type checking) terminate.

The termination analysis uses purity effects to check that calls that invoke iterator

methods—the main source of looping in Ruby, in our experience—do not mutate

the receiver, which could introduce non-termination. Finally, we found that several

kinds of comp types we developed needed to include weak type updates to handle

mutation in Ruby programs. (§ 3.4 describes our implementation in more detail.)

We evaluated CompRDL by first using it to write type annotations for 482 Ruby

core library methods and 104 Rails database query methods. We found that by using

helper methods, we could write very precise type annotations for all 586 methods

with just a few lines of code on average. Then, we used those annotations to type

check 132 methods across two Ruby APIs and four Ruby on Rails web apps. We were

able to successfully type check all these methods in approximately 15 seconds total.

In doing so, we also found two type errors and a documentation error, which we

confirmed with the developers. We also found that, with comp types, type checking

these benchmarks required 4.75× fewer type cast annotations compared to standard

types, demonstrating comp types’ increased precision. (§ 3.5 contains the results of

our evaluation.)

Our results suggest that using type-level computations provides a powerful,
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practical, and precise way to statically type check code written in dynamic lan-

guages.

3.2 Overview

We begin with a demonstration of comp types, by showing how they can be

used to check the type correctness of Rails database queries (§ 3.2.1). We then show

how comp types can reduce the need for type casts (§ 3.2.2) and how they can be

used to type check some queries that incorporate raw SQL (§ 3.2.3). We conclude

with a brief discussion (§ 3.2.4), including its use of dynamic checks, its lightweight

termination checker, and its ability to encode constant folding.

3.2.1 Typing Ruby Database Queries

While RDL’s type system is powerful enough to type check Rails apps in gen-

eral, it is actually very imprecise when reasoning about database (DB) queries.

For example, consider Figure 3.1, which shows some code from the Discourse app.

Among others, this app uses two tables, users and emails, whose schemas are shown

on lines 2 and 3. Each user has an id, a username, and a flag indicating whether the

account was staged. Such staged accounts were created automatically by Discourse

and can be claimed by the email address owner. An email has an id, the email

address, and the user_id of the user who owns the email address.

Next in the figure, we show code for the class User, which is a model, i.e.,

instances of the class correspond to rows in the users table. This class has one
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1 # Table Schema
2 # users: { id: Integer, username: String, staged: bool }
3 # emails: { id: Integer, email: String, user_id: Integer }
4
5 class User < ActiveRecord::Base
6 type "( String, String ) → %bool", typecheck: :model
7 def self.available? (name, email)
8 return false if reserved? (name)
9 return true if !User.exists? ({username: name})

10 # staged user accounts can be claimed
11 return User.joins ( :emails ) .exists? ({staged: true, username: name, emails: {

email: email }})
12 end
13 end

Figure 3.1: Discourse code that uses ActiveRecord to query a database.

1 type Table, :exists?, "(«schema_type(tself)») →Boolean"
2 type Table, :joins, "(t<:Symbol) →
3 «if t.is_a?(Singleton)
4 then Generic.new(Table, schema_type(tself).merge({ t.val⇒schema_type(t)}))
5 else Nominal.new(Table)
6 end »"
7
8 def schema_type(t)
9 if t.is_a?(Generic) ∧ ( t.base == Table) # Table<T>

10 return t.param # return T
11 elsif t.is_a?(Singleton) # Class or :symbol
12 table_name = t.val # get the class /symbol vale
13 table_type = RDL.db_schema[table_name]
14 return table_type.param
15 else # will only be reached for the nominal type Table
16 return ... # returns Hash<Symbol, Object>
17 end
18 end

Figure 3.2: Comp type annotations for query methods.
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method, available?, which returns a boolean indicating whether the username and

email address passed as arguments are available. The method first checks whether

the username was already reserved (line 8, note the postfix if). If not, it uses the

database query method exists? to see if the username was already taken (line 9).

(Note that in Ruby, {a: b} is a hash that maps the symbol :a, which is suffixed with

a colon when used as a key, to the value b.) Otherwise, line 11 uses a more complex

query to check whether an account was staged. More specifically, this code joins the

users and emails table and then looks for a match across the joined tables.

We would like to type check the exists? calls in this code to ensure they are

type correct, meaning that the columns they refer to exist and the values being

matched are of the right type. The call on line 9 is easy to check, as RDL can type

the receiver User as having an exists? method that takes a particular finite hash type

{c1: t1, ..., cn: tn} as an argument, where the ci are singleton types for symbols

naming the columns, and the ti are the corresponding column types.

Unfortunately, the exists? call on line 11 is another story. Notice that this

query calls exists? on the result of User.joins(:emails). Thus, to give exists? a type

with the right column information, we need to have that information reflected in

the return type of joins. Unfortunately, there is no reasonable way to do this in RDL,

because the set of columns in the table returned by joins depends on both the receiver

and the value of the argument. We could in theory overload joins with different

return types depending on the argument type—e.g., we could say that User.joins

returns a certain type when the argument has singleton type :emails. However, we

would need to generate such signatures for every possible way of joining two tables

51



together, three tables together, etc., which quickly blows up. Thus, currently, RDL

types this particular exists? call as taking a Hash<Symbol, Object>, which would

allow type-incorrect arguments.

Comp types for DB Queries. To address this problem, CompRDL allows method

type signatures to include computations that can, on-the-fly, determine the method’s

type. Figure 3.2 gives comp type signatures for exists? and joins. It also shows the

definition of a helper method, schema_type, that is called from the comp types.

The comp types also make use of a new generic type Table<T> to type a DB table

whose columns are described by T, which should be a finite hash type.

Line 1 gives the type of exists?. Its argument is a comp type, which is a Ruby

expression, delimited by «·», that evaluates to a standard type. When type checking

a call to exists? (including those in the body of available?), CompRDL runs the comp

type code to yield a standard type, and then proceeds with type checking as usual

with that type.

In this case, to compute the argument type for exists?, we call the helper

method schema_type with tself, which is a reserved variable naming the type of

the receiver. The schema_type method has a few different behaviors depending

on its argument. When given a type Table<T>, it returns T, i.e., the finite hash

type describing the columns. When given a singleton type representing a class or a

symbol, it uses another helper method RDL.db_schema (not shown) to look up the

corresponding table’s schema and return an appropriate finite hash type. Given any

other type, schema_type falls back to returning the type Hash<Symbol, Object>.
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This type signature already allows us to type check the exists? call on line 9.

On this line, the receiver has the singleton type for the User class, so schema_type

will use the second arm of the conditional and look up the schema for User in the

DB.

Line 2 shows the comp type signature for joins. The signature’s input type

binds t to the actual argument type, and requires it to be a subtype of Symbol. For

example, for the call on line 11, t will be bound to the singleton type for :emails.

The return comp type can then refer to t. Here, if t is a singleton type, joins returns

a new Table type that merges the schemas of the receiver and the argument tables

using schema_type. Otherwise, it falls back to producing a Table with no schema

information. Thus, the joins call on line 11 returns type

Table<{staged:%bool, username:String, id: Integer,

emails: {email:String, user_id: Integer }}>

That is, the type reflects the schemas of both the users and emails tables.

Given this type, we can now type check the exists? call on line 11 precisely. On

this line, the receiver has the table type given above, so when called by exists? the

helper schema_type will use the first arm of the conditional and return the Table

column types, ensuring the query is type checked precisely.

Though we have only shown types for two query methods in the figure, we

note that comp types are easily extensible to other kinds of queries. Indeed, we have

applied them to 104 methods across two DB query frameworks (§ 3.5). Furthermore,

we can also use comp types to encode sophisticated invariants. For example, in
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1 type Hash, :[], "(k) → v"
2 type Array, :first, "() → a"
3 type :page, "() → { info: Array<String>, title: String }’’
4
5 type "() → String"
6 def image_url()
7 page[:info].first # can’t type check
8 # Fix: RDL.type_cast( page[:info], "Array<String>") .first
9 end

Figure 3.3: Type Casts in a Method.

Rails, database tables can only be joined if the corresponding classes have a declared

association. We can write a comp type for joins that enforces this. (We omitted this

in Figure 3.2 for brevity.)

Finally, we note that while we include a “fallback” case that allows comp types

to default to less precise types when necessary, in practice this is rarely necessary

for DB queries. That is, parameters that are important for type checking, such as

the name of tables being queried or joined, or the names of columns be queried, are

almost always provided statically in the code.

3.2.2 Avoiding Casts using Comp Types

In addition to letting us find type errors in code we could not previously type

check precisely enough, the increased precision of comp types can also help eliminate

type casts.

For example, consider the code in Figure 3.3. The first line gives the type

signature for a method of Hash, which is parameterized by a key type k and a

value type v (declarations of the parameters not shown). The specific method is
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Hash#[],3 which, given a key, returns the corresponding value. Notably, the form

x[k] is desugared to x.[](k), and thus hash lookup, array index, and so forth are

methods rather than built-in language constructs.

The second line similarly gives a type for Array#first, which returns the first

element of the array. Here type variable a is the array’s contents type (declaration

also not shown). The third line gives a type for a method page of the current

class, which takes no arguments and returns a hash in which :info is mapped to an

Array<String> and :title is mapped to a String.

Now consider type checking the image_url method defined at the bottom of

the figure. This code is extracted and simplified from a Wikipedia client library

used in our experiments (§ 3.5). Here, since page is a no-argument method, it can

be invoked without any parentheses. We then invoke Hash#[] on the result.

Unfortunately, at this point type checking loses precision. The problem is

that whenever a method is invoked on a finite hash type {c1: t1, ..., cn: tn}, RDL

(retroactively) gives up tracking the type precisely and promotes it to Hash<Symbol,

t1 or...or tn> [20]. In this case, page’s return type is promoted to Hash<Symbol,

Array<String> or String>.

Now the type checker gets stuck. It reasons that first could be invoked on an

array or a string, but first is defined only for the former and not the latter. The only

currently available fix is to insert a type cast, as shown in the comment on line 8.

One possible solution would be to add special-case support for [] on finite hash

types. However, this is only one of 54 methods of Hash, which is a lot of behavior
3Here we use the Ruby idiom that A#m refers to the instance method m of class A.
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to special-case. Moreover, Ruby programs can monkey patch any class, including

Hash, to change library methods’ behaviors. This makes building special support for

those methods inelegant and potentially brittle since the programmer would have

no way to adjust the typing of those methods.

In CompRDL, we can solve this problem with a comp type annotation. More

specifically, we can give Hash#[] the following type:

type Hash, :[], "(t<:Object) →
«if tself.is_a? (FiniteHash) ∧ t.is_a?(Singleton)
then tself.elts[t.val]
else tself.value_type end»"

This comp type specifies that if the receiver has a finite hash type and the key has a

singleton type, then Hash#[] returns the type corresponding to the key, otherwise it

returns a value type covering all possible values (computed by value_type, definition

not shown).

Notice that this signature allows image_url to type check without any addi-

tional casts. The same idea can be applied to many other Hash methods to give

them more precise types.

Tuple Types. In addition to finite hash types, RDL has a special tuple type to

model heterogeneous Arrays. As with finite hash types, RDL does not special-case

the Array methods for tuples, since there are 124 of them. This leads to a loss of

precision when invoking methods on values with tuple types. However, analogously

to finite hash tables, comp types can be used to recover precision. As examples,

the Array#first method can be given a comp type which returns the type of the first
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element of a tuple, and the comp type for Array#[] has essentially the same logic as

Hash#[].

Const String Types. As another example, Ruby strings are mutable, hence RDL

does not give them singleton types. (In contrast, Ruby symbols are immutable.)

This is problematic, because types might depend on string values. In particular, in

the next section we explore reasoning about string values during type checking raw

SQL queries.

Using comp types, we can assign singleton types to strings wherever possible.

We introduce a new const string type representing strings that are never written to.

CompRDL treats const strings as singletons, and methods on String are given comp

types that perform precise operations on const strings and fall back to the String

type as needed. We discuss handling mutation for const strings, finite hashes, and

tuples in Section 3.4.

3.2.3 SQL Type Checking

As we saw in Figure 3.1, ActiveRecord uses a DSL that makes it easier to

construct queries inside of Ruby. However, sometimes programmers need to include

raw SQL in their queries, either to access a feature not supported by the DSL or to

improve performance compared to the DSL-generated query.

Figure 3.4 gives one such example, extracted and simplified from Discourse,

one of our subject programs. Here there are three relevant tables: posts, which stores

posted messages; topics, which stores the topics of posts; and topic_allowed_groups,
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1 # Table Schema
2 # posts table { id: Integer, topic_id: Integer, ... }
3 # topics table { id: Integer, title: String, ... }
4 # topic_allowed_groups table { group_id: Integer, topic_id: Integer }
5
6 # Query with SQL strings
7 Post.includes ( :topic )
8 .where(’ topics.title IN (SELECT topic_id FROM topic_allowed_groups WHERE

‘group_id‘ = ?)’, self.id)
9

10 type Table, :where, "(t <: «if t.is_a?(ConstString)
11 then sql_typecheck( tself, t)
12 else schema_type(tself)
13 end ») → «tself »"

Figure 3.4: Type Checking SQL Strings in Discourse.

which is used to limit the topics allowed by certain user groups.

Line 7 shows a query that includes raw SQL. First, the posts and topics tables

are joined via the includes method. (This method does eager loading whereas joins

does lazy loading.) Then where filters the resulting table based on some conditions.

In this case, the conditions involve a nested SQL query, which cannot be expressed

except using raw SQL that will be inserted into the final generated query.

This example also shows another feature: any ?’s that appear in raw SQL are

replaced by additional arguments to where. In this case, the ? will be replaced by

self.id.

We would like to extend type checking to also reason about the raw SQL

strings in queries, since they may have errors. In this particular example, we have

injected a bug. The inner SELECT returns a set of integers, but topics.title is a

string, and it is a type error to search for a string in an integer set.

To find this bug, we developed a simple type checker for a subset of SQL, and
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we wrote a comp type for where that invokes it as shown on line 10. In particular,

if the type of the argument to where, here referred to by t, is a const string, then we

type check that string as raw SQL, and otherwise we compute the valid parameters

of where using the schema_type method from Figure 3.2. The result of where has

the same type as the receiver.

The sql_typecheck method (not shown) takes the receiver type, which will be

a Table with a type parameter describing the schema, and the SQL string. One

challenge that arises in type checking the SQL string is that it is actually only a

fragment of a query, which therefore cannot be directly parsed using a standard SQL

parser. We solve this problem by creating a complete, but artificial, SQL query into

which we inject the fragment. This query is never run, but it is syntactically correct

so it can be parsed. Then, we replace any ?’s with placeholder AST nodes that store

the types of the corresponding arguments.

For example, the raw SQL in Figure 3.4 gets translated to the following SQL

query:

SELECT ∗ FROM ‘posts‘ INNER JOIN ‘topics‘
ON a.id = b.a_id
WHERE topics.title IN (SELECT topic_id FROM topic_allowed_groups WHERE ‘group_id

‘ = [Integer])

Notice the table names (posts, topics) occur on the first line and the ? has been

replaced by a placeholder indicating the type Integer of the argument. Also note

that the column names to join on (which are arbitrary here) are ignored by our type

checker, which currently only looks for errors in the where clause.

Once we have a query that can be parsed, we can type check it using the DB
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schema. In this case, the type mismatch between topics.title and the inner query

will be reported.

In § 3.2.1, comp types were evaluated to produce a normal type signature.

However, we use comp types in a slightly different way for checking SQL strings.

The sql_typecheck method will itself perform type checking and provide a detailed

message when an error is found. If no error is found, sql_typecheck will simply

return the type String, allowing type checking to proceed.

3.2.4 Discussion

Now that we have seen CompRDL in some detail, we can discuss several parts

of its design.

Dynamic Checks. In type systems with type-level computations, or more gener-

ally dependent type systems, comparing two types for equality is often undecidable,

since it requires checking if computations are equivalent.

To avoid this problem, CompRDL only uses comp types for methods which

themselves are not type checked. For example, Hash#[] is implemented in native

code, and we have not attempted to type check ActiveRecord ’s joins method, which

is part of a very complex system.

As a result, type checking in CompRDL is decidable. Comp types are only used

to type check method calls, meaning we will always have access to the types of the

receiver and arguments in a method call. Additionally, in all cases we have encoun-

tered in practice, the types of the receiver and arguments are ground types (meaning
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they do not contain type variables). Thus, comp types can be fully evaluated to

non-comp types before proceeding to type checking.

For soundness, since we do not type check the bodies of comp type-annotated

methods, CompRDL inserts dynamic checks at calls to such methods to ensure they

match their computed types. For example, in Figure 3.3, CompRDL inserts a check

that page[:info] returns an Array. This follows the approach of gradual [58] and

hybrid [59] typing, in which dynamic checks guard statically unchecked code.

We should also note that although our focus is on applying comp types to

libraries, they can be applied to any method at the cost of dynamic checks for

that method rather than static checks. For example, they could be applied to a

user-defined library wrapper.

Termination. A second issue for the decidability of comp types is that type-level

computations could potentially not terminate. To avoid this possibility, we im-

plement a termination checker for comp types. At a high level, CompRDL ensures

termination by checking that iterators used by type-level code do not mutate their

receivers and by forbidding type-level code from using looping constructs. We also

assume there are no recursive method calls in type-level code. We discuss termina-

tion checking in more detail in § 3.4.

Value Dependency. We note that, unlike dependent types (e.g., Coq [60], Agda [61],

F* [62]) where types depend directly on terms, in CompRDL types depend on the types

of terms. For instance, in a comp type (t<:Object) -> tres the result type tres can
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depend on the type t of the argument. Yet, since singleton types lift expressions

into types, we could still use CompRDL to express some value dependencies in types

in the style of dependent typing.

Constant Folding. Finally, in RDL, integers and floats have singleton types. Thus,

we can use comp types to lift some arithmetic computations to the type level. For

example, CompRDL can assign the expression 1+1 the type Singleton(2) instead of

Integer. This effectively incorporates constant folding into the type checker.

While we did write such comp types for Integer and Float (see Table 3.1),

we found that this precision was not useful, at least in our subject programs. The

reason is that RDL only assigns singleton types to constants, and typically arithmetic

methods are not applied to constant values. Thus, though we have written comp

types for the Integer and Float libraries, we have yet to find a useful application for

them in practice. We leave further exploration of this topic to future work.

3.3 Soundness of Comp Types

In this section we formalize CompRDL as λC , a core object-oriented calculus that

includes comp types for library methods. We first define the syntax and semantics

of λC (§ 3.3.1), and then we formalize type checking (§ 3.3.2). The type checking

process includes a rewriting step to insert dynamic checks to ensure library methods

satisfy their type signatures. Finally, we prove type soundness (§ 3.3.3). For clarity

of presentation, we leave the full formalism and proofs to Appendix A. Here we

provide only the key details.
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Values v ::= nil | true | false | A
Expressions e ::= v | x | a | self | tself | A.new | e; e | e == e

| if e then e else e | e.m(e) | dAee.m(e)
Meth. Types σ ::= A→ A
Lib. Meth. Types δ ::= σ | (a<:e/A)→ e/A
Programs P ::= def A.m(x) : σ = e | lib A.m(x) : δ | P ;P
Type Env. Γ ::= ∅ | x:A
Dyn. Env. E ::= ∅ | x:v
Class Table CT ::= ∅ | A.m:δ,CT
Method Sets U : user-defined methods

L : library methods

x, a ∈ var IDs, m ∈ method IDs, A ∈ class IDs, U ∩ L = ∅

Figure 3.5: Syntax and Relations of λC .

3.3.1 Syntax and Semantics

Figure 3.5 gives the syntax of λC . Values v include nil, true, and false. To

support comp types, class IDs A, which are the base types in λC , are also values.

We assume the set of class IDs includes several built-in classes: Nil , the class of nil;

Obj , which is the root superclass; True and False, which are the classes of true

and false, respectively, as well as their superclass Bool ; and Type, the class of base

types A.

Expressions e include values v and variables x and a. By convention, we use

the former in regular program expressions and the latter in comp types. The special

variable self names the receiver of a method call, and the special variable tself

names the type of the receiver in a comp type. New object instances are created with

A.new. Expressions also include sequences e; e, conditionals if e then e else e, and

method calls e.m(e), where, to simplify the formalism, methods take one argument.

Finally, our type system translates calls to library methods into checked method calls
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dAee.m(e), which checks at run-time that the value returned from the call has type

A. We assume this form does not appear in the surface syntax.

We assume the classes form a lattice with Nil as the bottom and Obj as the

top. We write the least upper bound of A1 and A2 as A1 t A2. For simplicity, we

assume the lattice correctly models the program’s classes, i.e., if A ≤ A′, then A is

a subclass of A′ by the usual definition. Lastly, three of the built-in classes, Nil ,

True, and False, are singleton types, i.e., they contain only the values nil, true,

and false, respectively. Extending λC with support for more kinds of singleton

types is straightforward.

Method Types σ are of the form A′ → A where A′ and A are the domain and

range types, respectively. Library Method Types δ are either method types or have

the form (a<:e′/A′) → e/A, where e′ and e are expressions that evaluate to types

and that can refer to the variables a and tself. The base types A′ and A provide

an upper bound on the respective expression types, i.e., for any a, expressions e′

and e should evaluate to subtypes of A′ and A, respectively. These upper bounds

are used for type checking comp types (§ 3.3.2).

Finally, programs are sequences of method definitions and library method dec-

larations.

Dynamic Semantics. The dynamic semantics of λC are the small-step semantics

of Ren and Foster [5], modified to throw blame (§ 3.3.3) when a checked method call

fails. They use dynamic environments E, defined in Figure 3.5, which map variables

to values. We define the relation 〈E, e〉 ⇓ e′, meaning the expression e evaluates
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to e′ under dynamic environment E. The full evaluation rules use a stack as well

(§ A), but we omit the stack here for simplicity.

Example. As an example comp type in the formalism, consider type checking the

expression true. ∧ (true), where the ∧ method returns the logical conjunction of

the receiver and argument. Standard type checking would assign this expression the

type Bool. However, with comp types we can do better.

Recall that true and false are members of the singleton types True and

False. Thus, we can write a comp type for the ∧ method that yields a singleton

return type when the arguments are singletons, and Bool in the fallback case:

lib Bool. ∧ (x) : (a<:Bool/Bool)→ (

if (tself == True). ∧ (a == True) then True

else if (tself == False). ∨ (a == False) then False

else Bool)/Bool

The first two lines of the condition handle the singleton cases, and the last line is

the fallback case.

3.3.2 Type Checking and Rewriting

Figure 3.6 gives a subset of the rules for type checking λC and rewriting λC to

insert dynamic checks at library calls. The remaining rules, which are straightfor-

ward, can be found in Appendix A. These rules use two additional definitions from

Figure 3.5. Type environments Γ map variables to base types, and the class table CT
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Type Checking and Rewriting Rules Γ `CT e ↪→ e : A

Γ `CT A ↪→ A : Type
C-Type

Γ `CT e ↪→ e′ : A CT(A.m) = A1 → A2 A.m ∈ U
Γ `CT ex ↪→ e′x : Ax Ax ≤ A1

Γ `CT e.m(ex) ↪→ e′.m(e′x) : A2

C-AppUD

Γ `CT e ↪→ e′ : A CT(A.m) = A1 → A2 A.m ∈ L
Γ `CT ex ↪→ e′x : Ax Ax ≤ A1

Γ `CT e.m(ex) ↪→ dA2ee′.m(e′x) : A2

C-AppLib

Γ `CT e ↪→ e′ : A CT(A.m) = (a<:et1/At1)→ et2/At2
A.m ∈ L Γ `CT ex ↪→ e′x : Ax
a:Type, tself:Type `TCTU et1 ↪→ e′t1 : Type
a:Type, tself:Type `TCTU et2 ↪→ e′t2 : Type

〈[a 7→ Ax][tself 7→ A], e′t1〉 ⇓ A1 Ax ≤ A1

〈[a 7→ Ax][tself 7→ A], e′t2〉 ⇓ A2

Γ `CT e.m(ex) ↪→ dA2ee′.m(e′x) : A2

C-App-Comp

Figure 3.6: A subset of the type checking and rewriting rules for λC .

maps methods to their type signatures. We omit the construction of class tables,

which is standard. We also use disjoint sets U and L to refer to the user-defined

and library methods, respectively.

The rules in Figure 3.6 prove judgments of the form Γ `CT e ↪→ e′ : A, meaning

under type environment Γ and class table CT , source expression e is rewritten to

target expression e′, which has type A.

Rule (C-Type) is straightforward: any class ID A that is used as a value is

rewritten to itself, and it has type Type. We include this rule to emphasize that

types are values in λC .

Rule (C-AppUD) finds the receiver type A, then looks up A.m in the class

table. This rule only applies when A.m is user-defined and thus has a (standard)
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method type A1 → A2. Then, as is standard, the rule checks that the argument’s

type Ax is a subtype of A1, and the type of the whole call is A2. This rule rewrites

the subexpressions e and ex, but it does not itself insert any new checks, since

user-defined methods are statically checked against their type signatures (rule not

shown).

Rule (C-AppLib) is similar to Rule (C-AppUD), except it applies when the

callee is a library method. In this case, the rule inserts a check to ensure that, at

run-time, the library method abides by its specified type.

Rule (C-App-Comp) is the crux of λC ’s type checking system. It applies at

a call to a library method A.m that uses a type-level computation, i.e., with a type

signature (a<:et1/At1)→ et2/At2. The rule first type checks and rewrites et1 and et2

to ensure they will evaluate to a type (i.e., have type Type). These expressions may

refer to a and tself, which themselves have type Type. The rule then evaluates the

rewritten et1 and et2 using the dynamic semantics mentioned above to yield types A1

and A2, respectively. Finally, the rule ensures that the argument ex has a subtype

of A1; sets the return type of the whole call to A2; and inserts a dynamic check that

the call returns an A2 at runtime. For instance, the earlier example of the use of

logical conjunction would be rewritten to dTrueetrue. ∧ (true).

There is one additional subtlety in Rule (C-App-Comp). Recall the example

above that gives a type to Bool.∧. Notice that the type-level computation itself

uses Bool.∧. This could potentially lead to infinite recursion, where calling Bool.∧

requires checking that Bool.∧ produces a type, which requires recursively checking

that Bool.∧ produces a type etc.
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To avoid this problem, we introduce a function TCTU that rewrites class table

CT to drop all annotations with type-level expressions. More precisely, any comp

type (a<:e1/A1) → e2/A2 is rewritten to A1 → A2. Then type checking type-level

computations in the premise of (C-App-Comp) is done under the rewritten class

table.

Note that, while this prevents the type checking rules from infinitely recurs-

ing, it does not prevent type-level expressions from themselves diverging. In λC ,

we assume this does not happen, but in our implementation, we include a simple

termination checker that is effective in practice (§ 3.4).

3.3.3 Properties of λC .

Finally, we prove type soundness for λC . For brevity, we provide only the

high-level description of the proof. The details can be found in Appendix A.

Blame. The type system of λC does not prevent null-pointer errors, i.e., nil has

no methods yet we allow it to appear wherever any other type of object is expected.

We encode such errors as blame. We also reduce to blame when a dynamic check of

the form dA′eA.m(v) fails.

Program Checking and CT . In the Appendix A we provide type checking rules

not just for λC expressions but also for programs P . These rules are where we ac-

tually check user-defined methods against their types. We also define a notion of

validity for a class table CT with respect to P , which enforces that CT ’s types
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for methods and fields match the declared types in P , and that appropriate sub-

typing relationships hold among subclasses. Given a well typed program P , it is

straightforward to construct a valid CT .

Type Checking Rules. In addition to the type checking and rewriting rules

of Figure 3.6, we define a separate judgment Γ `CT e : A that is identical to

Γ `CT e ↪→ e : A except it omits the rewriting step, i.e., only performs type

checking.

We can then prove soundness of the judgment Γ `CT e : A using preservation

and progress, and finally prove soundness of the type checking and rewriting rules

as a corollary:

Theorem 1 (Soundness). For any expressions e and e’, type A, class table CT, and

program P such that CT is valid with respect to P , if ∅ `CT e ↪→ e′ : A then e′ either

reduces to a value, reduces to blame, or does not terminate.

3.4 Implementation

We implemented CompRDL as an extension to RDL, a type checking system for

Ruby [5, 8, 20, 63]. In total, CompRDL comprises approximately 1,170 lines of code

added to RDL.

RDL’s design made it straightforward to add comp types, since types are already

runtime values (§ 1.1). We extended RDL so that, when type checking method calls,

type-level computations are first type checked to ensure they produce a value of

type Type and then are executed to produce concrete types, which are then used
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in subsequent type checking. Comp types use RDL’s contract mechanism to insert

dynamic checks for comp types.

HeapMutation. For simplicity, λC does not include a heap. By contrast, CompRDL

allows arbitrary Ruby code to appear in comp types. This allows great flexibility,

but it means such code might depend on mutable state that could change between

type checking and the execution of a method call. For example, in Figure 3.2, type-

level code uses the global table RDL.db_schema. If, after type checking the method

available?, the program (pathologically) changed the schema of User to drop the

username column, then available? would fail at runtime even though it had type

checked. The dynamic checks discussed in § 3.2 and § 3.3 are insufficient to catch

this issue, because they only check a method call against the initial result of eval-

uating a comp type; they do not consider that the same comp type might yield a

new result at runtime.

To address this issue, CompRDL extends dynamic checks to ensure types remain

the same between type checking and execution. If a method call is type checked

using a comp type, then prior to that call at runtime, CompRDL will reevaluate that

same comp type on the same inputs. If it evaluates to a different type, CompRDL will

raise an exception to signal a potential type error. An alternative approach would

be to re-check the method under the new type.

Of course, the evaluation of a comp type may itself alter mutable state. Cur-

rently, CompRDL assumes that comp type specifications are correct, including any

mutable computations they may perform. If a comp type does have any erroneous
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1 type :m1, ..., terminates: :+
2 type :m2, ..., terminates: :+
3 type :m3, ..., terminates: :−
4
5 type Array, :map, ..., terminates: :blockdep
6 type Array, :push, ..., pure: :−
7
8 def m1()
9 m2() # allowed: m2 terminates

10 m3() # not allowed: m3 may not terminate
11 while ... end # not allowed: looping
12
13 array = [1,2,3] # create new array
14 array.map { | val | val+1 } # allowed
15 array.map { | val | array.push (4) }
16 # not allowed: iterator calls impure method push
17 end

Figure 3.7: Termination Checking with CompRDL.

effects, program execution could fail in an unpredictable manner. Other researchers

have proposed safeguards for this issue of effectful contracts by using guarded loca-

tions [64] or region based effect systems [65]. We leave incorporating such safeguards

for comp types as future work. We note, however, that this issue did not arise in

any comp types we used in our experiments.

Termination of Comp Types. A standard property of type checkers is that they

terminate. However, because comp types allow arbitrary Ruby code, CompRDL could

potentially lose this property. To address this issue, CompRDL includes a lightweight

termination checker for comp types.

Figure 3.7 illustrates the ideas behind termination checking. In CompRDL,

methods can be annotated with termination effects :+, for methods that always

terminate (e.g., m1 and m2) and :- for methods that might diverge (e.g., m3).
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CompRDL allows terminating methods to call other terminating methods (Line 9)

but not potentially non-terminating methods (Line 10). Additionally, terminating

methods may not use loops (Line 11). CompRDL assumes that type-level code does

not use recursion, and leave checking of recursion to future work.

We believe it is reasonable to forbid the use of built-in loop constructs, and to

assume no recursion, because in practice most iteration in Ruby occurs via methods

that iterate over a structure. For instance, array.map { block } returns a new array in

which the block, a code block or lambda, has been applied to each element of array.

Since arrays are by definition finite, this call terminates as long as block terminates

and does not mutate the array. A similar argument holds other iterators of Array,

Hash, etc.

Thus, CompRDL checks termination of iterators as follows. Iterator methods can

be annotated with the special termination effect :blockdep (Line 5), indicating the

method terminates if its block terminates and is pure. CompRDL also includes purity

effect annotations indicating whether methods are pure (:+) or impure (:-). A pure

method may not write to any instance variable, class variable, or global variable,

or call an impure method. CompRDL determines that a :blockdep method terminates

as long as its block argument is pure, and otherwise it may diverge. Using this

approach, CompRDL will allow Line 14 but reject reject Line 15.

Type Mutations and Weak Updates. Finally, to handle aliasing, our type

annotations for Array, Hash, and String need to perform weak updates to type infor-

mation when tuple, finite hash, and const string types, respectively, are mutated.
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For example, consider the following code:

a = [1, ’foo’ ] ; if...then b = a else...end ; a[0]=’one’

Here (ignoring singleton types for simplicity), a initially has the type t = [Integer,

String], where t is a Ruby object, specifically an instance of RDL’s TupleType class.

At the join point after the conditional, the type of b will be a union of t and its

previous type.

We could potentially forbid the assignment to a[0] because the right-hand side

does not have the type Integer. However, this is likely too restrictive in practice.

Instead, we would like to mutate t after the write. However, b shares this type.

Thus we perform a weak update: after the assignment we mutate t to be [Integer ∪

String, String], to handle the cases when a may or may not have been assigned to b.

For soundness, we need to retroactively assume t was always this type. For-

tunately, for all tuple, finite hash, and const string types τ , RDL already records

all asserted constraints τ ′ ≤ τ and τ ≤ τ ′ to support promotion of tuples, finite

hashes, and const strings to types Array, Hash, and String, respectively [20]. We use

this same mechanism to replay previous constraints on these types whenever they

are mutated. For example, if previously we had a constraint α ≤ [Integer, String],

and subsequently we mutated the latter type to [Integer∪String, String], we would

“replay” the original constraint as α ≤ [Integer ∪ String, String].
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Library Comp Type
Definitions

Ruby
LoC

Helper
Methods

Ruby Core Library
Array 114 215 15
Hash 48 247 15
String 114 178 12
Float* 98 12 1

Integer* 108 12 1
Database DSL
ActiveRecord 77 375 18

Sequel 27 408 22
Total 586 1447 83

∗Helper methods for Float and Integer are shared.

Table 3.1: Library methods with comp type definitions.

3.5 Experiments

We evaluated CompRDL by writing comp type annotations for a number of

Ruby core and third party libraries (§ 3.5.1) and using these types to type check

real-world Ruby applications (§ 3.5.2). We discuss the results of type checking these

benchmarks, including the type errors we found in the process (§ 3.5.3). In all,

we wrote 586 comp type annotations for Ruby library methods, used them to type

check 132 methods across six Ruby apps, found three bugs in the process, and used

significantly fewer manually inserted type casts than are needed using RDL.

3.5.1 Library Types

Table 3.1 details the library type annotations we wrote.

We chose to define comp types for these libraries due to their popularity and

because, as discussed in § 3.2, they are amenable to precise typing with comp types.

These types were written based on the libraries’ documentation as well as manual

74



testing to ensure type specifications matched associated method semantics.

• Ruby core libraries: These are libraries that are written in C and automatically

loaded in all Ruby programs. We annotate the methods from the Array, Hash,

String, Integer, and Float classes.

• ActiveRecord: ActiveRecord is the most used object-relational model (ORM)

DSL of the Ruby on Rails web framework. We wrote comp types for ActiveRe-

cord database query methods.

• Sequel: Sequel is an alternative database ORM DSL. It offers some more

expressive queries than are available in ActiveRecord.

Table 3.1 lists the number of methods for which we defined comp types in

each library and the number of Ruby lines of code (LoC) implementing the type

computation logic. The LoC count was calculated with sloccount [66] and does not

include the line of the type annotation itself.

In developing comp types for these libraries, we discovered that many meth-

ods have the same type checking logic. This helped us write comp types for entire

libraries using a few common helper methods. In total, we wrote comp type annota-

tions for 586 methods across these libraries, comprising 1447 lines of type-level code

and using 83 helper methods. Once written, these comp types can be used to type

check as many of the libraries’ clients as we would like, making the effort of writing

them potentially very worthwhile.
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3.5.2 Benchmarks

We evaluated CompRDL by type checking methods from two popular Ruby

libraries and four Rails web apps:

• Wikipedia Client [67] is a Ruby wrapper library for the Wikipedia API.

• Twitter Gem [68] is a Ruby wrapper library for the Twitter API.

• Discourse [69] is an open-source discussion platform built on Rails. It uses

ActiveRecord.

• Huginn [70] is a Rails app for setting up agents that monitor the web for events

and perform automated tasks in response. It uses ActiveRecord.

• Code.org [71] is a Ruby app that powers code.org, a site that encourages

people, particularly students, to learn programming. It uses a combination of

ActiveRecord and Sequel.

• Journey [72] is a web application that provides a graphical interface to create

surveys and collect responses from participants. It uses a combination of

ActiveRecord and Sequel.

We selected these benchmarks because they are popular, well-maintained, and

make extensive use of the libraries noted in § 3.5.1. More specifically, the APIs

often work with hashes representing JSON objects received over HTTP, and the

Rails apps rely heavily on database queries.
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Since CompRDL performs type checking, we must provide a type annotation

for any method we wish to type check. Our subject programs are very large, and

hence annotating all of the programs’ methods is infeasible. Instead, we focused on

methods for which comp types would be most useful.

In Wikipedia, we annotated the entire Page API. To simplify type checking

slightly, we changed the code to replace string hash keys with symbols, since RDL’s

finite hash types do not currently support string keys. In Twitter, we annotated all

the methods of stream API bindings that made use of methods with comp types.

In Discourse and Huginn, we chose several larger Rails model classes, such

as a User class that represents database rows storing user information. In Code.org

and Journey, we type checked all methods that used Sequel to query the database.

Within the selected classes for these four Rails apps, we annotated a subset of

the methods that query the database using features that CompRDL supports. The

features CompRDL does not currently support include the use of Rails scopes, which

are essentially macros for queries, and the use of SQL strings for methods other than

where.

Finally, because CompRDL performs type checking at runtime (similar to RDL—

see § 1.1), we must first load each benchmark before type checking it. We ran the

type checker immediately after loading a program and its associated type annota-

tions.
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Program #
Meth LoC Extra

Anns. Casts RDL
Casts

Time (s)
Median
± SIQR

Test Time
No Chk (s)

Test Time
w/Chk. (s) Err

API client libraries
Wiki. 16 47 3 1 13 0.06 ± 0.00 6.3 ± 0.13 6.32 ± 0.11 0

Twitter 3 29 11 3 8 0.02 ± 0.00 0.07 ± 0.00 0.08 ± 0.00 0
Rails Applications

Disc. 36 261 32 13 22 7.77 ± 0.39 80.24 ± 0.63 81.04 ± 0.34 0
Huginn 7 54 6 3 6 2.46 ± 0.29 4.30 ± 0.21 4.59 ± 0.48 0

Code.org 49 530 53 3 68 0.49 ± 0.01 2.49 ± 0.13 2.74 ± 0.02 1
Journey 21 419 78 14 59 4.12 ± 0.08 4.52 ± 0.22 4.76 ± 0.24 2

Total 132 1340 183 37 176 14.93 ± 0.77 97.93 ± 1.31 99.53 ± 1.20 3

Table 3.2: CompRDL type checking results.

3.5.3 Results

Table 3.2 summarizes our type checking results. In the first group of columns,

we list the number of type checked methods and the total lines of code (computed

with sloccount) of these methods. The third column lists the number of additional

annotations we wrote for any global and instance variables referenced in the method,

as well as any methods called that were not themselves selected for type checking.

The last column in this group lists the number of type casts we added. Many of these

type casts were to the result of JSON.parse, which returns a nested Hash/Array data

structure depending on its string input. Most of the remaining casts are to refine

types after a conditional test; it may be possible to remove these casts by adding

support for occurrence typing [10]. We further discuss type casts, in particular the

reduced type casting burden afforded by comp types, below.

Increased Type Checking Precision. Recall from § 3.2.2 that comp types can

potentially reduce the need for programmer-inserted type casts. The next column

reports how many casts were needed using normal RDL (i.e., no comp types). As
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shown, approximately 4.75× fewer casts were needed when using comp types. This

reflects the significantly increased precision afforded by comp types, which greatly

reduces the programmer’s annotation burden.

Performance. The next group of columns report performance. First we give the

type checking time as the median and semi-interquartile range (SIQR) of 11 runs on

a 2017 MacBook Pro with a 2.3GHz i5 processor and 8GB RAM. In total, we type

checked 132 methods in approximately 15 seconds, which we believe to be reasonable.

Discourse took most of the total time (8 out of 15 seconds). The reason turned out

to be a quirk of Discourse’s design: it creates a large number of methods on-the-fly

when certain constants are accessed. Type checking accessed those constants, hence

the method creation was included in the type checking time.

The next two columns show the performance overhead of the dynamic checks

inserted by CompRDL. We selected a subset of each app’s test suite that directly

tested the type checked methods, and ran these tests without (“No Chk”) and with

(“w/Chk”) the dynamic checks. In aggregate (last row), checks add about 1.6%

overhead, which is minimal.

Errors Found. Finally, the last column lists the number of errors found in each

program. We were somewhat surprised to find any errors in large, well-tested ap-

plications. We found three errors. In Code.org, the current_user method was docu-

mented as returning a User. We wrote a matching CompRDL annotation, and CompRDL

found that the returned expression—whose typing involved a comp type—has a hash
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type instead. We notified the Code.org developers, and they acknowledged that this

was an error in the method documentation and made a fix.

In Journey, CompRDL found two errors. First, it found a method that referenced

an undefined constant Field. We notified the developers, who fixed the bug by

changing the constant to Question::Field. This bug had arisen due to namespace

changes. Second, it found a method that included a call with an argument {:action

=> prompt, ...} which is a hash mapping key :action to prompt. The value prompt

is supposed to be a string or symbol, but as it has neither quotes nor begins with

a colon, it is actually a call to the prompt method, which returns an array. The

developers confirmed this bug.

When type checking the aforementioned methods in RDL (i.e., without comp

types), two out of three of the bugs are hidden by other type errors which are

actually false positives. These errors can be removed by adding four type casts,

which would then allow us to catch the true errors. With CompRDL, however, we do

not need any casts to find the errors.

3.6 Related Work

Types For Dynamic Languages. There is a large body of research on adding

static type systems to dynamic languages, including Ruby [4, 5, 8], Racket [3, 9],

JavaScript [16, 53, 54], and Python [11, 12]. To the best of our knowledge, this

research does not use type-level computations.

Dependent typing systems for dynamic languages have been explored as well.
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Ou et al. [73] formally model type-level computation along with effects for a dynamic

language. Other projects have sought to bring dependent types to existing dynamic

languages, primarily in the form of refinement types [28], which are base types that

are refined with expressive logical predicates. As discussed in Chapter 2, refinement

types have been applied to Ruby [21], Racket [10], and JavaScript [15, 29]. In

contrast to CompRDL, these systems focus on type checking methods which themselves

have dependent types. On the other hand, CompRDL uses type-level computations

only for non-type checked library methods, allowing us to avoid checking comp types

for equality or subtyping (§ 3.2.4). While sacrificing some expressiveness, this makes

CompRDL especially practical for real-world programs.

Turnstile [74] is a metalanguage, hosted in Racket, for creating typed embed-

ded languages. It lets an embedded DSL author write their DSL’s type system using

the host language macro system. There is some similarity to CompRDL, where comp

types manipulate standard RDL types. However, CompRDL types are not executed

as macros (which do not exist in Ruby), but rather in standard Ruby so they have

full access to the environment, e.g., so the joins type signature can look up the DB

schema.

Types For Database Queries. There have been a number of prior efforts to

check the type safety of database queries. All of these target statically typed lan-

guages, an important distinction from CompRDL.

Chlipala [75] presents Ur, a web-specific functional programming language. Ur

uses type-level computations over record types [76] to type check programs that con-
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struct and run SQL queries. Indeed, CompRDL similarly uses type-level computations

over finite hash types (analogous to record types) to type check queries. To the best

of our knowledge, Ur focuses on computations over records. In contrast, CompRDL

supports arbitrary type-level computations targeting unchecked library methods,

making comp types more easily extensible to checking new properties and new li-

braries. As discussed in § 3.2, for example, comp types can not only compute the

schema of a joined table, but also check properties like two joined tables having a

declared Rails association. Further, comp types can be usefully applied to many

libraries beyond database queries (§ 3.5).

Similar to Ur, Baltopoulos et al. [77] make use of record types over embedded

SQL tables. Using SMT-checked refinement types, they can statically verify expres-

sive data integrity constraints, such as the uniqueness of primary keys in a table

and the validation of data inserted into a table. In addition to the contrast we draw

with Ur regarding extensibility of types, to the best of our knowledge, this work

does not include more intricate queries like joins, which are supported in CompRDL.

New Languages for Database Queries. Domain-specific languages have long

been used to write programs with correct-by-construction, type safe queries. Lei-

jen and Meijer [78] implement Haskell/DB, an embedded DSL that dynamically

generates SQL in Haskell. Karakoidas et al. [79] introduce J%, a Java extension

for embedding DSLs into Java in an extensible, type-safe, and syntax-checked way.

Fowler and Brady [80] use dependent types in the language Idris to enforce safety

protocols associated with common web program features including database queries
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written in a DSL.

Language-integrated query is featured in languages like LINQ [81] and Links [82,

83]. This approach allows programmers to write database queries directly within a

statically-typed, general purpose language.

In contrast to new DSLs and language-integrated query, our focus is on bring-

ing type safety to an existing language and framework rather than developing a new

one.

Dependent Types. Traditional dependent type systems are exemplified by lan-

guages such as Coq [60], Agda [61], and F* [62]. These languages provide powerful

type systems that allow programmers to prove expressive properties. However, such

expressive types may be too heavyweight for a dynamic language like Ruby. As

discussed in § 3.2.4, our work has focused on applying a limited form of dependent

types, where types depend on argument types and not arbitrary program values,

resulting in a system that is practical for real-world Ruby programs.

Haskell allows for light dependent typing using the combination of singleton

types [84] and type families [85]. CompRDL’s singleton types are similar to Haskell’s,

i.e., both lift expressions to types, and comp types are analogous to anonymous type

families. However, unlike Haskell, CompRDL supports runtime evaluation during type

checking, and thus does not require user-provided proofs.

Scala supports path dependent types, a limited form of type/term dependency

in which types can depend on variables, but, as of Scala version 2, does not allow

dependency on general terms [86]. This allows for reasoning about database queries.
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For example, the Scala library Slick [87], much like our approach, allows users to

write database queries in a domain specific language (a lifted embedding) and uses

the query’s AST to type check the query using Scala’s path dependent types. Unlike

CompRDL, Scala’s path dependent types do not allow the execution of the full host

language during type computations.

3.7 Conclusion

We presented CompRDL, a system for adding type signatures with type-level

computations, which we refer to as comp types, to Ruby library methods. CompRDL

makes it possible to write comp types for database queries, enabling us to type check

such queries precisely. Comp type signatures can also be used for libraries over het-

erogeneous hashes and arrays, and to treat strings as immutable when possible.

The increased precision of comp types can reduce the need for manually inserted

type casts, thereby reducing the programmer’s burden when type checking. Since

comp type-annotated method bodies are not themselves type checked, CompRDL in-

serts run-time checks to ensure those methods return their computed types. We

formalized CompRDL as a core language λC and proved its type system sound.

We implemented CompRDL on top of RDL, an existing type system for Ruby.

In addition to the features of λC , our implementation includes run-time checks

to ensure comp types that depend on mutable state yield consistent types. Our

implementation also includes a termination checker for type-level code, and the type

signatures we developed perform weak updates to type certain mutable methods.
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Finally, we used CompRDL to write comp types for several Ruby libraries and

two database query DSLs. Using these type signatures, we were able to type check

six popular Ruby apps and APIs, in the process discovering three errors in our sub-

ject programs. We also found that type checking with comp types required 4.75×

fewer type casts, due to the increased precision. Thus, we believe that CompRDL rep-

resents a practical approach to precisely type checking programs written in dynamic

languages.
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Chapter 4: Sound, Heuristic Type Annotation Inference for Ruby

The previous two chapters showed how to make RDL more expressive by intro-

ducing refinement types and type-level computations. However, RDL still requires

the programmer to manually write type annotations for any type checked methods,

as well as any variables and methods referenced in type checked code. This pro-

cess can be tedious and time-consuming, especially when introducing types to large

programs.

This chapter introduces InferDL, a system for automatically generating type

annotations for the methods and variables in Ruby programs. While the traditional

approach to this problem is to use constraint-based type inference, this chapter

discusses why this approach sometimes fails to generate usable type annotations that

reflect a programmer’s intent, and explains how InferDL complements constraint

solving with configurable heuristic rules in order to generate more useful annotations.
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reimplemented this work, came up with the central algorithm and the idea of us-

ing configurable (rather than baked-in) heuristics, wrote the other 7 heuristic rules

presented in this chapter, and conducted the presented evaluations.

4.1 Introduction

While many researchers have explored ways to add static types to dynamic

languages, one key challenge in using such retrofitted type systems is finding type

annotations for code that was previously untyped. Type inference, which aims to

type check programs with few or no type annotations, is an obvious solution, and

indeed there are several type inference systems for dynamic languages [4, 11, 16, 88].

Beyond type checking, type inference can also be extended to generate type annota-

tions for program values. These annotations provide a useful form of documentation,

and can be used in other forms of program analysis such as code completion for IDEs.

However, type inference systems typically aim to find the most general type for

every position, i.e., the least restrictive possible type. If the type language is rich—

particularly if it includes structural types—the most general possible annotations

might be large, hard to read, and unnatural for programmers. For example, An et al.

[88] describe a type inference system for Ruby that infers that a certain position

accepts any object with >, <<, >>, &, and ˆ methods. In contrast, a programmer

would most likely, and much more concisely, say that position takes an Integer.

Moreover, even if we are not interested in producing annotations, large, complex

types can lead to difficult-to-understand error messages.
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In this chapter we present InferDL, a novel Ruby type inference system that

aims to infer sound and useful type annotations. More specifically, InferDL allows

the programmer to specify heuristics for guessing type annotations. For example,

one simple but effective heuristic is to guess the type Integer for any variables whose

names end with id, num, or count. InferDL runs such heuristics for positions for

which standard type inference is overly-general (meaning, among others, positions

with inferred structural types). Heuristic guesses are added as additional type con-

straints and checked for consistency with the rest of the program. Only consistent

solutions are kept. In this way, InferDL maintains soundness while producing a less

general, but potentially more useful, solution than standard type inference. (§ 4.2

gives an overview of InferDL.)

We describe InferDL more formally on a core type and constraint language.

We present standard constraint resolution rules, which rewrite a set of constraints

into solved form from which most general solutions can be extracted. We describe

that solution extraction procedure in detail and then show how to incorporate heuris-

tics. (See § 4.3 for our formal description.)

We implemented InferDL as an extension to RDL (§ 1.1). We modified RDL

to generate and resolve type constraints, run heuristics, and extract solutions to

produce annotations. InferDL currently includes eight heuristics: one that replaces

structural types with nominal types that match the structure; six that look at

variable names, such as the one mentioned above for names ending in id, num, or

count; and one that produces precise hash types. We also extended RDL with choice

types, an idea inspired by variational typing [89] that helps type inference work in the
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presence of overloaded methods. (§ 4.4 describes the implementation of InferDL.)

We evaluated InferDL by applying it to four Ruby on Rails apps for which RDL

type annotations already existed [5, 90]. We note that our results are preliminary,

and further work is needed to affirm they generalize beyond our benchmarks. For

these apps, InferDL inferred 496 type annotations. Of these, 399 exactly matched

or were more precise than the programmer-supplied annotations, compared to only

290 such annotations when not using heuristics. InferDL also found one previously

unknown type error. We also applied InferDL to six additional Ruby programs

for which we did not have previously written annotations, and InferDL found five

previously unknown type errors. (§ 4.5 discusses our evaluation.)

We believe that InferDL is an effective type inference system and represents

a promising approach to generating useful, sound type annotations.

4.2 Overview

We begin by discussing standard type inference, which generates and solves

type constraints to yield type annotations. We then discuss why this approach alone

can be inadequate and give a high-level overview of how InferDL uses heuristics to

infer more precise, useful types.

4.2.1 Standard Type Inference

Figure 4.1 shows a code snippet taken from Discourse, a Ruby on Rails web app

used in our evaluation (§ 4.5). The code defines two methods, normalize_username
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1 class User < ActiveRecord::Base
2 # α→ β
3 def self.normalize_username(name)
4 name.unicode_normalize.downcase if name.present?
5 end
6 # γ → δ
7 def self.find_by_name(name)
8 find_by(name_lower: normalize_username(name))
9 end

10 end

Constraints Generated
(1) α ≤ [unicode_normalize : ⊥ → ε]
(2) α ≤ [present? : ⊥ → ζ]
(3) ε ≤ [downcase : ⊥ → η]
(4) η ≤ β
(5) γ ≤ α
(6) User ≤ δ
Resolved Constraints
(7) γ ≤ [unicode_normalize : ⊥ → ε]
(8) γ ≤ [present? : ⊥ → ζ]

Figure 4.1: Method from the Discourse app, and the resulting constraints generated
during inference.

and find_by_name, in the class User. Because User is a subclass of ActiveRe-

cord::Base, it is a Rails model, meaning instances of the class represent rows of

a database table.

Suppose we wish to infer types for these two methods using the standard,

constraint-based approach. We first generate a type variable for the method argu-

ment and return types, as shown in the comments on lines 2 and 6, e.g., normal-

ize_username takes a value of type α and returns type β. Then we analyze the

method body, generating constraints of the form x ≤ y, indicating that x must be

a subtype of y. In this case we also say x is a lower bound on y and y is an upper

bound on x.
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The top portion of the table in Figure 4.1 shows the constraints generated from

this example. Constraint (1) arises from the call name.unicode_normalize1. In this

constraint, the structural type [unicode_normalize : ⊥ → ε] represents an object with

a unicode_normalize method that takes no argument (here written ⊥) and returns

ε, a fresh type variable generated at the call. Hence, by standard subtyping rules, α

must be a type that contains at least this method with appropriate argument and

return types. Constraint (2) is similar.

Constraint (3) arises from calling downcase on the result of unicode_normalize.

Constraint (4) arises because the result of the call to downcase is returned. Note that

normalize_username may also return nil (if the conditional guard is false), but nil is

a subtype of all other types in InferDL, so we omit this constraint here. Finally,

constraint (5) arises from the call to normalize_username on line 8, and constraint

(6) arises because User’s find_by method returns a User (as indicated by find_by’s

type annotation, omitted here).

After generating constraints, InferDL performs constraint resolution, which

applies a series of rewriting rules to the constraints. For example, one resolution

rule is transitive closure: If a ≤ b and b ≤ c then we add constraint a ≤ c (see § 4.3 for

a complete list of constraint resolution rules). In our example, constraint resolution

generates the two new constraints (7) and (8).

During constraint resolution, if InferDL generates any invalid constraints, the

program is untypable, and InferDL signals a type error. Otherwise, if constraint

resolution terminates without finding any inconsistencies, then the program is ty-
1In Ruby, the parentheses in a method call are optional.
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pable.

Solution Extraction. Many traditional type inference approaches have the singu-

lar goal of uncovering type errors, and hence they stop after propagating constraints.

Since our goal is to also infer type annotations, we must go a step further by extract-

ing a solution for all type variables from the constraints. The standard approach is

to compute a most general solution. For a method type, this means computing the

least solution for its return and the greatest solution for its arguments, which are

the solutions that are least constraining on the method’s callers.

Fortunately, after constraint resolution, the constraints are in solved form [91],

which means that to extract a variable’s solution we need only look at its lower and

upper bounds. More specifically, for a return, we compute the union of its lower

bounds, ignoring variables (since any transitive constraints from them have been

propagated by resolution), and for an argument, we compute the intersection of its

upper bounds. Thus, in our example, the solution for α and γ is [unicode_normalize :

⊥ → ε, present? : ⊥ → ζ], i.e., an object that has those methods, and the solution

for δ is User.

However, notice there are some problems with producing type annotations us-

ing this approach. First, the solution for α and γ is in fact not fully expanded. Using

the same approach, we could recursively compute a solution to ε to get the following

solution for α and γ: [unicode_normalize : ⊥ → [downcase : ⊥ → η], present? : ⊥ →

ζ]. However, such nested structural types are difficult to read and comprehend, and

worse, in the presence of recursion, the type may not be expressible in finite form
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without additional syntax.

Second, notice that η is the most general solution for β, and there is no most

general solution for η and ζ that we can write down as ground terms (i.e., terms

with no type variables). That is, in fact we cannot always ignore type variables in

solutions, because they are needed to express relationships among different parts

of the solution (here, η is the return type of downcase and ζ is the return type of

present?). This makes understanding the most general solution even more complex

and difficult.

4.2.2 Type Inference with Heuristics

InferDL aims to infer more useful, readable, and understandable type anno-

tations by extending standard inference with heuristics that guess nominal types, or

small unions of nominal types, as solutions. For example, so far δ has a nominal type

as a solution, and we would like the same thing for other type variables. To ensure

type annotations are consistent, InferDL adds any solutions found by heuristics to

the constraints and runs constraint resolution afterward; if the result is a type error,

the heuristic choice is rejected.

Using Heuristics. We illustrate the use of heuristics on our example with one

particular rule, struct-to-nominal, defined (in English) as follows:

When an argument type variable’s upper bounds include structural types,

search all classes to see which have the methods in those types. If there

are ten or fewer such classes, guess the union of these classes as the type
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variable’s solution.

Note that this rule matches by method name only and not by method type. We

chose ten as a cutoff because in our experience, larger unions are less useful than

the original structural type. In our running example, struct-to-nominal can

be applied to α and γ. It turns out that String is the only class that defines both

unicode_normalize and present?, so the nominal type String would be our heuristic

guess.

To ensure this guess is sound, we add String as a solution for variables α and

γ to our constraints. More specifically, we add the solution constraint α = String

(and similarly for γ) to the constraints, where a = b is shorthand for the pair of

constraints a ≤ b and b ≤ a. We then resolve these new constraints, which in this

case does not lead to any inconsistency, so we accept String as the solution.

Moreover, the additional constraints on α and γ in turn yield better solutions

elsewhere because:

⇒ String ≤ α is added as a constraint. Transitively propagating to α’s upper

bounds yields...

⇒ String ≤ [unicode_normalize : ⊥ → ε]. To check this constraint, we look up

String’s unicode_normalize method type and generate the constraint...

⇒ ⊥→ String ≤ ⊥ → ε. Propagating to the methods’ return types yields...

⇒ String ≤ ε. Transitively propagating through ε yields...

⇒ String ≤ [downcase : ⊥ → η]. Looking up String’s type for downcase, we get
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the constraint...

⇒ ⊥→ String ≤ ⊥ → η, and propagating to return types yields...

⇒ String ≤ η. Finally, propagating to η’s upper bound yields...

⇒ String ≤ β

Thus, now β has nominal type String as a solution. Putting this together with the

(most general) solution for δ and the (heuristic) solutions for α and γ, InferDL has

now inferred fully nominal type annotations for our example:

normalize_username: String→ String

find_by_name: String→ User

Implementing Heuristics. in InferDL, heuristics are not baked-in. Rather, they

can be created by the programmer, allowing heuristics to be adapted if needed to

the target program. As an example, consider the following method, taken from the

Rails app Journey and slightly simplified:

def self.find_answer ( response, question)
where(response: response.id, question: question.id ) .first

end

We wish to infer the type of find_answer. However, notice that only id is

called on each argument. In Rails, the method id is typically defined for all model

classes, e.g., in Journey, 48 different classes include an id method. This means

struct-to-nominal will fail to infer a precise annotation for the arguments in

this case.
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Instead, we develop another heuristic that takes advantage of a common prac-

tice: Ruby programmers often name a variable after the class of the value it will

hold, especially for Rails models. Indeed, the arguments response and question are

intended to take instances of the model classes Response and Question, respectively.

We define a new heuristic is_model that guesses types based on this convention:

RDL::Heuristic.add :is_model { | var |
if (var.base_name.camelize.is_rails_model?)
then var.base_name.to_type end }

To define this heuristic, we call RDL::Heuristic.add, passing the name of the

heuristic, in this case :is_model, and a code block. Code blocks are Ruby’s version

of anonymous functions or lambdas. The RDL::Heuristic.add method expects a code

block that takes a single argument, which is the type variable whose solution the

heuristic should guess. Note that in InferDL, which is built on RDL, types are actual

values we can compute with; we discuss this in greater detail in § 4.4. The code

block returns either nil, if there is no guess, or the guessed type.

The is_model heuristic consists of a single if statement. The guard calls,

in order, var.base_name, to return the name of the variable as a String; the Rails

method camelize to camel-case this string; and finally is_rails_model?, a method

we defined (code omitted) to determine if there exists a Rails model with the same

name as the receiver. If this last condition is true, the code block calls to_type (code

omitted) to return the nominal type for the model class. Otherwise, by standard

Ruby semantics the conditional will return nil.

During type inference, InferDL runs all heuristics for each type variable, ac-

cepting the solution from the first heuristic that produces a consistent type. For
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Types τ ::= α | A | [m : τm] |
τ ∪ τ | τ ∩ τ | ⊥ | >

Method Types τm ::= τ → τ
Constraints C ::= τ ≤ τ | C ∪ C

A ∈ class IDs,m ∈ meth IDs

Figure 4.2: Core types and constraints.

find_answer, the is_model heuristic produces appropriate nominal types for the

arguments, which then become the final type annotations for those positions.

4.3 Constraints, Solutions, and Heuristics

In this section, we describe InferDL more formally. For brevity, we do not

define a core language, nor do we describe constraint generation in detail. Rather,

we focus on the language of types and constraints, constraint resolution, solution

extraction, and heuristics.

Figure 4.2 formally defines a core subset of the types and constraints in

InferDL. Types τ include type variables α and nominal types A, which is the set

of class IDs. Structural types [m : τm] name a method m and its corresponding

method type τm. For brevity, structural types can only comprise a single method,

and method types may only take a single argument. Types also include union types

τ ∪ τ , intersection types τ ∩τ , the bottom type ⊥, and the top type >. Constraints

C consist of subtyping constraints τ1 ≤ τ2 and unions of constraints C1 ∪ C2, which

allow us to build up sets of constraints.
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Generating Constraints. Constraint generation is a straightforward modifica-

tion of standard type checking in which, instead of type rules checking constraints,

we view them as generating constraints. For example, the rule for typing a method

call is
Γ ` e1 : τrec Γ ` e2 : τarg

τrec ≤ [m : τarg → τret ] τret is fresh
Γ ` e1.m(e2) : τret

This rule types a method call e1.m(e2) (where each e is an expression) in type

environment Γ (a map from local variables to types), yielding type τret . To apply

this rule, we recursively type the receiver and the argument, yielding types τrec and

τarg , respectively. We then generate a constraint τrec ≤ [m : τarg → τret ], where τret

is a fresh type variable. Then, the return type of the method call has type τret .

By convention, we assume any constraint in the premise of a rule is automatically

added to a global set of constraints C.

Full details of type checking rules for a core Ruby language can be found

in section 3.3, or in Ren and Foster [5] or Kazerounian et al. [90], all of which

formalize Ruby in a core language and provide type checking rules. As with the

above example, those rules can be turned into inference rules by viewing them as

generating constraints and adjusting them as needed to make all constraints explicit,

e.g., in the rule above, we specify the type of e1 as τrec and write an explicit constraint

on τrec, rather than implicitly constraining e1’s type to have a particular shape in

the rule.
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(1) C ∪ τ1 ≤ α ∪ α ≤ τ2 ⇒ C ∪ τ1 ≤ α ∪ α ≤ τ2 ∪ τ1 ≤ τ2
(2) C ∪ A ≤ A′ ⇒ C if A = A′ or A is a subclass of A′

(3) C ∪ A ≤ A′ ⇒ error if A 6= A′ and A is not a subclass of A′

(4) C ∪ A ≤ [m : τ1 → τ2]⇒ C ∪ τ1 ≤ τ ′1 ∪ τ ′2 ≤ τ2
if A has method m with type τ ′1 → τ ′2

(5) C ∪ A ≤ [m : τ1 → τ2]⇒ error if A has no method m
(6) C ∪ (τ1 ∪ τ2 ≤ τ3)⇒ C ∪ τ1 ≤ τ3 ∪ τ2 ≤ τ3
(7) C ∪ (τ1 ≤ τ2 ∩ τ3)⇒ C ∪ τ1 ≤ τ3 ∪ τ2 ≤ τ3
(8) C ∪ ⊥ ≤ τ ⇒ C
(9) C ∪ τ ≤ > ⇒ C

Figure 4.3: Standard constraint resolution rules.

Resolving Constraints. Figure 4.3 gives standard constraint resolution rules.

Each rule has the form C ⇒ C ′, meaning a set of constraints matching C can be

rewritten to C ′. The rules are applied exhaustively until they either yield error or

no additional constraints can be generated.

Rule (1) adds transitive constraints, as discussed earlier. Rule (2) eliminates

a constraint among two nominal types as long as the subtyping is valid. On the

other hand, Rule (3) produces error if there is an inconsistent constraint among

nominal types. Rule (4) handles constraints of the form A ≤ [m : τ1 → τ2]. In

this case, if A has a method m of some type τ ′1 → τ ′2, we erase the constraint and

add two new constraints on the argument and return types. If A does not have a

method m, Rule (5) yields error. Finally, Rules (6) and (7) simplify unions on the

left and intersections on the right of a constraint, respectively, and Rules (8) and (9)

eliminate constraints with ⊥ on the left and > of the right, respectively.
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4.3.1 Solution Extraction

Recall from § 4.2.1 that after generating and resolving constraints, the next

step in standard type inference is to extract solutions for type variables. More

precisely, standard type inference produces solutions using the following procedure:

procedure standard_solution(C, α)
if (α represents arg) then

sol = >
for each constraint α ≤ τ ∈ C do

sol = sol ∩ τ
else . α represents return

sol = ⊥
for each constraint τ ≤ α ∈ C do

sol = sol ∪ τ
return sol

As discussed earlier, to derive the most general solution, for each return posi-

tion we compute the union of its lower bounds, and for each argument position we

compute the intersection of its upper bounds.

InferDL uses the same procedure as a subroutine to its heuristic inference

algorithm, described next.

Heuristics. Formally, we can model InferDL’s heuristics as a set of additional

constraint resolution rules beyond those in Figure 4.3. For example, we can express
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struct-to-nominal as the following constraint rewriting rule:

struct-to-nominal(C, α) =

C ′ ∪ α ≤ [m1 : ...] ∪ . . . ∪ α ≤ [mn : ...] ⇒

C ′ ∪ (α = (A1 ∪ . . . ∪ Ak))

if k ≤ 10 and A1, ..., Ak are all classes with m1...mn.

This rule applies to a type variable α that has one or more structural type

upper bounds. If there are at most 10 classes A1 . . . Ak matching those structural

types, then we replace the structural constraints with a solution A1∪ . . .∪Ak for α.

Recall from § 4.2 that a solution constraint of the form τ1 = τ2 is shorthand for the

two constraints τ1 ≤ τ2 and τ2 ≤ τ1.

Given a set H of heuristic rules, InferDL uses the following procedure to try

each rule until some rule succeeds or all rules fail:

procedure heuristic_solution(H, C, α)
for h ∈ H do

C ′, sol = h(C, α)
C ′ = resolve(C ′)
if C ′ 6= error and sol 6= nil then

return C ′, sol

return C, nil

Here we abuse notation slightly and assume that heuristic rules return a pair

C ′, sol, where C ′ is the new set of constraints after running the rule, and sol is the

solution found for α. If h does not match C, then h returns the pair nil, nil. When h

does return a set of constraints C ′ and a solution, we perform constraint resolution

on C ′ to propagate the new solution and detect any inconsistencies in the set of
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constraints. This is done by calling the resolve procedure, which simply invokes

the constraint resolution rules of Figure 4.3. If the resulting resolved constraint set

C ′ is valid, then we return C ′ and sol. If all heuristics run without finding a valid

solution, we return the original constraints C and nil.

Notice that an important consequence of this formulation is that the order

in which heuristics are run matters, since only the first guessed solution will be

returned. Future work could examine how to overcome this reliance on ordering

and handle the case that heuristics return differing solutions.

Extracting Solutions. The next step is to combine standard and heuristic solu-

tion extraction, doing the latter when a standard solution is overly-general. Thus,

we need to define what overly-general means. Based on our prior experience, we

believe that, in most cases, nominal types are far easier for programmers to un-

derstand and use than structural types because they are smaller and simpler. The

developers of Sorbet [92], another Ruby type checker, feel the same way—they have

found that structural types can be less intuitive and more difficult to read when

used in error messages [93].

Generalizing this insight, we define an overly-general solution as any non-

nominal type, that is, any type of the form α, τ ∪ τ , τ ∩ τ , [m : τm], ⊥, and >. Our

motivation for treating union and intersection types as overly-general is the same as

for structural types: they make types bigger and more complex. We treat the top

and bottom types as overly-general since they are only ever used as solutions when

a type variable has no constraints, and we consider type variables overly-general
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since they represent unknown types. We do note that, in general, there is no single

correct definition of overly-general, and we leave exploring alternative definitions to

future work.

Next, we can provide the pseudocode for solution extraction of a type variable:

procedure extract_solution(H, C, α)
sol = standard_solution(C, α)
if overly_general(sol) then

C ′, solh = heuristic_solution(H,C, α)
if solh 6= nil then

sol = solh
else

C ′ = resolve(C ∪ (α = sol))
return C ′, sol

This procedure first extracts a standard solution for the given α and C. If

the resulting solution is overly-general, it calls heuristic_solution to possibly

yield a better solution for α. We only use the new solution if it is non-nil (note

that, with the definition of heuristic_solution, the set of constraints will be

unchanged in the event that the heuristic solution is nil). Otherwise, if the standard

solution was not too general, we add the new solution to the set of constraints and

perform constraint resolution. We perform constraint resolution again because, just

like heuristic solutions can lead to other solutions, so too can standard solutions.

Finally, as shown in § 4.2.2, one extracted solution may lead to the discovery

of other solutions. Thus, we continue to extract solutions for type variables until

no new constraints are generated. More precisely, the following procedure takes H,

C, and a set of all type variables V as input, and extracts solutions until no new

constraints are generated.
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procedure extract_all_solutions(H, C, V)
solutions_map = { }
repeat

for each α ∈ V do
C, sol = extract_solution(H, C, α)
solutions_map[α] = sol

until no new constraints are added to C
return solutions_map

4.4 Implementation

InferDL is built on top of the Ruby type checker RDL [20]. An overview of

RDL can be found in § 1.1. In this section, we briefly describe how we extended

RDL to perform type inference, and some of the other implementation challenges in

InferDL.

Adding Standard Inference. InferDL extends RDL so that inferred methods are

specified with a call to RDL.infer:

RDL.infer User, ’ self.normalize_username’ , time: :later

Then, when RDL.do_infer :later is called, InferDL runs type inference to produce

type annotations for any method associated with :later.

RDL already included type variables to support parametric polymorphism.

InferDL extends type variables to store constraints as a list of upper and lower

bounds on each type variable. Then, to perform constraint generation, InferDL

modifies RDL’s type checker so that, whenever two types are checked for subtyping,

and at least one of the types is a type variable, we store the subtyping constraint.

After constraint generation, InferDL performs constraint resolution and solution
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extraction, as explained in § 4.3.

Heuristics. Though heuristics are not baked-in to InferDL and are thus con-

figurable, we have written eight heuristics that we found useful in practice, listed

below. Recall from § 4.3.1 that heuristics are applied in a specified order. We list

heuristics in the order in which they are applied.

• is_model: See § 4.2.2 for a description. This rule is only used for Rails apps.

• is_pluralized_model: If a variable name is the pluralized version of the

name of model X, then guess solution Array<X> ∪ ActiveRecord_Relation<X>.

Note that ActiveRecord_Relation is a data structure provided by Rails that

extends common array operations with some database queries. This rule is

only used for Rails apps.

• struct-to-nominal: See § 4.2.2 or § 4.3.1.

• int_names: If a variable name ends with id, count, or num, guess solution

Integer.

• int_array_name: If a variable name ends with ids, counts, or nums, guess

solution Array<Integer>.

• predicate_method: If a method name ends with ?, guess solution %bool

(RDL’s boolean type) for the method return type.

• string_name: If a variable name ends with name, guess solution String.
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• hash_access: Like all other values, hashes are objects in Ruby, not built-

in constructs. As such, they are accessed using the method [], and written

to using the method []=. This rule states that, if all of an argument type

variable’s upper bounds are structural types consisting of the methods [] and

[]=, and all of the keys given to these methods are symbols, then guess the

solution that is the finite hash type consisting of the keys and the unions of

corresponding assigned values for these methods. For example, if an argument

type variable α had constraints α ≤ [:[]= : :id → Integer], α ≤ [:[]= : :id →

String], and α ≤ [:[]= : :name→ String], then the solution for α would be the

finite hash type { id: String ∪ Integer, name: String }. This type says that α

is a hash mapping the symbol :id to a String or Integer, and :name to a String.

As discussed in § 4.3.1, InferDL treats type variables, union, intersection,

structural, and bottom and top types as overly-general. In our implementation, we

also treat Object and nil (which were omitted from the formalism for brevity but are

almost the same as the top and bottom types, respectively) as overly-general. In

addition to nominal types, RDL also includes several additional kinds of types that

we treat as sufficiently precise: generic types (which are parameterized nominal

types), finite hash and tuple types (which are more precise versions of Hash and

Array types), and singleton types (such a type has only one value as an inhabitant).

Choice Types. Ruby methods often have intersection types, which pose a chal-

lenge for type inference. Consider the Array indexing method [], which has the

following type in RDL:
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(Integer) → t ∩ (Range<Integer>) → Array<t>

Here, t is the type parameter for the Array class. When given an Integer index,

[] returns a single element, and when given a Range<Integer> corresponding to

multiple indexes, [] returns the subarray of elements at those indexes. Now consider

the following contrived code snippet:

def foo(x) arr = [1,2,3] ; return arr[x] + 1; end

Suppose that InferDL assigns x the type variable α. Then, when analyzing the

call arr[x], we encounter a problem: During constraint generation, we do not know

α’s solution. One choice would be to assume both arms of the intersection are

possible. However, then the result of the method call would have type Integer ∪

Array<Integer>, which leads to a type error when analyzing the larger expression

arr[x] + 1, since we cannot add an Array to an Integer.

To address this issue, we introduce choice types, a type system feature loosely

inspired by variational type checking [89]. A choice type, written Choicei(τ1, . . . , τn),

represents a choice among the types τj. Each choice type also has a label i. During

inference, if one τj of a choice type would result in a type error, then arm j is

eliminated from all choice types with the same index i.

In the example above, the call to arr[x] would result in the constraint

(1) α ≤ Choice1(Integer,Range<Integer>)

because InferDL reasons that it has a choice between the two input types of Array’s

[] method. Additionally, the return type of arr[x] would be

(2) Choice1(Integer,Array<Integer>)
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representing both possible returns. Both choice types have the label 1, indicating

that they are decided together. Then, when type checking the call arr[x] + 1,

InferDL would recognize that the Array<Integer> arm of type (2) results in a type

error, and it would eliminate that arm from both (2) and (1). Effectively, this would

retroactively make the return type of arr[x] be the sole type Integer, and it would

allow us to infer α’s solution as the sole type Integer. If InferDL ever eliminates all

arms of a choice type, it raises a type error.

Library Types. RDL comes with type annotations for Ruby’s core and standard

libraries, as well as for common Rails methods and methods from Sequel, a popular

framework for database queries. However, it is common for Ruby programs to make

extensive use of other third-party libraries as well. Typically, a type checker would

require type annotations for any such methods used in the subject program. But

writing these type annotations is burdensome and often requires knowledge of the

library’s implementation. This task is all the more tedious in the context of type

inference, where the programmer aims to infer type annotations, not write them.

InferDL’s approach to library types avoids this issue. During constraint gen-

eration, if InferDL encounters a call to a method that both lacks a type annotation

and is not itself the target of inference, InferDL finds the method definition to de-

termine the method’s arity. InferDL then creates a type signature for the method

with fresh type variables for the return and each argument. If no method definition

is found, InferDL raises a type error.

This approach is similar to type inference for a method, except we do not

108



generate constraints from the method body. Thus, type inference might be unsound,

producing a solution that would be impossible if we knew the library method’s

implementation. However, in practice, we found this approach was essential for

allowing us to apply inference to each new benchmark, and it also helped us discover

a previously unknown bug in one of our benchmarks (§ 4.5.1).

Variable Types. In addition to method types, InferDL can infer type annotations

for the three non-local kinds of Ruby variables: global, class, and instance variables.

Recall that standard_solution (§ 4.3.1), used as a subroutine in InferDL, aims

to infer most general types for methods. However, observe that variables are both

read from and written to, i.e., for a field @x, there is conceptually a getter of type

⊥ → α and a setter of type α → ⊥. Notice that the α appears both co- and

contravariantly. Hence, unlike method arguments and returns, it is not the case

that a least or greatest solution will always be most general.

Instead, to extend standard_solution to variables, we take an ad-hoc

approach: we take the intersection of the upper bounds on a variable’s type when it

has upper bounds and, if not, we take the union of its lower bounds. We found this

approach works reasonably well in practice, and we apply the same heuristic rules,

with the same definition of overly-general, as for method types.

4.5 Evaluation

We evaluated InferDL on four Ruby on Rails web apps:

• Journey [72] is a web app that provides a graphical interface to create surveys
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and collect responses from participants.

• Discourse [69] is an open-source discussion platform built on Rails.

• Code.org [71] is a Rails app that powers code.org, a programming education

website.

• Talks [94] is a Rails app written by one of the authors for sharing talk an-

nouncements.

We chose these apps because they have all been used as type checking bench-

marks in prior work [5, 90]. Thus, we could use the previously written type anno-

tations for these apps as "gold standards" to compare against. We inferred type

annotations for all methods and global, class, and instance variables for which type

annotations existed in prior work. This includes both methods (and the variables

they used) that were type checked in prior work and those that were not checked,

but were annotated to assist in the type checking of other methods.

The only additional type annotations used were for the special Rails params

hash, which contains values that come from a user’s browser. The params hash

always maps symbols to various types of objects. Without annotations, InferDL

typically infers that params has type Hash<K, V>, where V was the union of all

observed value types for the hash. This effectively treats all values from the hash as

belonging to the same type, which causes false positive type errors during inference.

Rather than add type casts for these cases, we instead used the type annotations

for params from the prior type checking work [5, 90]. In the future, we plan to

incorporate special handling of the Rails params hash to avoid this issue.
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Program Num
Meths

Meth
Typs

Var
Typs

Total
Typs

Type
Casts

Time (s)
Median ± SIQR

heur / std
Journey 23 33 26 59 1 1.68 ± 0.05 /1.01 ± 0.09

Discourse 43 77 0 77 0 7.70 ± 0.64 /0.59 ± 0.04

code.org 74 152 12 164 4 20.1 ± 0.22 /5.01 ± 0.10

Talks 110 149 47 196 8 2.43 ± 0.04 /2.08 ± 0.15

Total 250 411 85 496 13 31.91 ± 0.95/8.68 ± 0.39

Table 4.1: Type inference: number of targets and time performance.

Below, we discuss the results of our evaluation. We note that our results

are preliminary, and further work is needed to affirm they generalize beyond our

benchmarks, in particular for detecting type errors in real-world programs.

4.5.1 Results

Table 4.1 summarizes some our type inference results. The first column gives

the number of methods we inferred types for, totaling 250 methods across the four

apps. The subsequent group of three columns counts the number of types we in-

ferred. The first of these columns, Meth Typs, counts the number of method argu-

ment and return types inferred. We count each argument and return type separately

so that we can more precisely evaluate InferDL’s performance. The second of these

columns, Var Typs, shows the number of global, class, and instance variable types

inferred. Finally, the Total Typs column counts the total number of types inferred,

i.e., Meth Typs + Var Typs.

The next column shows the number of type casts we had to write to run

InferDL on each app, without which InferDL would raise false positive type er-

rors. Almost all of these type casts were needed when handling heterogeneous data

structures like arrays and hashes, because there are cases where InferDL cannot
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Program Correct
Meths

Correct
Vars

Correct
Total Heuristic Uses

heur/std heur/std heur/std STN/Name/Hash
Journey 33 / 30 19 / 13 52 / 43 0 / 13 / 0

Discourse 61 / 47 0 / 0 61 / 47 3 / 42 / 1
code.org 111 / 60 10 / 10 121 / 70 0 / 80 / 5

Talks 127 /102 38 / 28 165 /130 7 / 58 / 3
Total 332 /239 67 / 51 399 /290 10 / 193 / 9

Table 4.2: Type inference: assessing inferred types.

determine the type of a value accessed from one of these data structures.

The subsequent column reports InferDL’s running time on a 2014 MacBook

Pro with a 3GHz i7 processor and 16GB RAM. We give the time as the median and

semi-interquartile range (SIQR) of 11 runs. For comparison, we provide InferDL’s

runtime when using the heuristics presented in § 4.4 (shown under “heur ”), and

when not using any heuristics (shown under “std ”). In total, InferDL took 31.91s

to run on all benchmarks when using heuristics, with an SIQR of just 0.95s, indi-

cating little variance across runs. By comparison, when not using any heuristics,

InferDL took 8.68s to run on all benchmarks. Upon closer examination, we found

that approximately 75% of InferDL’s runtime when using heuristics was spent on

just one rule, struct-to-nominal. The rule involves searching through the space

of all existing classes, and for each one, searching through the names of all its meth-

ods. This can be quite expensive for larger programs. We found we could achieve

speedups by caching search results, and by building a mapping from method names

to the classes that implement them in advanced of running the rule. Nevertheless,

this remains an expensive operation.

Table 4.2 reports the remainder of our inference results. In particular, it
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counts the number of types InferDL inferred correctly—the same as or more precise

than the original type annotation—both with and without the use of heuristics. To

determine whether inference results were correct, we automatically counted those

cases where an inferred type matched the original annotation exactly, and we used

manual inspection when they differed. For example, if the annotation for a type was

%any (RDL’s top type), and InferDL inferred Integer, we would count this as a more

specific type. In our experience, we didn’t find any case where InferDL predicted a

more specific type that was not an accurate reflection of programmer intent.

The first of these columns gives the number of method argument and return

types correctly inferred for heuristic and standard inference. For example, InferDL

correctly inferred 332 out of 411 total argument and return types for all apps when

using heuristics, compared to just 239 correct types when performing standard in-

ference. The next column gives the number of variable types correctly inferred, and

finally, the Correct Total column gives the number of total types inferred correctly.

As shown, the use of heuristics enables InferDL to infer about 22% more correct

type annotations, a significant improvement. We found this percentage was fairly

consistent across the benchmarks, indicating that the heuristics we used were not

specific to one app, but rather captured some more common, general properties.

We also found this improvement was approximately the same for types of global,

class, and instance variables, and types of method inputs/outputs, indicating our

approach to variables (discussed in § 4.4) is effective.

Note that inferred types which do not fall under the “Correct Types” column

are not necessarily “incorrect”—typically, these types are simply more general than

113



the original, programmer-written annotation. For example, across the apps there

were a number of cases where InferDL inferred the type Array<α> for some type

variable α, when the programmer’s annotation was a variable-free type (e.g., Ar-

ray<String>).

In our subjective experience, many types InferDL failed to infer (with or

without heuristics) were for arrays and hashes. This is largely because RDL treats

Array and Hash types as invariant in their type parameters. This means, e.g., the

constraint Hash<String, Integer> ≤ Hash<String, Object> is invalid, since the type

parameters are not equivalent. This leads to many potentially correct types being

rejected due to the conservatism of type invariance. We are interested in exploring

better approaches to type inference for heterogeneous data structures as future work.

Finally, the last column shows the number of times a heuristic successfully

found a type for each app, that is, the heuristic’s guess was actually used as a so-

lution. For brevity, we present the counts for all of the six name-based heuristics

(is_model, is_pluralized_model, int_names, int_array_name, pred-

icate_method, and string_name) under a single column Name, while the

STN column gives the count for struct-to-nominal, and the Hash column for

hash_access. It is clear that the name-based rules were by far the most useful

heuristics for inferring types, comprising a total of 193 of the successful heuristic

applications. Of those 193 applications, 103 were of the predicate_method rule.

Overall, this suggests that variable and method names are a strong indicator of

intended types.
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Error Caught. In the process of inferring types, we discovered a previously un-

known bug in the Journey app. This was particularly surprising because the method

it was found in was already type checked in prior work [90]. The bug existed in the

following code, which creates and saves a new person:

begin
invitee = IllyanClient::Person.new (:person⇒{:email⇒email})
invitee.save
...
rescue
logger.error "Error during invite. "
...
end

The bug arises because there is no savemethod for the IllyanClient::Person class,

so the call invitee.save always raises an error. Moreover, because this error exists

within a begin...rescue clause, the bug will never be directly seen at runtime since

control will always pass to the rescue clause. The bug could potentially have been

detected via manual programmer inspection of the error log, though it never was.

We confirmed this bug with the Journey developer. This bug was not caught by

type checking in prior work because the programmer who wrote type annotations

in that work wrongly assumed that the IllyanClient::Person#save method did exist.

Thanks to InferDL’s handling of library types (§ 4.4), the same mistake was not

made here.

4.5.2 Case Studies

To further evaluate InferDL, we applied it to five additional Ruby libraries

and one additional Ruby app:

115



Program Num
Meths

Meth
Typs

Var
Typs

Total
Typs

Type
Casts

Time (s)
Median ± SIQR

Heuristic Uses

heur / std STN/Name/Hash
AM 148 275 62 337 5 1.71 ± 0.06 /0.80 ± 0.07 29 / 103 / 0

Diff-LCS 80 187 40 227 23 2.65 ± 0.02 /2.38 ± 0.06 20 / 14 / 0
MM 79 166 13 179 7 0.57 ± 0.15 /0.26 ± 0.01 4 / 10 / 0

Optcarrot 430 763 367 1130 48 38.9 ± 2.64 /78.6 ± 17.4 204 / 22 / 1
Sidekiq 344 623 96 719 12 3.28 ± 0.56 /2.12 ± 0.13 37 / 63 / 3
TZInfo 251 511 57 568 9 3.15 ± 0.25 /5.06 ± 0.07 118 / 42 / 0
Total 1332 2525 635 3160 104 50.22 ± 3.67/89.2 ± 17.8 412 / 254 / 4

Table 4.3: Case Study Inference Results. Program name “AM” is short for Active
Merchant, and “MM” is short for MiniMagick

• Active Merchant [95], a payment abstraction library.

• Diff-LCS [96] a library for generating difference sets between Ruby sequences.

• MiniMagick [97], an image processing library.

• Optcarrot [98], a Nintendo Entertainment System (NES) emulator imple-

mented in Ruby and intended as a benchmark for runtime performance eval-

uation.

• Sidekiq [99], a background job handler library.

• TZInfo [100], a time management library.

Because we do not have gold standard type annotations for these programs, we refer

to these experiments as case studies. With the exception of Optcarrot, we picked

these programs because they are all highly popular, well-maintained, and well-tested.

We chose Optcarrot because of its intended use as a Ruby benchmark and because,

as an emulator, it relies heavily on binary arithmetic, which distinguishes it from

other Ruby programs we looked at.
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We ran inference for all methods defined in these programs, excluding methods

that use features not supported by RDL; the most common unsupported feature was

mixin methods. We also excluded methods defined in the Active Merchant payment

gateways, a set of 215 distinct payment gateways comprising over 60,000 lines of

code. Running InferDL for this many lines of code would have required a significant

manual effort to add type casts to circumvent false positive errors, so we decided to

leave them out of our case study. We discuss the issue of type casts further below.

Using InferDL. It would be tedious and time-consuming to call InferDL’s in-

fer method (§ 4.4) on every method in our subject programs. Instead, we used

InferDL’s infer_file and infer_path methods, which take a file or path, respectively,

as an argument and then call infer on every method statically defined in that file

or path. We called these methods for all code in a program’s lib/ directory, which

by convention holds the program’s implementation (and excludes testing code, code

for handling dependencies, etc.).

The first time InferDL runs on a new subject program, it often reports type

errors. We manually inspected and addressed each type error, iterating until none

remained. Overall, the errors found by InferDL fell into three categories:

• True errors resulting from bugs in the program. We discuss these below.

• False positives due to InferDL’s conservatism. We inserted appropriate type

casts to suppress these type errors. We discuss type casts below.

• Errors resulting from features unsupported by InferDL. As mentioned earlier,
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we exclude such methods from future rounds of inference.

As an aside, we note that currently, it can sometimes be difficult to find the

underlying cause of a type error reported by InferDL. If an invalid constraint is

generated during resolution, InferDL reports the invalid constraint and the line

number origins of the left- and right-hand sides of the constraint. But often these

constraints were generated through a series of propagations resulting from many

different places in the code, so their origins do not always reveal the underlying

cause. In the future, we hope to incorporate ideas from prior work on diagnosing

type inference errors [101, 102, 103].

Results. Table 4.3 contains the results of running InferDL on the case study apps.

This table includes the same columns as Tables 4.1 and 4.2, excluding the “Correct”

columns. In total, we inferred types for 1,332 methods constituting 2,525 individual

arguments and returns, and 635 global, class, or instance variables, for a total of

3,160 individual types.

We wrote 104 total type casts to run inference for these programs, or ap-

proximately one type cast for every 30 types we inferred. In addition to the need

for type casts when accessing values from heterogeneous data structures (discussed

in § 4.5.1), we encountered many cases where type casts were necessary for path-

sensitive typing. For example, consider the code snippet in Figure 4.4, simplified

from the TZInfo library.

This snippet refers to the instance variable @transitions, which has type Ar-

ray<TimezoneTransition>. On line 2, we enter a loop for values of i=index down
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1 index = @transitions.length
2 index.downto(0) do | i |
3 start_transition = i > 0 ? @transitions[i − 1] : nil
4 end_transition = @transitions[i]
5 offset = start_transition ? start_transition.offset : end_transition.previous_offset
6 ...
7 end

Figure 4.4: A code snippet from the TZInfo library.

to i=0. On line 3, we use Ruby’s ternary operator to conditionally assign the vari-

able start_transition to either a TimezoneTransition or to nil. Then, on line 5, we

use the ternary operator again, this time with the variable start_transition as our

condition. In Ruby, the value nil is falsey. Thus, on line 5, we only evaluate the ex-

pression start_transition.offset if start_transition is non-nil. This call is safe, because

TimezoneTransition has a method offset defined.

However, InferDL does not know that start_transition is non-nil because it

has limited support for path-sensitive typing. It will conservatively reason that

start_transition may be nil on line 5 and thus raise a type error. To avoid this issue,

we insert the following type cast for the call to offset:

RDL.type_cast(start_transition, TimezoneTransition).offset

This notifies InferDL that start_transition is a TimezoneTransition when offset is

called. Such path-sensitive logic enables libraries to be maximally flexible for clients.

We leave handling these cases without type casts to future work.

The next column of Table 4.3 reports the median time and SIQR taken across

11 runs of InferDL, when using vs. not using heuristics. Interestingly, on these

apps InferDL actually took less total time when using heuristics compared to not
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using them. This was attributable to two apps in particular, Optcarrot and TZInfo,

that took 2× and 1.6× as long, respectively, when not using heuristics. This can

occur due to the way that InferDL performs type inference. As shown in § 4.3.1,

InferDL will repeatedly perform constraint resolution and solution extraction until

no new constraints are generated. In some cases, heuristics may lead to solutions

for type variables earlier on in this process, thereby helping to reach a constraint

set fixpoint sooner. For instance, Optcarrot performed just 6 rounds of solution

extraction when using heuristics, compared with 15 rounds of solution extraction

when not using heuristics; for TZInfo, the numbers were 3 and 9, respectively.

Finally, we report the number of successful applications of heuristics for infer-

ring types. Notably, the struct-to-nominal heuristic is far more useful for our

case study programs than for the Rails apps in Table 4.2. It was used 412 times

when running inference for 3,160 total types in our case studies, versus just 10 times

for 496 total types for the Rails apps. This disparity is at least partly attributable

to the order in which heuristics are run (§ 4.4). struct-to-nominal is applied

after the rules is_model and is_pluralized_model. But the latter two rules

are only used for Rails apps, meaning struct-to-nominal is applied third for

Rails apps, and first for non-Rails apps. We tried re-running InferDL on the Rails

apps with struct-to-nominal ordered first, and found it was applied 28 times

for the Rails apps, which at least partly closes the gap with non-Rails apps.

We also more closely examined the uses of struct-to-nominal across all 10

programs in § 4.5.1 and § 4.5.2, and we found that approximately 14% of the time

the heuristic produced a union type, while the remainder of the time it produced
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just a single, nominal type. The usefulness of the produced union types varied.

Sometimes, the unions were quite sensible. For example, in the TZInfo program,

struct-to-nominal produced the type TZInfo::Timestamp ∪ Time as the solution

for a number of variables. Both the TZInfo::Timestamp and Time classes represent

time values, and many of TZInfo’s methods are implemented to handle objects from

both of these classes, so this is a sensible solution. In other cases, we found that

struct-to-nominal produced unions of unrelated classes that happened to have

some same-named methods, thereby producing a solution that is less useful.

Name-based heuristics were also useful for our case studies, having been ap-

plied 254 times to infer types. However, this clearly comprises a far smaller pro-

portion of uses than for the Rails apps. This may be because Rails emphasizes the

principle convention over configuration, making names more important than in reg-

ular Ruby programs. Moreover, libraries are very domain-specific, and the names

used in these programs reflect their domain. For example, TZInfo features many

variables with names like time, datetime, timezone, etc. It is challenging to write

general-purpose heuristics that can capture such domain-specific naming.

Finally, note that the hash_access rule was used only four times across the

programs in Table 4.3, and only nine total times across the programs in Table 4.2.

This is partly attributable to the invariance of hashes (as discussed in § 4.5.1).

Though the rule was applied few times in practice, we still believe it was useful in

the cases it was used for converting structural type solutions to a more readable

finite hash type. For example, for one type variable in the code.org app, InferDL

used the hash_access rule to infer the finite hash type solution { id: Integer, email:
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String, gender: α } (some key/value pairs omitted for brevity), rather than a much

larger and more difficult to read intersection of structural types.

Errors Found. InferDL found five previously unknown bugs in the case study

programs, all of which were confirmed with the developers:

• In Active Merchant, InferDL caught a reference to an undefined constant

Billing::Integrations.

• In Sidekiq, InferDL caught a reference to an undefined identifier e inside a

rescue clause that was as follows:

rescue Exception ⇒ ex
...
raise e
end

The notation rescue Exception => ex catches exceptions of type Exception and

binds the specific Ruby exception object to ex. This rescue clause was meant

to perform some error handling (elided with the ... above) and then raise the

original error, but it erroneously referred to an undefined e rather than ex.

• In Sidekiq, InferDL caught a reference to an undefined constant UNKNOWN.

• InDiff-LCS, InferDL caught two different calls to an undefined method Diff::LCS.YieldingCallbacks.

• InDiff-LCS, InferDL caught a reference to an undefined constant Text::Format.

We do note that given the nature of the above bugs (undefined methods,

variables, and constants), it is possible that they could be found through alternative
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Program Choice Type
Uses

Unknown
Types

Journey 0 30
Discourse 1 33
code.org 3 20

Talks 2 56
Active Merchant 1 69

Diff-LCS 124 14
MiniMagick 1 33
Optcarrot 154 73

Sidekiq 7 82
TZInfo 14 41
Total 307 451

Table 4.4: Testing Implementation Choices.

analyses. Nevertheless, InferDL’s ability to catch these errors in popular and well-

tested libraries indicates it is useful not only for generating type annotations, but

also for catching type errors.

4.5.3 Testing Implementation Choices

Finally, in § 4.4 we discussed two novel design features of InferDL: the use

of choice types for resolving calls to overloaded methods and InferDL’s handling of

calls to library methods for which we do not have types. To evaluate these choices,

we provide some relevant data in Table 4.4 collected from all 10 of the programs

discussed in § 4.5.1 and § 4.5.2.

For each program, the first column gives the number of choice types used

while running InferDL on the program. As discussed in § 4.4, a choice type is used

when type checking a call to an overloaded method, when InferDL is not able to

determine which type of the method to use. They can help avoid false positive type

errors (and thus reduce the need for type casts), and to infer more precise types. In
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total, we used 307 choice types across all benchmarks. The vast majority of these

uses were in just two programs, Diff-LCS and Optcarrot. This is likely because these

programs rely heavily on array manipulation, and therefore make frequent use of

the Array accessing method [], which requires choice types to resolve its overloaded

method type (see § 4.4 for an example). Thus, we found that the need for choice

types commonly arises in programs, but they are especially useful for programs that

make frequent use of overloaded methods.

The next column gives the number of uses of “Unknown Types”—this is the

name we give to the method types composed entirely of type variables that we

generate for library methods and other methods for which we do not have a type.

In total, we used 451 unknown types across all programs. Without our approach

of generating unknown types, we would have had to write a type annotation in

every one of these cases so that InferDL could type check the programs. Thus, we

believe InferDL’s approach to handling calls to methods without a type is effective

for reducing the programmer’s annotation burden.

4.6 Related Work

Researchers have been studying type inference for many decades. Tradition-

ally, the problem is posed as follows: given a program without type annotations, can

we determine the most general type for each expression in the program, and rule out

any type errors? The problem was first formulated and solved by Curry and Feys

[104] for the simply typed lambda calculus. Perhaps most famously, Hindley [105],
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Milner [106], and Damas and Milner [107] developed an approach known today as

Hindley-Milner-Damas type inference. Its central algorithm, Algorithm W, works

by generating constraints on type variables, then resolving those constraints through

a process known as unification.

Researchers have extended type inference to subtyping systems [1, 6, 91, 108]

as well, and this has enabled the development of practical type inference systems

for dynamic languages such as Python [11], JavaScript [14, 16], and Ruby [4]. As

discussed earlier, these systems are often aimed at catching type errors rather than

displaying the results of type inference to the user, and in our experience, the types

inferred by such systems can be quite hard to understand. In contrast, InferDL

aims to infer usable types.

Furr et al. [4] present DRuby, a static type inference system for Ruby, which

features an expressive type language including intersection, union, optional, and

structural types. While DRuby also focuses exclusively on finding type errors in

programs, many of the type system features it includes are part of RDL [20], on

which InferDL is built.

Finally, there are a number of probabilistic type inference systems which aim

to infer usable type annotations. We direct the reader to Section 5.6 for a discussion

of these systems.
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4.7 Conclusion

We presented InferDL, a novel type inference system for Ruby. In addition

to uncovering type errors, InferDL aims to produce useful type annotations for

methods and variables. Because the constraint-based approach to type inference

often results in types that are overly-general, InferDL incorporates heuristics that

guess a solution for type variables that better matches what a programmer would

write. InferDL enforces the correctness of heuristic guesses by checking them against

existing constraints. Moreover, heuristics are not baked-in to InferDL but rather

provided as code blocks, making InferDL highly configurable.

We formalized the type and constraint language of InferDL and provided

the rules and procedures for resolving type constraints, producing standard type

solutions, and using heuristics to produce more useful, sound type annotations.

We implemented InferDL on top of RDL, an existing Ruby type checker which we

extended with support for constraint generation, heuristics, and choice types to

handle overloaded methods. We also discussed the eight heuristics we found useful

in applying InferDL to programs.

Finally, we evaluated InferDL by applying it to four Rails apps for which we

already had type annotations. We found that, without using heuristics, we were

able to correctly infer about 58% of all type annotations for these apps, and when

using heuristics we were able to infer 80% of annotations. We also applied InferDL

to six additional case study Ruby programs. Across the Rails apps and the case

study apps, InferDL discovered six previously unknown bugs. Thus, we believe that
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InferDL is an effective type inference system and represents a promising approach

to generating useful, correct type annotations.
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Chapter 5: SimTyper: Sound Type Inference for Ruby using Type

Equality Prediction

The last chapter introduced InferDL, a type annotation inference system

that complements constraint solving with heuristic rules. While the evaluations

of InferDL showed that heuristics were useful for inferring more annotations that

match what a programmer would write, there remains room for improvement. First,

there were still methods and variables in the benchmarks for which InferDL failed

to infer matching type annotations. Second, seven out of eight of the heuristic rules

used by InferDL were written while applying it to the benchmarks. In this chapter,

we show that, while these heuristics perform well on their initial target programs,

they sometimes generalize poorly to new programs. While we could write new

heuristic rules for each new target program, this process can be time-consuming.

In this chapter we introduce SimTyper, a type inference system that builds on

InferDL by adding type equality prediction, a novel machine learning-based approach

to inferring useful type annotations. We evaluated SimTyper on eight Ruby pro-

grams and found that, compared to standard constraint-based inference, SimTyper

finds 69% more types that match programmer-written annotations. Moreover, we

found that when using type equality prediction (without the use of heuristics),
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SimTyper inferred 19% more matching type annotations than InferDL. When run-

ning exclusively on benchmarks that were not included in the previous chapter (and

thus had not been incorporated in the development of InferDL’s heuristics), that

number improved to 42%.

5.1 Introduction

Many researchers have explored ways to add static types to dynamic languages,

aiming to provide the benefits of static typing while preserving the flexibility of the

language [1, 2, 3, 5, 6, 13, 53, 58, 90]. In this setting, type inference [4, 11, 14, 16, 109]

is potentially very attractive, as it can catch type errors without requiring users of

these retrofitted type systems to provide many new type annotations. Typically,

traditional static type inference (see § 5.6 for a discussion of machine learning-

based type inference systems) aims to infer most general types, so as not to reject

any program that would be statically typable. Unfortunately, as demonstrated in

Chapter 4, in the presence of complex type features such as subtyping, structural

types, and union types—which are often needed to type existing dynamic language

code—most general types can be verbose, confusing, and difficult to understand.

For example, when typing a Ruby method that performs arithmetic computations

on an argument x, the most general type of x might be a structural type like any

object with +, -, *, and / methods. In contrast, a programmer would much more

likely write the shorter, simpler, and more understandable nominal type Numeric,

giving up some generality for the sake of usability.
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In this chapter, we introduce SimTyper, a type inference system that aims to

infer usable types for Ruby. SimTyper is built on top of InferDL (Chapter 4), a

type inference system that combines constraint solving with manually written heuris-

tics whose guesses are checked against the constraints, to ensure soundness [110].

SimTyper uses the same basic infrastructure, but adds a novel deep similarity (Deep-

Sim) network that performs type equality prediction. More precisely, DeepSim pre-

dicts type similarity scores among method arguments. If, after standard type infer-

ence, an argument has an overly general type (e.g., a structural type) and DeepSim

predicts that argument is similar to another argument with a usable type (e.g., a

nominal type), SimTyper guesses the overly general type can be replaced by the

usable type. If that guess is consistent with the rest of the constraints, it is kept.

Otherwise it is discarded, and further guesses are made up to some bound. Thus,

even though it is probabilistic, SimTyper is still guaranteed to be sound. SimTyper

applies the same idea to method returns and to instance, class, and global variables.

(§ 5.2 shows how SimTyper integrates standard type inference, heuristics, and type

equality prediction.)

We describe SimTyper’s algorithm on a core language of types and constraints.

SimTyper begins by running the standard, constraint-based type inference algorithm

which, at a high level, generates constraints among types; applies constraint reso-

lution to check that the constraints are consistent; and then extracts solutions for

the type variables. Next, for each type variable α with an overly general solution,

SimTyper finds the type variable β that is most similar to α and has a usable type

solution. SimTyper then adds a constraint α = τ , where τ is β’s solution, and runs
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constraint resolution again. If the constraints are still consistent, α’s solution is

set to τ . If not, SimTyper retracts the α = τ constraint and tries the next most

similar usable type, and so on. This guessing-and-backtracking approach was first

proposed for InferDL, and SimTyper uses the same machinery, enabling SimTyper

to infer types with both DeepSim-based predictions and guesses based on InferDL

heuristics. (§ 5.3 describes SimTyper’s inference algorithm.)

The DeepSim network itself takes as input the tokenized source code of two

methods and the positions within that code of the arguments or method return

sites of interest. The network then uses CodeBERT, a transformer-based pre-trained

code embedding model [111], to transform each token at the given positions into a

fixed-dimensional vector that captures both the token and its surrounding context.

DeepSim then averages those vectors to produce one vector for each input. These

vectors are then passed through a trained similarity function to predict whether they

are similar or dissimilar. The network itself is trained on 371 Ruby programs that

include YARD [112] documentation. We extract type information from YARD (which

is not checked against code and hence might be noisy) to create a training data set

with 100,000 pairs labeled as either similar (for two positions with the same YARD

types) or dissimilar. (§ 5.4 describes the DeepSim network in detail.)

We evaluated SimTyper by applying it to eight Ruby programs with type in-

formation: four web apps written in Ruby on Rails (a popular web development

framework) that InferDL was previously evaluated on, and four popular Ruby li-

braries with YARD documentation. We then compared the types inferred by SimTyper

to existing, programmer-written annotations. Following prior work [113], we count
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the number of cases where the the inferred type matches the existing type, as well

as the number of matches up to parameter—generic types where the base matches

but the parameter is different (e.g., inferring Array<Integer> when the original was

Array<String> would fall in this category). We found that, by combining constraint

solving, InferDL heuristics, and type equality prediction from DeepSim, SimTyper

generated 66% more type annotations that matched programmer-written types com-

pared to using constraint solving alone. If we include matches up to parameter, this

number improves to 69%. Moreover, SimTyper inferred 16% more matching type

annotations when using DeepSim alone than when using heuristics alone. Including

matches up to parameter improves this to 19%. DeepSim was also able to correctly

predict rare types, including 16 types that did not appear in either the standard

Ruby library or the training data. This number is the same whether or not we

consider matches up to parameter. (§ 5.5 describes these results and several other

experiments in more detail.)

In summary, we believe that by incorporating type equality prediction with

DeepSim, SimTyper takes an important step forward towards type inference systems

that produce more usable types.

5.2 Overview

We begin by illustrating how SimTyper is used to infer a type annotation for

the method shown in Figure 5.1a, which is extracted and simplified from TZInfo,

one of the benchmarks in our experiments (§ 5.5). The method, Timestamp.create,
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1 class Timestamp
2 # Assigned method type: (α, β, γ)→ δ
3 def self.create ( year, month, day)
4 raise ArgumentError, ’year must be an Integer ’ unless year.kind_of?( Integer )
5 raise ArgumentError, ’month must be an Integer’ unless month.kind_of?(Integer)
6 raise ArgumentError, ’day must be an Integer ’ unless day.kind_of?( Integer )
7
8 after_february = month > 2
9 year = year − 1 unless after_february

10 era = year / 400 # eras are 400 year periods
11 day_of_year = day + (153 ∗ (month + ...
12 ... # additional computation
13 value = ... ∗ 24 ∗ 60 ∗ 60 # seconds since unix time
14
15 new(value)
16 end
17 end

(a) A method from the TZInfo library.

(1) α ≤ [kind_of? : Class→ ε]
(2) β ≤ [kind_of? : Class→ ζ]
(3) γ ≤ [kind_of? : Class→ η]
(4) β ≤ [> : Number→ θ]
(5) α ≤ [- : Number→ ι]

(6) α ≤ [/ : Number→ κ]
(7) γ ≤ [+ : Number→ λ]
(8) β ≤ [+ : Number→ µ]
(9) Timestamp ≤ δ

(b) Constraints generated on type variables.

Figure 5.1: Generating type constraints in TZInfo.
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takes three integers representing a year, month, and day corresponding to a date,

and returns a new Timestamp encoding that date as the number of seconds since

the start of the Unix Epoch (midnight on 01/01/1970).

The first three lines of the method check that all parameters are integers.1

The subsequent lines (lines 8–13) perform the computation. The details of the

computation [114] are not important, but notice the parameters appear in various

places in somewhat complex arithmetic expressions. The method returns the value

of the expression on the last line, which constructs a new Timestamp (code omitted

here) with the computed number of seconds.

5.2.1 Standard Type Inference

The first step of SimTyper, inherited from InferDL, is to perform standard,

constraint-based type inference [4]. We refer the reader to Chapter 4 for a more

detailed treatment of standard type inference; here, we quickly go over the details.

We begin by assigning a type variables α, β, and γ to the parameters (in that order)

and δ to the return type. SimTyper then analyzes the method body to generate

constraints on these type variables. Figure 5.1b shows several of the constraints

generated for this example. Constraint (1), from line 4, states that α, the type of

year, must define a method kind_of? that takes a Class and returns a fresh unknown

type ε. Or, more formally, α is a subtype of the structural type [kind_of? : Class→

ε]. Constraints (2) and (3) are similar.
1Amusingly, we could in theory create a heuristic (§ 5.2.2) that uses this coding pattern to

guess the argument types. That heuristic, however, would have to be hand-written and would be
specific to this pattern. One strength of SimTyper is that it can discover useful types even without
manually creating heuristics.
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Constraint (4), from line 8, states that month must define a > method that

takes a Number (for simplicity, all Ruby numeric objects are typed as Number in

SimTyper) and returns an unknown type. Note that in Ruby, binary arithmetic

operations are actually method calls on the left-hand argument, e.g., month > 2 is

syntactic sugar for month.>(2). Constraints (5)–(8) are similar, with the first two

arising from lines 9 and 10, respectively, and the last two from line 11. Finally,

constraint (9) arises from returning the newly created Timestamp on line 15.

Next, SimTyper performs constraint resolution, which applies a set of con-

straint rewriting rules until reaching saturation. In this particular case, because

Timestamp.create is relatively simple and is considered in isolation, resolution does

not change the set of constraints.

After constraint resolution, the constraints are in solved form [91], meaning

SimTyper can read off a type variable’s most general solution—any other solution

would be more restrictive—by looking at its immediate bounds. As seen in Chap-

ter 4, for (contravariant) method arguments, we compute the greatest solution by

intersecting all of the argument type’s upper bounds, excluding type variables. For

(covariant) method returns, we compute the least solution by unioning its non-

variable lower bounds. We leave type variables out of solutions because their bounds

will have already been transitively propagated during resolution.
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For the constraints in Figure 5.1b, SimTyper finds the following solutions:

α = [kind_of? : Class→ ε, - : Number→ ι, / : Number→ κ]

β = [kind_of? : Class→ ζ, > : Number→ θ, + : Number → µ]

γ = [kind_of? : Class→ η, + : Number→ λ]

δ = Timestamp

Out of these four solutions, the only one that matches developer-provided documen-

tation (not shown) is δ, which has a simple, easy-to-understand nominal type. In

contrast, the solutions for α, β, and γ, while very precise, are also complex, verbose,

and hard to read. Moreover, they are not even fully expanded, since they contain

type variables—and adding solutions for the nested variables would only make the

types more complex. Standard type inference with subtyping and structural types

often produces such difficult-to-use types.

5.2.2 Heuristic Type Inference

To address this problem, SimTyper builds on an approach pioneered by InferDL

and applies a series of heuristic rules that aim to guess more useful types, typically

nominal or generic types, for positions for which standard type inference produces

overly general types, like those for α, β, and γ above. More precisely, any type that

is not one of the following is considered overly general: nominal types, generic types,

finite hash and tuple types (which are more precise types for hashes and arrays, de-

scribed in detail in Chapter 3), singleton types (which represent just a single value),
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and the boolean type.

In this case, SimTyper applies the struct-to-nominal rule (inherited from

InferDL), which converts structural types to nominal types; see Chapter 4.2 for a full

definition of this rule. When SimTyper and InferDL apply struct-to-nominal to

our running example, the heuristic guesses that the solution for α (corresponding to

the parameter year) is Number, because the only existing classes that define methods

kind_of?, -, and / are Ruby’s numeric classes. This guess is consistent with the other

constraints, so SimTyper and InferDL would both set α = Number as the solution.

However, struct-to-nominal fails to infer a new solution for β, because

more than ten classes define the set of methods {kind_of?, >, +}—e.g., possible

classes include String, Set, Time, and others—and similarly for γ. Thus, while

heuristics are effective, there is still room for improvement. Moreover, while InferDL

allows users to write new heuristics that apply specifically to their programs, doing

so requires a lot of care and insight, and heuristics may not be portable across

programs. For example, InferDL also includes a heuristic int_names that, among

others, guesses that an argument named id has type Number. However, while this is

an excellent guess for Rails code, in other codebases, e.g., in the the Stripe codebase,

ids are generally Strings [93].

5.2.3 Predicting Type Equalities

To address the limitations of heuristics, SimTyper builds on InferDL’s ap-

proach by additionally using a machine learning-based approach to guess types.
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Figure 5.2: An illustration of how DeepSim calculates the pairwise similarity scores
for the set of input parameters {year, month, day} for the method from Figure 5.1a.

These guesses can either be used in place of or in addition to guesses from hand-

written heuristics. Like InferDL, these guesses are checked for consistency with

the underlying constraints to ensure soundness, and any inconsistent guesses are

discarded.

More specifically, SimTyper uses a novel network based on the Siamese network

architecture [115] which we call a deep similarity (DeepSim) network. DeepSim is

a deep neural network model that we use to guess when two positions have equal

types. For example, notice that year, month, and day are closely related words in

English. Moreover, in Timestamp.create, they are used in similar contexts: First they

appear in nearly-identical dynamic type checks (lines 4–6) and then in arithmetic

expressions (lines 8–13). Thus, the DeepSim network guesses that all three variables

have equal types—and since SimTyper previously determined that year has type

Number, using DeepSim it will guess the same type for the other two arguments.

Guessing Types with the DeepSim Neural Network. DeepSim is based on

the Siamese network architecture [115]. The network takes two inputs, which are
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the source code for two methods with position markers indicating mentions of the

relevant parameter/return that is being compared. The inputs are first run through

identical encoders. The encoder uses a state-of-the-art model trained on program-

ming and natural languages [111] to produce a fixed-dimension contextualized vector

representation for the input. This is a numeric vector that encodes not only the

name of an identifier (e.g., the name of an argument), but also the code context in

which it occurs. The encoded vectors are such that parameters with similar names

(e.g., “day” and “month”) and contexts (e.g., basic arithmetic expressions) will be

encoded as vectors that are close together. Contextualized embedding models have

recently been shown to achieve state-of-the-art performance on a range of natural

language processing [116] and programming language [111, 117] tasks.

The encoded inputs are then run through a trained similarity function, which

produces a similarity score between 0 and 1, indicating the network’s belief that two

inputs have the same (1) or different (0) types. For example, Figure 5.2 illustrates

how DeepSim calculates the pairwise similarity scores for the set of input parameters

{year, month, day} for the method from Figure 5.1a. More details on the encoder

and the similarity function are in Section 5.4.

SimTyper applies the DeepSim network after standard inference and hand-

written heuristics have been run. SimTyper considers all remaining overly general

type positions and uses DeepSim to compare them to all positions for which a “us-

able” (i.e., not overly general) solution was found. After eliminating positions with

scores below 0.5—which indicates the network believes those positions have different

types—SimTyper guesses type equivalence with the highest scoring position. If that
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guess is consistent with the constraints, it is accepted. If that guess is inconsistent,

SimTyper continues guessing equivalence with the next highest scoring position, and

so on for the top N scores (§ 5.5 evaluates choices for N).

For example, picking up from the heuristic guesses in § 5.2.2, SimTyper asks

DeepSim for the expected type similarity among year, which has a usable solution

at this point, and month and day, which have overly general solutions. As shown in

Figure 5.2, the network has a very high degree of confidence that year and month

have the same type, so SimTyper guesses that β = α = Number. This guess is

consistent, and so it is accepted. Next, day is predicted to be most likely similar

to month, so SimTyper guesses γ = β = Number, which is also accepted. Thus,

after applying standard type inference, hand-written heuristics, and the DeepSim

network, SimTyper has successfully inferred the type (Number,Number,Number)→

Timestamp for Timestamp.create, which matches the hand-written documentation.

Cascading Type Predictions. Similar to heuristic guesses in InferDL, guesses

made via DeepSim can cascade through the constraints, leading to further usable

solutions. For example, consider the code snippet in Figure 5.3 extracted and simpli-

fied from code.org, one of our benchmarks (§ 5.5). This code defines a class method

initial that, given a String called name, returns the first non-whitespace character in

name as an upper-case letter.

SimTyper assigns initial the type (α)→ β and generates the constraints shown

in the right of Figure 5.3. Constraints (1), (2), and (3) result from the calls to

strip, [], and upcase, respectively, and constraint (4) results from the return. Using
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1 class UserHelpers
2 def self.initial (name) # (α)→ β
3 return name.strip[0].upcase
4 end end

(1) α ≤ [strip : ()→ γ]
(2) γ ≤ [[] : (Number)→ δ]
(3) δ ≤ [upcase : ()→ ε]
(4) ε ≤ β

Figure 5.3: A method defined in the code.org app and the resultingconstraints.

standard type inference, SimTyper would generate the type ([strip : () → γ]) → ε

for this method.

However, DeepSim predicts that name has a similarity score of approximately

0.996 with another parameter, also called name, from a different method (code

omitted for brevity). Because the other parameter’s type is determined to be String,

SimTyper guesses String as a solution for the name parameter of self.initial, which is

accepted as consistent.

But something interesting happens when String is added as the solution for

name. The type String propagates further through the constraints:

1. String = α is added as the solution. Propagating this yields...

2. String ≤ [strip : () → γ]. Looking up the type of String#strip (SimTyper

includes types for Ruby’s core and standard libraries) yields...

3. String ≤ γ. In other words, strip returns a String. Propagating further yields...

4. (in several steps) String ≤ δ, i.e., [0] also returns a String. Propagating further

yields...

5. (in several steps) String ≤ ε, i.e., upcase returns a String. Propagating to ε’s

upper bound...
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6. String ≤ β.

Then, using the usual rules for computing the solution at a return position, we can

set β = String also. Thus, we have found that the method has type (String)→ String,

which matches its documentation. This exemplifies another benefit of SimTyper:

by integrating DeepSim within the constraint solver, the former can lead the latter

to better type solutions, and vice versa.

As an aside, we note that the same cascading effect can happen with heuristics—

and in fact, in this case that would occur, as InferDL includes the rule string_name

that guesses that arguments called name have type String. While there are many

cases from our benchmarks where DeepSim alone leads to a cascading solution, we

present the example of Figure 5.3 due to its relative brevity and simplicity.

Discussion. An alternative approach would be to use machine learning to directly

predict types. However, prior work [113, 118, 119], as well as our own dataset (§ 5.4),

has found that the distribution of types in programs is Zipfian: a small number of

types occur very frequently, while most types occur rarely. Moreover, some types

are program-specific and thus will not occur in a training dataset at all. This makes

it challenging to train a direct prediction model for the many infrequent types.

Moreover, DeepSim can perform one-shot type prediction, in which it predicts the

correct type of an argument/return by knowing the type of just one other instance.

Finally, DeepSim is tightly integrated with type inference, allowing it to propagate

any usable types that standard inference infers.
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Types τ ::= α | A | [m : τ → τ ] | τ ∪ τ | τ ∩ τ | ⊥ | >
Constraints C ::= τ ≤ τ | C ∪ C
Solutions S ::= {α1 7→ τ1, ..., αn 7→ τn}

α ∈ type vars A ∈ class names m ∈ meth names

resolve : C → C ∪ error extract_solution : H × C × α→ C × τ

H ∈ heuristics
Figure 5.4: Types, constraints, solutions, and inherited functions.

5.3 Type Inference Algorithm

In this section we present SimTyper’s algorithm more formally. We first briefly

discuss the elements of the algorithm that are inherited from InferDL (§ 5.3.1), then

build on these to present the type equality prediction algorithm (§ 5.3.2).

5.3.1 Standard and Heuristic Inference

In Section 4.3, we provided a full discussion of InferDL’s algorithm, which

combines constraint solving and configurable heuristics. Here, we briefly summarize

the basic definitions and relevant aspects of this algorithm that are inherited by

SimTyper.

The top part of Figure 5.4 defines a core language of types, constraints, and

solutions. Types include variables α, nominal types A, structural types [m : τ → τ ]

(which assume a single argument for simplicity), union types, intersection types, the

bottom type ⊥, and the top type >. Constraints C take the form τ1 ≤ τ2, meaning

τ1 is a subtype of τ2. We use union to construct sets of constraints. Finally, a
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solution S is a mapping from variables to their types.

The bottom part of Figure 5.4 gives the types for the resolve and

extract_solution functions, which we inherit from InferDL. Given a set of

constraints, resolve performs constraint resolution and returns either a new set

of constraints or error if the given set of constraints are inconsistent. The ex-

tract_solution function takes a list of heuristics, a set of constraints, and a

type variable α, and uses a combination of constraint solving and heuristics to ex-

tract a solution for α; it returns a new set of constraints C which includes the new

solution, as well as the solution τ itself. We will use both of these functions in

the type equality prediction algorithm defined below, and we refer the reader to

section 4.3 for their definitions.

Finally, we assume the existence of two functions. The first is the predicate

og(τ), which returns true when τ is considered overly-general and false otherwise.

Following Chapter 4, for this core language of types, og(τ) is true when τ is a non-

nominal type. The second function, usable_sols, returns the set of solutions in a

given mapping that are not overly general:

usable_sols(S) = {α 7→ τ ∈ S | ¬og(τ)}

5.3.2 Type Equality Prediction Algorithm

We can now build on these definitions to introduce the type equality prediction

algorithm. We first introduce the function sim to represent the DeepSim neural
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procedure deepsim_sol(α, S, C)
poss_sols← {(τi, s) | αi 7→ τi ∈ usable_sols(S), s = sim(α, αi), s ≥ 0.5}
k ← 1
while k ≤ size(poss_sols) ∧ k ≤ N do

pick kth highest scoring solution τk in poss_sols
Cnew ← resolve(C ∪ τk ≤ α ∪ α ≤ τk)
if Cnew 6= error then

return Cnew, τk

k ← k + 1

return C, S[α]

(a) deepsim_sol, which uses DeepSim to find a solution for a single type variable.

procedure type_eq_inference(H, C, V)
S ← {}
first_round← true
repeat

for each α ∈ V do
C, sol←extract_solution(H, C, α)
S[α]← sol
if !first_round ∧ og(sol) then

C, sol← deepsim_sol(α, S,C)
S[α]← sol

first_round← false
until no new constraints are added to C
return S

(b) SimTyper’s overall algorithm.

Figure 5.5: Procedures used in SimTyper.

network. Given two type variables α1 and α2, sim(α1, α2) ∈ [0, 1] is a similarity

score between α1 and α2, where scores closer to 1 indicate greater similarity and a

score below 0.5 indicates dissimilarity. We also assume there is an N specifying the

maximum number of similar variables to try for a solution.

Now we can introduce deepsim_sol, the procedure for finding a single Deep-

Sim network solution, which we define at the top of Figure 5.5. Given a type variable

α, a solution S, and a constraint set C, the function deepsim_sol returns an up-

dated constraint set Cnew and a solution for α; if DeepSim did not find any new
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solution, then the returned constraints and solution are the same as the original

ones provided to the function.

The first line of deepsim_sol defines poss_sols to be a set of pairs, where

the first element of the pair is a possible type solution, and the second element is the

corresponding similarity score. The set is constructed by comparing α with every

αi ∈ dom(usable_sols(S)), and keeping the corresponding type solution τi when its

similarity score is above 0.5. Then the function loops, picking the highest scoring

solution τk in potential_sols. The function then “tests” the solution by equating it

to α and running constraint resolution. If this succeeds, we have found a consistent

guess, so the function returns the new set of constraints and the found solution

τk. Otherwise, the loop continues with the next highest score, etc. If we exceed N

iterations or explore all the potential matching solutions, then the function returns

the original constraint set and the original solution for α in S, since no consistent

guess was found.

Finally, we present SimTyper’s overall algorithm, the procedure

type_eq_inference defined at the bottom of Figure 5.5. This procedure is very

similar to the extract_all_solutions procedure used by InferDL (§ 4.3), but

it adds the use of deepsim_sol. The procedure takes as input a set of heuristics H,

a set of constraints C, and a set of type variables to find solutions for V . It begins by

assigning an empty solution map to S, and by assigning the variable first_round,

which keeps track of whether we are performing the first round of solution extraction,

to true. Next, we iterate through each variable in V and perform standard and

heuristic inference by calling extract_solution, updating the constraints C and
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solutions S as we go. We perform one full round of standard and heuristic inference

over all type variables before ever using DeepSim; this gives us more usable solutions

to compare against with DeepSim. After one round, we perform inference again,

this time calling deepsim_sol for any type variables which still have overly general

solutions. We update C and S with any new solutions. This process repeats until

no new constraints are added to C; by looping until we reach a fixpoint in C, we

can allow any new solutions found by DeepSim or constraint solving to cascade to

new solutions, as discussed in Section 5.2.

Note that this algorithm is greedy, so the order order in which DeepSim net-

work solutions are generated may matter. In particular, if the network generates

incompatible solutions for two different type variables (i.e., the resulting constraints

are inconsistent), then the solution that was generated earlier may effectively block

the later solution. In our implementation, the order used is effectively arbitrary.

Determining a way to pick among incompatible solutions is an interesting avenue

for future work.

5.4 Implementing the DeepSim Network

Figure 5.6a shows DeepSim’s network architecture. DeepSim encodes a pair of

inputs into a pair of fixed-dimensional embedding vectors (of the same dimensional-

ity) via a weight-sharing encoder, and then runs them through a similarity function

to predict the likelihood both inputs have the same type. Following the Siamese

Network structure [115], the encoder used for both inputs is the same. Next, we
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(a) Diagram of the DeepSim network.

(b) Two types of pooling in DeepSim, demonstrated on the method from Figure 5.1a.
After converting each position into contextualized vectors via CodeBERT, the blue dashed
lines show the average pooling for the method return, and the red solid lines show the

average pooling for the argument day.

Figure 5.6: SimTyper’s Deep Similarity (DeepSim) Neural Network.

discuss the network in more detail.

Network Input. For each argument, the network takes as input the tokenized

source code for the method containing the argument plus the positions at which

the argument appears. More formally, suppose arg1 and arg2 are the method ar-

guments to be compared, and that Xi is the tokenized source code of the method

in which argi appears. Then the input to DeepSim is the two token sequences

X1 = . . . , xi11 , . . . , x
i2
1 , . . . , x

im
1 , . . . and X2 = . . . , xj12 , . . . , x

j2
2 , . . . , x

jn
2 , . . ., where each

xik1 represents the mention of arg1 at position ik in the first sequence, and each

xjk2 represents the mention of arg2 at position jk in the second sequence. The in-

put also includes the sequences i1, i2, . . . , im and j1, j2, . . . jn, i.e., the indices of the

parameters within the source code tokens.
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DeepSim uses an analogous approach when comparing method returns: The

input is the method’s tokenized source code plus the positions of the method name

itself and all the returns within its body. We use the method’s name because it

is often used to describe the return value; § 5.5 includes an evaluation of different

approaches to representing returns.

Contextualized Vector Representations. Next, DeepSim encodes each input

token sequence into a sequence of contextualized vector representations (one vec-

tor per token) using CodeBERT [111], a transformer-based [120] pre-trained code

embedding model.2 Contextualized vector representations can capture both the

English-language meaning of tokens and the surrounding code context. The goal is

for tokens with similar meanings (e.g., year and month) and usage (e.g., used inside

basic arithmetic expressions) to map to nearby vectors in the vector space.

Continuing the formal notation just above, the output of this layer is the

sequences of vectors CV 1
1, . . . , CV

m
1 and CV 1

2, . . . , CV
n
2 , where CV

k
1 is the contex-

tualized vector representation of token xik1 for arg1, and CV
k
2 is the representation

of token xjk2 for arg2. These vectors are of dimension d = 768, the size of vectors

produced by CodeBERT. Note that we keep only the contextualized vectors for the

tokens of the relevant argument/return.

Pooling. Next, the encoder uses a pooling layer to combine the contextualized

vector representations into a single, fixed-dimension vector. We use mean pool-
2CodeBERT was trained on over 8.5 million methods and functions from programs written in

Ruby, Java, JavaScript, Go, PHP, and Python.
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ing, which is shown to be effective in Siamese Network models for text similarity

tasks [121]. For example, as illustrated in Figure 5.6b for our running example,

for the argument day, the pooling layer averages the vectors corresponding to its

mentions in the method header and method body. For the return of self.create, the

pooling layer averages the vectors for the method name in the method header and for

the last line of the method, whose value is returned. Interestingly, our experiments

suggest mean pooling is important for arguments but not for returns (§ 5.5.5).

Formally, the output of this layer is two fixed-dimensional vectors

V1 = MeanPool(CV 1
1, . . . , CV

m
1 ) and V2 = MeanPool(CV 1

2, . . . , CV
n
2 ), where

MeanPool averages its vector arguments.

Similarity Function. The subsequent stage, the similarity function, produces a

similarity score for the encoded inputs (now a pair of fixed-dimension vectors). First,

the pair of vectors are joined to form a relational vector representing the pair as well

as their interactive features. Then this relational vector is run through a sigmoid

function to produce a similarity score in the range (0, 1), where a score closer to 1

indicates the inputs likely have the same type, and a score closer to 0 indicates the

inputs likely have different types.

Formally, the similarity function begins by concatenating V1 and V2 with the

element-wise difference |V1−V2| to generate the pair representation V = (V1, V2, |V1−

V2|). This approach follows Reimers and Gurevych [121], who show it to be effective

in capturing both input features and the interactive features between the pair. We

then apply a fully-connected layer with trainable weight matrix W ∈ R3d (recall
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1 # Multiplies the monetary value with the given number and returns a new
2 # +Money+ object with this monetary value and the same currency.
3 # @param [Numeric] value Number to multiply by.
4 # @return [Money] The resulting money.
5 def ∗(value) ... end

Figure 5.7: A method * from the Money library which has YARD documentation.

d = 768 is the dimensionality of the CodeBERT contextualized vectors) and bias

term b ∈ R, and then pass the result through the sigmoid function σ, which squashes

values into the valid probability range [0,1] to generate the probability of X1 and

X2 being similar (y = 1):

P (y = 1|X1, X2) = σ(W · V + b) =
1

1 + e−(W ·V+b)

Taking N training pairs with labels 1 or 0 (yi = 1 or 0 for the ith pair),

DeepSim is trained with the Adam optimizer [122] by minimizing the binary cross-

entropy loss, which is a common choice for binary classification tasks:

J = −
∑N

i=1(yi · log(p(yi)) + (1− yi) · log(1− p(yi))

5.4.1 Training the DeepSim Network.

SimTyper trains two different networks: one for comparing arguments, and

one for comparing returns. To train the networks, we need type information for

Ruby programs. However, Ruby is dynamically typed and does not include type

annotations. Recently, several Ruby type systems have emerged, including RDL [20],

Sorbet [92], and the new types available with Ruby 3.0. However, to the best of our
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knowledge, the number of publicly available programs with type annotations is still

very small and therefore is insufficient for training. One idea for generating training

data would be run Ruby programs and document the observed runtime method

types. Though Strickland et al. [123] found that such types are often specific to a

single run of a program and thus may miss possible types, it is possible this approach

would be sufficient for a training dataset and it is worth exploring in the future.

Instead, we collect type information from programs that use YARD, a popular

Ruby documentation tool. Figure 5.7 shows an example of YARD documentation for

method * of the Money library, one of our benchmarks. The first two comment lines

provide a general description, and the last two lines give structured information in-

cluding types of the parameter (of type Numeric) and the return (of type Money).

Note that this documentation is noisy because it may not be accurate—there is no

system that automatically checks YARD documentation against code to enforce its

correctness—and the standard notation for types in YARD is not enforced. Never-

theless, for purposes of training DeepSim, it is still very effective, especially since

DeepSim can tolerate some noise.

To build our training dataset, we looked at the top 1000 starred Ruby reposi-

tories on Github, and the top 1000 gems on rubygems.org, Ruby’s central package

hosting service. After eliminating overlapping programs and removing programs

without YARD type data, we were left with 371 Ruby programs, comprising over

285,000 methods with documented types, and over 417,000 individual data points,

where each parameter and return type is counted as a separate data point.

However, for training, DeepSim expects pairs of inputs labeled with 1 for pairs
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with the same type and 0 otherwise. The set of all possible pairs from our dataset

of over 417,000 would be prohibitively large, so we restrict ourselves to a set of

100,000 randomly chosen pairs; the number of pairs was chosen through a tuning

process discussed below. Moreover, we restrict training pairs to come from the same

program, with the idea that the naming choices and coding patterns ued within a

program are more likely to be cohesive than the choices between different programs.

Hyperparameters. We tuned three hyperparameters for the DeepSim network:

the number of data points, the number of training epochs, and the learning rate.

We considered all data sizes from 25,000 to 200,000 in increments of 25,000, all

numbers of epochs from 25 to 200 in increments of 25, and all learning rates in the

set {0.001, 0.0005, 0.0001, 0.0005}. We used grid search, training networks using all

possible combinations of values for the hyperparameters, then selecting the models

that scored the highest accuracy on a validation dataset that was independent from

the training data and test benchmarks used in our experiments (§ 5.5). Ultimately,

we trained the argument model using 150 epochs and the return model using 100

epochs, and both models were trained with 100,000 data points and a learning rate

of 0.001.

Types for Instance, Class, and Global Variables. In addition to predicting

type similarity for arguments and returns, SimTyper also uses DeepSim to do the

same for instance, class, and global variables. However, there are a few changes

required. First, because variables can be both read and written, it is not the case
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that a greatest or least solution will always be most general. Instead, SimTyper

follows the approach of Kazerounian et al. [110] (also presented in Chapter 4),

which was shown to work well in practice: when the variable’s type has upper

bounds, SimTyper uses the intersection of the type’s upper bounds, and otherwise

SimTyper uses the union of its lower bounds.

Second, for a given variable, pooling averages the vectors corresponding to

all uses of that variable. However, unlike arguments and returns, instance, class,

and global variables can be accessed in multiple methods. Hence, the encoding step

must vectorize all the methods that refer to the variable. Note that although class,

global, and (some) instance variables can be accessed outside of methods, SimTyper

currently does not include such occurrences in its analysis.

Finally, YARD does not currently support documentation for instance, class,

and global variables. Thus we could not collect training data for them. Instead,

we use the network we trained for arguments to answer questions about variables,

since we expect arguments may be named similarly to and used in similar contexts

to non-local variables. In the future, we are also interested in exploring whether we

could use just a single network for returns, arguments, and variables.

5.5 Evaluation

We evaluated SimTyper on a range of Ruby benchmarks with existing type in-

formation, which we treated as gold standard types we aim to infer. Our benchmarks

came from two sources. First, we used the same four Rails web apps that InferDL

154



was evaluated on (Section 4.5). We refer to these as the InferDL Benchmarks :

• code.org [71] – the code.org website app

• Discourse [69] – online discussion platform

• Journey [72] – site for creating surveys and collecting responses

• Talks [94] – site for sharing talk announcements

For these apps, we use SimTyper to infer types for all methods and instance, class,

and global variables for which manually written type annotations already existed in

the InferDL study.

Second, we applied SimTyper to four popular, well-maintained libraries that

have extensive YARD documentation that provides types for a majority of their meth-

ods. We refer to these as the YARD Benchmarks :

• TZInfo [100] – library for manipulating timezone data

• MiniMagick [97] – wrapper for the ImageMagick image manipulation platform

• Ronin [124] – platform for vulnerability research and exploit development

• Money [39] – library for currency arithmetic and conversion

We were particularly interested in libraries because, in our experience, they are

more likely to have well-documented APIs compared to complete programs like web

apps. For these libraries, we use SimTyper to generate types for all methods with

YARD type documentation except those that use features that are not supported by

InferDL.
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Program # Meths LoC # Vars # Casts

code.org 74 689 11 4
Discourse 43 331 0 0
Journey 23 375 26 1
Talks 110 878 47 8
MiniMagick 40 216 0 2
Money 87 444 0 12
Ronin 226 1628 0 23
TZInfo 241 1292 0 5
Total 844 5853 84 55

Table 5.1: Benchmark statistics.

The most common feature that blocked standard type inference was the pres-

ence of mixins, which are only partially supported by InferDL. Note that we ex-

cluded any measurements about instance, class, and global variables for these bench-

marks because YARD does not include documentation about variable types. Finally,

we withheld all the type data for these programs from the datasets we used for

training and validation (§ 5.4.1).

Table 5.1 summarizes the benchmarks’ statistics. For each benchmark, the

table lists the number of methods for which SimTyper generates a type annotation

that we compare against a gold standard, followed by the number of lines of code

comprised by those methods. Additionally, the subsequent column lists the number

of non-local (instance, class, and global) variable annotations generated by SimTyper

that we compare against gold standards. In total, we ran SimTyper on 844 methods

comprising 5,853 lines of code, and generated types for 84 non-local variables. Note

that the number of types for variables for the YARD Benchmarks was 0, since YARD

does not include documentation for these variables that we can compare against.

We additionally note that, while we ran SimTyper for more methods in the YARD
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Benchmarks, there were some which did not include gold standard types to compare

against.

The table also shows the number of type casts required to run standard type

inference on the benchmark’s methods. The first four benchmarks already came with

type casts from InferDL; we wrote type casts for the last four benchmarks. In our

experience, the most common reasons for needing type casts were to handle path-

sensitive typing and to cast a value extracted from heterogeneous data structures

like arrays and hashes.

Additionally, we note that there were some method and variable types that

SimTyper inferred which we did not have a gold standard to compare against. More

precisely, all of the YARD Benchmarks included some method types inferred by

SimTyper without corresponding gold standards, and seven out of eight of all of the

benchmarks included at least one instance, class, or global variable type inferred

by SimTyper without a corresponding gold standard. While we could not compare

these inferred types against gold standards, we found that of 418 non-compared

argument, return, and variable types, 277 were usable types, 81 were overly-general,

and SimTyper failed to infer types for 60 of these positions. The full results are

shown in Table B.1 in the Appendix.

Evaluation Methodology. We ran SimTyper on the above benchmarks under

four separate configurations: using constraint solving alone (C), constraint solving

and InferDL’s built-in set of heuristics (CH), constraint solving and the DeepSim

network (CD), and all three approaches together (CHD). We compare the results to
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the original type annotations (InferDL Benchmarks) or YARD documentation (YARD

Benchmarks). To provide finer-grained analysis, we make comparisons on a per-

argument, per-return, and (for InferDL Benchmarks) per-variable basis, rather than,

e.g., comparing whole method signatures at once. Inspired by prior work [113], we

place each comparison in one of three categories:

• Match. SimTyper inferred a type that exactly matches the gold standard or

is a subtype of the gold standard. We also consider a match exact if both the

generated and gold standard types are from the set {String, Symbol, String ∪

Symbol }. In Ruby, Symbol is a special kind of interned String, and the two

types are often used interchangeably. Lastly, we also treat the types Array and

ActiveRecord_Relation (Rails’ special array implementation, used for database

queries) as interchangeable.

• Match up to Parameter. The gold standard type is a generic type, and

SimTyper inferred the base of the generic type but not the parameter. For

example, if the gold standard was Array<String>, then SimTyper generating

either Array or Array<Integer> would fall in this category. This category pro-

vides a notion of partial matches.

• Different Type. SimTyper inferred a type that was consistent with the constraints—

hence it is sound—but differs from the gold standard type in a way that does

not fall into the above categories. For example, inferred structural types fall

into this category because they very rarely occur in the gold standard types

(out of 1,496 gold standard annotations in our benchmarks, just 8 use struc-
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tural types). Note that it is possible for programmer-provided and SimTyper-

inferred types to be incomparable, e.g., below we mention a case when one

is Integer and the other is String, and both are sound because they share a

common structural supertype.

5.5.1 SimTyper Results

Figure 5.8 shows the types inferred by SimTyper under the C, CH, CD, and

CHD configurations, categorized as just described. We split the last category, Dif-

ferent Type, into structural and non-structural types, to aid the discussion below.

These results were collected using the top-3 solutions suggested by DeepSim with a

similarity score cutoff of 0.5 (see § 5.3). Below, unless we say otherwise, comparisons

of matching sum both Match and Match up to Parameter. Table B.2 in Appendix B

presents the same data as the figure.

Looking at the totals (lower right corner of the figure), we see that the CHD

configuration outperformed all others in the number of matches to the gold stan-

dard. In total, SimTyper inferred 1,033 total matching annotations under CHD,

compared to 610 under C alone, a 69% increase. This is still a 66% increase if we

exclude matches up to parameter. CHD inferred the most matching types not only

in total, but also for each individual benchmark, with the exception of Money, for

which CD performed only slightly better. This suggests that combining constraint

solving, heuristics, and the DeepSim network is an effective approach to inferring

type annotations that match what a programmer would write.
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Figure 5.8: Assessing the types inferred by SimTyper. We collected results under four
configurations: constraint solving (C), constraint solving plus heuristics (CH), constraint
solver plus the DeepSim network (CD), and all three (CHD). Results presented here use
top-3 thresholding. Note the y-axis is scaled for each benchmark.
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Comparing CD to CH, we see that in total, CD inferred 19% more match-

ing types than CH (or 16% excluding matches up to parameter), indicating that

DeepSim can outperform hand-written heuristics. Interestingly, while this was true

overall, there is a contrast between the YARD Benchmarks and the InferDL Bench-

marks. For the YARD Benchmarks, CD infers 44% more matches than CH, but for

the InferDL Benchmarks, CD generates 7% fewer matches than CH. The biggest sin-

gle contributor to the difference is code.org, where CD generates 20% fewer matches

than CH. We believe the reason for this overall difference is that the heuristic rules

of InferDL were developed while applying type inference to the InferDL Bench-

marks. For example, InferDL includes a heuristic int_names that guesses that

arguments ending in _id have type Number and arguments ending in _ids have type

Array<Number>. Without this heuristic, in the code.org app, most such positions

are inferred by standard type inference to be Number ∪ Array<Number>. DeepSim

can at best propagate this union type—it has no particular mechanism to refine

it—and so it cannot improve on standard type inference in these cases. Moreover,

the int_names heuristic was applied more than 30 times for code.org, compared to

just 5 times for all other benchmarks combined. Thus, we see the tradeoff between

DeepSim and hand-written heuristics: the heuristics perform well on their initial

target but do not necessarily generalize to other programs, while DeepSim general-

izes well but does not fully cover all uses of heuristics. Thus, we think SimTyper’s

architecture, which incorporates both approaches, is the right design choice.

Finally, we examined the Different Types category in more detail. We note

that in the C configuration, structural types constitute the majority of different
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types inferred. The one exception is code.org, where C infers union types in many

positions as discussed just above. As we introduce heuristics and DeepSim, we see

a clear trend where the number of structural different types decreases as they are

replaced by nominal and generic types (indeed, by design, InferDL heuristics and

DeepSim do not infer any new structural types), some of which become matches

and some of which remain different types. The other category that decreases, not

shown explicitly in the figure but included in the table in Appendix B, is positions

where C could only infer a variable type, but heuristics or DeepSim could infer a

nominal or generic type.

To get more insight into the non-structural different types, we manually exam-

ined their occurrence in Money under CHD. We found these types fall into roughly

two categories. First, in some cases the gold standard type is a union and Deep-

Sim’s inferred type was one arm of the union. For example, for one parameter

new_currency, the gold standard type is Money::Currency ∪ String ∪ Symbol and

the DeepSim inferred type is Money::Currency. Second, sometimes DeepSim infers

a type that was unrelated to the gold standard but happened to be consistent with

the program. For example, for one parameter named amount, the gold standard

type is Number but DeepSim inferred the type String. The latter type is consistent

because the only use of amount is to call to_d on it (to convert it to a BigDecimal),

and that method is also defined on String. It is interesting future work to try to

address both of these cases.
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Failed Inference. There are also some arguments, returns, and variables for which

SimTyper fails to infer any type. Table B.2 in the Appendix presents the specific

number of positions for which this was the case under each configuration. Under

CHD, across all benchmarks, SimTyper fails to infer a type for 6.8% of arguments,

returns, and variables. These are cases where there are not enough constraints

for standard inference to produce a solution: there are no non-type variable upper

bounds (for arguments and variables) or lower bounds (for returns and variables).

In other words, for arguments, no method is called on it (otherwise it would at least

have a structural type upper bound); and for returns, typically the returned value

comes from a method SimTyper does not analyze (e.g., a third-party library), and

hence its signature has type variables that are not constrained by its method body.

Additionally, it must be that both heuristics and DeepSim either fail to guess

a type, or they guess a type that is inconsistent with existing constraints. Of the

6.8% of positions (arguments/returns/variables) for which SimTyper failed to infer

a type under CHD, the DeepSim network guessed a type for about 46% of these

positions, but the guess was rejected due to inconsistency with constraints; none of

the heuristics guessed a type for any of these positions. Interestingly, in 5 of these

positions, the type guessed by the DeepSim network was actually a correct array or

hash type, but the guess was rejected because the type checker conservatively uses

invariant subtyping for arrays and hashes.

Precision and Recall. Another way of measuring SimTyper’s results is in terms

of precision and recall. Following Pradel et al. [125], we compute precision as
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Config Precision Recall

C 59.6% 40.8%
CH 73.4% 54.3%
CD 69.6% 64.9%
CHD 74.1% 69.1%

Table 5.2: Precision and recall of SimTyper.

nmatch/ntype, where nmatch is the number of type matches (including up to parame-

ter) and ntype is the total number of positions (arguments, returns, and variables)

for which SimTyper inferred any type. We compute recall as nmatch/nall, where

nall is the total number of positions for which SimTyper attempted to infer a type

(whether it did so or not).

From the table, we see that, consistent with the earlier interpretation of the

data, CHD achieved the highest precision and recall. Additionally, CH outperformed

CD on precision by 3.8%, while CD outperformed CH on recall by 10.6%. This means

that heuristics alone are less likely to predict a matching type than DeepSim alone,

but when they do predict a type, the type is slightly more likely to be a matching

one. C was the worst performing configuration in both precision and recall.

We note that our notion of precision and recall is slightly different from Al-

lamanis et al. [113]. They compute precision as nneutral/ntype, where nneutral is the

number of “neutral” types: predicted types that pass a type checker. By this mea-

surement, under all four configurations, SimTyper’s precision would be 100%, since

all of its predicted types are consistent with the program’s constraints. Moreover,

they compute recall as ntype/nall, that is, the proportion of the dataset for which

any type was inferred. By this metric, the recall for CHD would be 93.2%. Instead,
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Figure 5.9: Measuring SimTyper’s performance for arguments, returns, and instance,
class, and global variables across all benchmarks. The plots use the same legend as
Figure 5.8. Measurements were taken using top-3 thresholding.

we focus on the number of matches inferred by SimTyper, since this measures types

that reflect programmer intent.

Arguments vs. Returns vs. Variables. Recall that SimTyper uses separate

networks for arguments and returns, and uses the argument network for instance,

class, and global variables with some small adaptations (§ 5.4.1). Figure 5.9 mea-

sures SimTyper’s performance separately for these three groups. The data for these

plots are included in Appendix B.

The figure shows that DeepSim improved performance the most on arguments.

Under CD and CHD, SimTyper infers approximately 308% and 57% more match-

ing (including up to parameter) types relative to the C and CH configurations,

respectively. This is at least in part because arguments had the most room for

improvement. For example, under C, SimTyper inferred matches for just 12% of

all argument types, while for return and variable types, it inferred 60% and 73%

matches, respectively.

However, it is also plausible that DeepSim is best tuned for arguments. First,
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Program Median Time (s) ± SIQR

C CH CD CHD

code.org 4.0 ± 0.03 124 ± 0.36 72 ± 1.52 189 ± 0.27

Discourse 1.0 ± 0.10 32 ± 0.09 33 ± 0.33 62 ± 0.23

Journey 0.7 ± 0.06 3 ± 0.11 42 ± 0.31 41 ± 0.40

MiniMagick 0.5 ± 0.02 2 ± 0.02 39 ± 0.66 37 ± 0.37

Money 1.0 ± 0.03 5 ± 0.12 72 ± 1.91 71 ± 1.07

Ronin 2.0 ± 0.04 12 ± 0.21 172 ± 2.23 177 ± 2.22

Talks 2.0 ± 0.10 6 ± 0.21 68 ± 0.80 70 ± 1.35

TZInfo 2.0 ± 0.04 8 ± 0.21 156 ± 0.99 161 ± 0.75

Total 13.2 ± 0.42 192 ± 1.33 654 ± 8.75 808 ± 6.66

Table 5.3: Running time of SimTyper over nine runs.

recall that we could not train a network specifically on variables since we did not

have this data (§ 5.4). Second, we found that incorporating return sites into return

embeddings does not significantly improve performance (§ 5.5.5). We leave exploring

other ways to incorporate method code into DeepSim’s predictions to future work.

5.5.2 Performance

Table 5.3 measures the performance of SimTyper in performing type inference.

We report the median time and semi-interquartile range (SIQR) over nine runs under

each configuration. Times were measured on a 2014 MacBook Pro with a 3GHz i7

processor and 16GB RAM. We can see clearly that DeepSim introduces overhead.

CHD and CD are approximately 4.2× and 50× slower than CH and C, respectively.

Upon closer inspection, we found the biggest bottleneck was running CodeBERT; in

the future, we plan to explore methods for speeding up this performance, such as

alternative methods for batching inputs to CodeBERT.

Interestingly, there was just one benchmark, code.org, that took longer under
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CH than under CD. For Discourse, CH and CD performance was nearly equal,

and for all other benchmarks, CD took notably longer than CH. The slowdown

for code.org and Discourse occurred primarily due to the struct-to-nominal

heuristic, which involves searching all methods defined for all classes in the program,

which is a particularly large search space for these benchmarks.

5.5.3 Comparing DeepSim and Heuristics

Table 5.4 reports how often DeepSim predicted a matching (including up to

parameter) type that a heuristic rule also guessed. For each heuristic rule (descrip-

tions of the rules are in Chapter 4), the table lists how many types the heuristic

matched in CH followed by how many of those matches DeepSim also predicted in

CD.

From the table, we see that DeepSim performed best on types guessed by

is_model and string_name, two name-based heuristics, predicting 87% of those

types. DeepSim also inferred a majority of types for predicate_method, an-

other name-based heuristic. This makes sense as DeepSim’s embeddings reflect

argument and method names. However, as discussed earlier, DeepSim did poorly on

int_names and int_array_name, even though they are also name-based. This

was primarily due to the aforementioned pattern in code.org that DeepSim failed to

capture.

Overall, DeepSim predicted 43% of the types guessed by heuristics. We also

examined the dual (not shown in the table): of the 267 matching types inferred by
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Heuristic Rule H Matches DS Matches

struct-to-nominal 61 17 (28%)
is_model 21 18 (86%)
is_pluralized_model 6 2 (33%)
int_names 32 5 (16%)
int_array_name 3 0 (0%)
predicate_method 32 21 (66%)
string_name 18 16 (89%)
hash_access 9 0 (0%)
Total 182 79 (43%)

Table 5.4: DeepSim’s ability to predict types also guessed by heuristics. H Matches
is the number of matching (including up to parameter) types inferred by the heuristic
in CH, and DS Matches counts the subset of those types also inferred by DeepSim in
CD. Measurements with the DeepSim network were taken with the top-3 threshold.

DeepSim under CD, heuristics guessed 80 (about 30%) of them under CH. Because

these two sets are largely non-overlapping, these results reinforce that using DeepSim

alongside hand-written heuristics is an effective combination.

5.5.4 Predicting Rare Types

One potential benefit of SimTyper is that it can infer rare types, i.e., those

that are relatively less common across programs. Such types could be inferred

through standard constraint solving, e.g., in Figure 5.1b, standard type inference

found Timestamp as a solution; through applying heuristics, e.g., the struct-to-

nominal heuristic can guess a user-defined type that matches a structural type;

and through DeepSim, which could predict a rare type by guessing two positions

have the same type. In this section, we measure how often DeepSim can predict rare

types, since rare types have historically posed a challenge for machine learning-based

type inference (§ 5.6).
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Library Training Program
Match

incl. param. All Match
incl. param. All Match

incl. param. All

240 356 12 13 16 38

Table 5.5: Numbers of Library, Training, and Program types guessed by DeepSim
across all benchmarks, under CD with top-3 cutoff.

Table 5.5 measures three different categories of types inferred specifically by

DeepSim. First, the Library types are the 78 types in Ruby’s standard and core

library as well as the core Rails classes. These types are “common” because we

expect them to appear frequently in Ruby programs. DeepSim predicted 356 types

in this category, of which 240 were matches (67% precision).

The Training types are “rare” types that occur in the training dataset but not

in the Library types. In theory we could train a machine learning-based classifier to

predict them directly. However, the training data has 9,149 distinct types, yet 71%

of all argument and return types in the data are Library types. Hence in practice

a classifier would not be very likely to predict non-Library types. From the table,

we see that DeepSim predicted 13 Training types, of which 12 were matches (92%

precision).

Finally, Program types only occur in the benchmarks and not in the standard

Ruby libraries or in the training data. Thus, a machine learning-based direct clas-

sifier would have no ability to predict these at all. In contrast, DeepSim predicted

38 such types, of which 16 were matches (42% precision).

Thus, overall, we can see that while DeepSim often predicts common types

(which is expected, since they are common), it can also effectively predict rare

types.
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Figure 5.10: Evaluating design choices in SimTyper. Plots use the same legend as
in Figure 5.8 and show data from CD across all benchmarks. Note y-axis starts at
700. Data for all plots appears in Appendix B.

5.5.5 SimTyper Design Choices

Finally, we evaluate two design choices in SimTyper. First, Figure 5.10a com-

pares top-1, top-3, top-5, and top-7 thresholds for solutions predicted by DeepSim

running under CD, across all benchmarks. (We omit heuristics because we are

specifically interested in DeepSim here.) The data for these plots is in Appendix B.

From the figure, we can see an increase in matches (including up to parameter) from

top-1 (927 matches) to top-3 (971 matches). However, the results for top-3, top-5,

and top-7 are nearly identical: for each category (match, match up to parameter,

etc), the numbers are within two of each other. Thus, we settled on top-3 for our

experiments.

Next, we evaluate the use of mean pooling. Figure 5.10b compares pooling

the vectors for all uses of an argument (AllA), as in § 5.4, with using just the

argument in the method header (HeadA). Figure 5.10c similarly compares pooling

method names and return sites (AllR), also as in § 5.4, to using just method names

170



(NameR). We see that under AllA, SimTyper infers 72 more matches than under

HeadA, while AllR yields just two more matches than HeadR. This suggests that

for arguments, the context from the uses in the method body is important, while

for returns the method name alone is likely sufficient.

5.6 Related Work

For a discussion of related work on standard type inference systems, we direct

the reader to Section 4.6.

In recent years, researchers have proposed a number of probabilistic type in-

ference systems that aim to address the shortcomings of standard type inference.

To the best of our knowledge, SimTyper is the first system to apply this style of

type inference to Ruby.

JSNice [126] was one of the earliest probabilistic inference systems. JSNice

represents JavaScript source as a dependency graph and uses conditional random

fields to predict program properties, including type annotations. JSNice is lim-

ited to predicting a small set of types seen in training data. DeepTyper [119]

trains a bidirectional recurrent neural network (RNN) classifier on JavaScript source

code to predict type annotations from over 11,000 types seen in its training data.

NL2Type [118] similarly trains an RNN, but exclusively on natural language infor-

mation (i.e., identifier names and comments) from JavaScript programs. NL2Type

predicts type annotations from a set of 1,000 types. Unlike SimTyper, none of the

above approaches are able to predict types outside their training dataset, nor are
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they sound.

TypeWriter [125] trains a neural model to predict types based on identifier

names, comments, and source code from Python programs. After ranking the

model’s predictions, TypeWriter uses a gradual type checker to rule out any in-

consistent predictions, similarly to SimTyper’s use of constraints to rule out incon-

sistent predictions from DeepSim. However, unlike SimTyper, all of TypeWriter’s

types come from the neural model, whereas SimTyper uses standard type inference

to produce an initial set of solutions, and to propagate DeepSim’s solutions. More-

over, TypeWriter is restricted to predicting types from its training dataset, while

SimTyper is not (§ 5.5.4).

Typilus [113] uses a graph neural network model to map program values to

an embedding in a type space. Types are then predicted based on the similarities of

embeddings. Typilus also checks predicted types against an optional type checker to

rule out invalid types. Because new types can be added to the type space, Typilus,

like SimTyper, is able to predict rare types. However, such types must be manually

added to the type space. In contrast, in SimTyper, rare or user-defined types can

be inferred by standard type inference or heuristics and then propagated through

use of DeepSim. And, like TypeWriter, all types in Typilus come from the neural

network model, whereas SimTyper starts with standard type inference.
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5.7 Conclusion

We presented SimTyper, a system that combines standard type inference via

constraint solving, manually written heuristics, and type equality prediction via the

DeepSim network, in order to generate usable types. SimTyper iterates through

the overly general type variable solutions remaining after constraint solving and

heuristics. For each such type variable α, it finds the usable type τ from the position

most likely similar to α, and then guesses α = τ . Guesses that are consistent with the

other constraints are kept, and inconsistent guesses are discarded. In this way, even

though DeepSim is probabilistic, SimTyper itself always makes sound inferences.

The DeepSim network operates by using CodeBERT to encode source tokens

into a vector space and then pooling vectors that represent occurrences of the same

argument or, for returns, the return positions in the code. A pair of encoded inputs

is then run through a trained similarity function, which predicts whether those

arguments or returns are likely to have the same type. The network is trained on a

set of Ruby programs that include manual type documentation.

We evaluated SimTyper on eight Ruby benchmarks and found that combining

constraint solving, heuristics, and type equality prediction results in inferring signif-

icantly more types that match hand-written types, compared to constraint solving

alone. Moreover, we found that the DeepSim network can help to infer rare and

program-specific types. Our results show that type equality prediction can help

type inference systems effectively produce more usable types. Chapter 5 presents

SimTyper in full.
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Chapter 6: Conclusion

In this dissertation, I presented several ideas for making static type systems

for dynamic languages more expressive and usable.

First, in Chapter 2, I presented RTR, a system that adds refinement types,

basic types extended with expressive logical predicates, to the Ruby type checker

RDL. RTR works by encoding its verification problems into Rosette, a solver-aided

host language. RTR is able to verify ruby programs that use highly dynamic features,

such as metaprogramming and mixins, using a combination of assume-guarantee

reasoning and a novel approach called just-in-time verification, whereby program

verification is deferred until runtime. We evaluated RTR by using it to verify a range

of functional correctness properties in six Ruby programs.

Though RDL is useful for type checking, it still has trouble handling some

constructs that are common in Ruby programs, such as databases and heterogeneous

data structures. To address this, in Chapter 3 I introduced CompRDL, a system

that extends RDL with type-level computations; we call types that include such

computations comp types. With comp types, we can check more precise properties

in Ruby programs, e.g., we can check the correctness of the names of columns and

types of values in complex database queries. Additionally, due to the precision
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of comp types, fewer manually inserted type casts are needed for operations over

heterogeneous data structures such as arrays and hashes. We evaluated CompRDL by

writing 586 comp type annotations over six Ruby libraries, then using these to type

check six Ruby programs. We found that comp types significantly reduced the need

for type casts when type checking these programs. Moreover, comp types helped us

discover three previously unknown errors.

One difficulty in using RDL (as well as RTR and CompRDL) is that it places the

burden of writing type annotations on the programmer. To address this issue, in

Chapter 4 I introduced InferDL, a system for inferring usable type annotations.

While standard, constraint-based type inference generates types that are techni-

cally correct, they are often complex, verbose, and overly general. InferDL comple-

ments constraint-based inference with configurable heuristic rules that guess more

usable type annotations, i.e., annotations that precisely capture programmer intent.

Heuristic guesses are checked for consistency with a program’s constraints, and any

inconsistent guesses are discarded, thereby ensuring the soundness of inferred types.

We evaluated InferDL by writing eight heuristics and running it on four bench-

marks and six case study programs. We found that, compared to constraint-based

inference, InferDL inferred 22% more annotations that were as or more precise than

programmer-written annotations, and InferDL also found six new type errors in the

process.

While InferDL helps generate more usable type annotations, there is still room

for improvement. While in theory, a programmer could continue writing new heuris-

tics for each new target program, this process is time-consuming, and the heuristics
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may not generalize well to new targets. Thus, to improve on InferDL, in Chapter 5 I

introduced SimTyper, a system that builds on InferDL by introducing a novel tech-

nique called type equality prediction. This machine learning-based technique uses a

deep similarity (DeepSim) neural network to predict when two arguments, variables,

or returns have the same type. This allows SimTyper to assign usable types to posi-

tions with overly general types. Like InferDL, any inferred annotations are checked

against existing constraints, and thus are guaranteed to be sound. Moreover, un-

like prior work on probabilistic type inference, SimTyper is able to infer rare and

program-specific type annotations. We evaluated SimTyper by applying it to eight

Ruby programs, and we found that, when using a combination of constraint solving,

heuristic, and the DeepSim network, SimTyper finds 69% more types that match

programmer-written annotations compared to constraint solving alone. Moreover,

we found that the DeepSim network was able to infer more matching annotations

than the heuristics of InferDL.

High Level Conclusion. Based on the novel ideas and promising results pre-

sented in this dissertation, I conclude that the proposed type systems represent

an important step forward in bringing more expressive and usable static types to

dynamic languages.

6.1 Future Work

There are a number of interesting avenues for future work.
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Exploring Choice Types. Chapter 4 introduced choice types, an idea loosely

inspired by variational type checking [89]. Choice types are used in InferDL and

SimTyper for the specific purpose of considering multiple possible types for inputs

to/outputs from a method with an intersection type. Subsequent constraints in a

program allow us to eliminate inconsistent arms of a choice type. Thus, they provide

us with a way of considering multiple possible types for a value, and eliminating those

which are not possible as our program analysis provides more information.

Though we used choice types for this one specific purpose in InferDL and

SimTyper, it is likely they would prove useful for other purposes. For instance, choice

types could effectively represent the types of values received from a heterogeneous

data structure, e.g., a value taken from an array containing both integers and strings.

As we discussed in Chapter 3, we often need manually written type casts for such

values since it is difficult for a type checker to statically determine the value’s type,

which can lead to false-positive type errors. However, a choice type would allow us

to consider multiple possible types for the value, and later eliminate inconsistent

types rather than raise a type error. Choice types may also prove useful for other

purposes, e.g., for handling path-sensitive typing in cases where a value’s type may

differ depending on which path through a program is taken. Thus, I believe greater

study of choice types for dynamic languages could prove interesting and useful.

Type Casts. One challenge that affects all four of the type systems presented

in this dissertation is the need for manually written type casts to suppress false

positive type errors. Though CompRDL reduced the number of casts needed for many
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programs, it did not eliminate this need entirely. The necessity of manually written

type casts negatively affects the usability of these type systems, and thus it would be

useful to explore ways to reduce this need even further. There are multiple possible

routes for this exploration. First, we could explore ways to further increase the

precision of these type systems, thereby reducing the occurrence of false positive type

errors. The choice type discussion above suggests one way for increasing precision.

Another possibility would be to use occurrence typing [3], which could reduce false

positive errors resulting from path-sensitive typing; occurrence typing is challenging

in a language like Ruby, which provides many possible ways for dynamically checking

the type of a value, and thus this could be an interesting subject to study.

A different way to reduce the need for type casts would be to develop a means

for inferring type casts. This would necessitate (1) determining which program

locations could be responsible for false positive type errors, and (2) generating the

appropriate casts for these locations.

Error Messages. One challenge for type inference systems generally, and InferDL

and SimTyper in particular, is that error messages are often difficult to understand.

This can occur because type errors are sometimes related to many different locations

in a program, and thus choosing which locations to report in an error message is

nontrivial. Some prior work has suggested ways to improve error messages in similar

cases [101, 102, 103]; we plan to explore these for our systems in the future. It is

possible that this would also be helpful for one challenge with type casting presented

above: how to determine which program locations result in false positive errors.
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Conflicts in Inferred Types. One challenge for both InferDL and SimTyper

is that it is possible for the system to infer two or more type annotations that are

inconsistent; in InferDL, this can occur when heuristics guess conflicting annota-

tions, and in SimTyper it can occur when the DeepSim network guesses conflicting

annotations. In both cases, the system takes a greedy approach and uses whichever

annotation is guessed first, thereby effectively blocking out subsequent annotations

that are inconsistent. In the future, we would like to explore alternative ways for

handling such conflicts. One way could be to assign a confidence score to each in-

ferred annotation, and pick those annotations with higher scores. Another approach

may be to use backtracking in cases where inconsistencies occur.

Return Embeddings. As discussed in Section 5.5, we found that incorporating

return sites into the embeddings representing method returns did not have a signif-

icant effect on SimTyper’s results for the benchmarks. This suggests that we are

not effectively incorporating clues from a method body’s code as to the type of the

method return. In the future, we plan to explore alternative ways of producing

return embeddings.
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Appendix A: Soundness of CompRDL

This appendix contains the full definitions, static and dynamic semantics, and

proof of soundness for λC (Chapter 3).

Figure A.1 once again presents the syntax of λC , as well as some new auxiliary

definitions to be used for defining the semantics and proving soundness. Here we

see for the first time object instances [A], which denote an instance of a class A.

The dynamic semantics rules are shown in Figure A.2. Most of the rules are stan-

dard. The slightly more intricate rule is (E-Context), which takes a step within a

subexpression, and it contains premises that differentiate it from (E-AppUD), the

other context cases, and ensure that the context C is the largest possible context

for purposes of disambiguation. Figure A.3 once again defines the dynamic check

insertion rules. Finally, Figure A.4 defines the type checking rules, which are largely

a simplification of the check insertion rules; it is for these type checking rules that

we prove preservation and progress. We prove soundness of the check insertion rules

as a corollary of the soundness of the type checking rules.
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values v ::= nil | [A] | A | true | false
expressions e ::= v | x | self | tself | e; e

| A.new | if e then e else e | e == e
| e.m(e) | dAee.m(e)

method types σ ::= A→ A
TLC method types δ ::= σ | (a<:e/A)→ e/A

programs P ::= def A.m(x) : σ = e | lib A.m(x) : δ | P ;P

x ∈ var IDs, m ∈ meth IDs, A ∈ class IDs

dyn env E : var ids→ values
contexts C ::= � | C.m(e) | v.m(C) | dAeC.m(e) | dAev.m(C)

| C; e | if C then e else e | C == e | v == C
stack S ::= · | (E,C) :: S

type stack TS ::= · | (Γ[A], A) :: TS
typ env Γ,∆ : var ids→ base types

class table CT : class ids→ meth ids→ types
objects O : objects

object instance [·] : A→ O

method sets U : set of user-defined methods
L : set of library methods

where L ∩ U = ∅

Nil , Obj , Bool , True, False, and Type are all presumed to be class IDs A.
Subtyping is defined as Nil ≤ A, A ≤ A, and A ≤ AtA′ for all A,A′. AtA′ is the

least upper bound of types A and A′.

Figure A.1: λC and auxiliary definitions.

A.1 Soundness

We prove soundness of the type system of λC by first proving preservation

and then progress. The proof of preservation is the more involved step here, and it

requires a number of preliminary definitions. First, we define a notion of consistency

between the type and dynamic environments:

Definition 1 (Environmental consistency). Type environment Γ is consistent with
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Dynamic semantics 〈E, e, S〉 〈E ′, e′, S ′〉
(E-Var) 〈E, x, S〉 〈E,E(x), S〉
(E-Self) 〈E, self, S〉 〈E,E(self), S〉
(E-TSelf) 〈E, tself, S〉 〈E,E(tself), S〉
(E-Seq) 〈E, v; e, S〉 〈E, e, S〉
(E-New) 〈E,A.new, S〉 〈E, [A], S〉
(E-IfTrue) 〈E, if v then e2 else e3, S〉 〈E, e2, S〉

if v is not nil or false
(E-IfFalse) 〈E, if v then e2 else e3, S〉 〈E, e3, S〉

if v = nil or v = false
(E-EqTrue) 〈E, v1 == v2, S〉 〈E, true, S〉

if v1 and v2 are equivalent
(E-EqFalse) 〈E, v1 == v2, S〉 〈E, false, S〉

if v1 and v2 are not equivalent
(E-AppUD) 〈E,C[vr.m(v)], S〉 〈[self 7→ vr, x 7→ v], e, (E,C) :: S〉

if type_of(vr) = A and A.m ∈ U and def_of(A.m) = x.e
(E-AppLib) 〈E, dAevr.m(v), S〉 〈E, v′, S〉

if type_of(vr) = A and A.m ∈ L and v′ = call(A.m, vr, v) and type_of(v′) ≤ A
(E-Ret) 〈E ′, v, (E,C) :: S〉 〈E,C[v], S〉

(E-Context)

〈E, e, S〉 〈E ′, e′, S ′〉 @v, vr, A,m.(e = vr.m(v) ∧ type_of(vr) = A ∧ A.m ∈ U)
@v.e = v @C ′, e′′.e = C ′[e′′]

〈E,C[e], S〉 〈E ′, C[e′], S ′〉

where def_of(A.m) = x.e if there exists a definition def A.m(x) : σ = e.
Additionally, call(A.m, v, v) is our way of dispatching a library method, where A.m
identifies the method, the first v is the receiver of the method call, and the second v
is the argument of the method call. It returns a value vr, the value returned by the
method call. Finally, we use type_of (v), where type_of (nil) = Nil , type_of (A)
= Type, type_of (true) = True, type_of (false) = False, and type_of ([A]) = A.

Figure A.2: Dynamic semantics of λC
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Type Checking and Check Insertion Rules. Γ `CT e ↪→ e : A

Γ `CT nil ↪→ nil : Nil
C-Nil

Γ `CT A.new ↪→ A.new : A
C-New

Γ `CT A ↪→ A : Type
C-Type

Γ `CT true ↪→ true : True
C-True

Γ `CT false ↪→ false : False
C-False

Γ `CT [A] ↪→ [A] : A
C-Obj

Γ(x) = A

Γ `CT x ↪→ x : A
C-Var

Γ `CT e1 ↪→ e′1 : A1

Γ1 `CT e2 ↪→ e′2 : A2

Γ `CT e1 == e2 ↪→ e′1 == e′2 : Bool
C-Eq

Γ `CT e1 ↪→ e′1 : A1

Γ1 `CT e2 ↪→ e′2 : A2

Γ `CT e1; e2 ↪→ e′1; e
′
2 : A2

C-Seq

CT(A.m) = A1 → A2 A.m ∈ U
Ax ≤ A1

Γ `CT e ↪→ e′ : A Γ `CT ex ↪→ e′x : Ax

Γ `CT e.m(ex) ↪→ e′.m(e′x) : A2

C-AppUD

Γ `CT e1 ↪→ e′1 : A1

Γ `CT e2 ↪→ e′2 : A2

Γ `CT e3 ↪→ e′3 : A3

Γ `CT if e1 then e2 else e3 ↪→ if e′1 then e
′
2 else e

′
3 : (A2 t A3)

C-If

CT(A.m) = A1 → A2

A.m ∈ L Ax ≤ A1

Γ `CT e ↪→ e′ : A
Γ `CT ex ↪→ e′x : Ax

Γ `CT e.m(ex) ↪→ dA2ee′.m(e′x) : A2

C-AppLib

CT(A.m) = (a<:et1/At1)→ et2/At2 A.m ∈ L
Γ `CT e ↪→ e′ : A Γ `CT ex ↪→ e′x : Ax
x:Type, tself:Type `TCTU et1 ↪→ e′t1 : Type

〈[x 7→ A][tself 7→ A], e′t1, ·〉 ∗ 〈E1, A1, ·〉 Ax ≤ A1

x:Type, tself:Type `TCTU et2 ↪→ e′t2 : Type
〈[x 7→ A][tself 7→ A], e′t2, ·〉 ∗ 〈E2, A2, ·〉

Γ `CT e.m(ex) ↪→ dA2ee′.m(e′x) : A2

C-App-Comp

Figure A.3: Type checking and check insertion rules for λC .
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Type checking rules Γ `CT e : A

Γ `CT nil : Nil
T-Nil

Γ `CT [A] : A
T-Obj

Γ(self) = A

Γ `CT self : A
T-Self

Γ `CT true : True
T-True

Γ `CT false : False
T-False

Γ `CT A : Type
T-Type

Γ(x) = A

Γ `CT x : A
T-Var

Γ `CT e1 : A1

Γ1 `CT e2 : A2

Γ `CT e1 == e2 : Bool
T-Eq

Γ(tself) = A

Γ `CT tself : A
T-TSelf

Γ `CT e1 : A1

Γ1 `CT e2 : A2

Γ `CT e1; e2 : A2
T-Seq

Γ `CT A.new : A
T-New

Γ `CT e1 : A1 Γ `CT e2 : A2

Γ `CT e3 : A3

Γ `CT if e1 then e2 else e3 : (A2 t A3)
T-If

Γ `CT e0 : A A.m ∈ U
Γ `CT e1 : A

CT(A.m) = A1 → A2 A ≤ A1

Γ `CT e0.m(e1) : A2

T-App

Γ `CT e0 : A
A.m ∈ L

Γ `CT dAee0.m(e1) : A
T-App-Lib

Figure A.4: Type checking rules for λC .
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dynamic environment E, written Γ ∼ E, if for all variables x, x ∈ dom(E) if and

only if x ∈ dom(Γ), and for all x ∈ dom(E) there exists A such that Γ `CT E(x) : A

and A ≤ Γ(x).

We will use the notation type_of (v), where type_of (nil) =Nil , type_of (true)

= True, type_of (false) = False, type_of([A]) = A, and type_of (A) = Type, for

any A.

On blame: Our type system does not prevent invoking a method on a value

that is nil. Additionally, runtime evaluation can fail if an inserted dynamic check

fails. In order to retain soundness of our system, we add dynamic semantics rules

which step to blame in these cases, where Γ `CT blame : Nil for any Γ. Additionally,

we add rules which take a step to blame whenever a subexpression takes a step to

blame. We omit the rules here for brevity.

Because we make use of a stack in our dynamic semantics, a standard type

preservation theorem which says that we always step to an expression which has the

same type (or subtype) will not suffice. Rules (E-AppUD) and (E-Ret) push and

pop from the stack. In these cases, an expression e may have an entirely different

type than the expression that it steps to, e′. To account for this we incorporate a

notion of a type stack TS to mirror the runtime stack, which is defined Figure A.1.

As an example, suppose we want to apply preservation to C[v1.m(v2)]. The type

checking judgment is Γ `CT C[v1.m(v2)] : A′. Because the dynamic semantics rule

(E-AppUD) pushes the current environment and context onto the stack, we will

push the current typing judgment on to the type stack. Specifically, we will push
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an element of the form (Γ[A], A′), where Γ is the environment of the current typing

judgment; A′ is the type of the surrounding context; and A is the type of expression

v1.m(v2), i.e., the type that the method must return.

With this type stack, we can now define what it means for a type to be a

subtype of the type stack, which is the crucial preservation invariant we will prove:

Definition 2 (Stack subtyping). A0 ≤ (Γ[A], A′) :: TS if A0 ≤ A.

Definition 3 (Stack consistency). Type stack element (Γ[A], A′) is consistent with

dynamic stack element (E,C), written (Γ[A], A′) ∼ (E,C), if Γ ∼ E and

Γ[� 7→ A] `CT C : A′ (Here we abuse notation and treat � as if its a variable.)

Type stack TS is consistent with dynamic stack S, written TS ∼ S, is defined

inductively as

1. · ∼ ·

2. (Γ[A], A′) :: TS ∼ (E,C) :: S if

(a) (Γ[A], A′) ∼ (E,C)

(b) TS ∼ S

(c) A′ ≤ TS if TS 6= ·

We will also make use of a notion of class table validity, which tells us that a

class table maps fields and methods to the "correct" types:

Definition 4 (Class table validity). Let A.m be an arbitrary method. We say

valid(CT) if
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1. if A.m ∈ U , then A.m ∈ dom(CT), CT(A.m) = A1 → A2 for some A1, A2,

and there exists a single method definition def A.m(x) : A1 → A2 = e such

that [self 7→ A, x 7→ A1] `CT e : A′2 for some A′2 where A′2 ≤ A2.

2. if A.m ∈ L, then A.m ∈ dom(CT), CT(A.m) = σ for some Am, and there

exists a single method declaration lib A.m(x) : σ such that σ = A1 → A2 or

σ = (a<:et1/A1)→ et1/A2 for some A1, A2, et1, et2.

3. For all A′ such that A′ ≤ A, if CT(A′.m) = A′1 → A′2 and CT(A.m) = A1 →

A2 then A1 ≤ A′1 and A′2 ≤ A2.

See section A.2 for the programming type checking rules, and a discussion of

how to construct and check the validity of a class table.

Finally, we make use of the following lemmas in our proofs of soundness:

Lemma 1 (Contextual substitution). If

Γ `CT e : A′
...

ΓC `CT C[e] : AC
,

then ΓC [� 7→ A′] `CT C : AC.

Lemma 2 (Substitution). If

1. ∆[� 7→ AC ] `CT C : A′C

2. ∆ `CT e : A

3. A ≤ AC
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then ∆ `CT C[e] : A′′C where A′′C ≤ A′C.

With the above definitions and lemmas, we can finally state our preservation

theorem:

Theorem 2 (Preservation). If

(1) 〈E, e, S〉 〈E ′, e′, S ′〉

(2) Γ `CT e : A

(3) A ≤ TS

(4) Γ ∼ E

(5) TS ∼ S

(6) valid(CT)

then there exists ∆,TS′, A′ such that

(a) ∆ `CT e
′ : A′

(b) A′ ≤ TS′

(c) ∆ ∼ E ′

(d) TS′ ∼ S ′

(e) If S = S ′ then A′ ≤ A and ∆ = Γ,Γ′ for some Γ′

(1) and (2) are standard: they say that some expression e takes a step, and

that e is well typed. Conclusion (a) states that e′ is also well typed. (3) says that
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the type of e is a subtype of the type stack, and (b) says the same of e′; this is

the crux of the type preservation proof, and as explained above, it must be phrased

in this way in order to account for the use of a stack, which allows us to step to

expressions with completely different types. Notice that (e) also tells us that if the

stack goes unchanged, then A′ ≤ A; this is much closer to the standard statement of

preservation. (e) also gives us that if the stack goes unchanged, then the new type

environment is an extension of the old one.

(4) gives us consistency between type and dynamic environments, and (5) gives

us consistency between the type stack and stack, the corresponding conclusions (c)

and (d) respectively give us the same for the new environments.

(6) gives us validity of the class table (a corresponding conclusion is unneces-

sary since the class table goes unchanged).

Finally, we proceed with the proof of preservation.

Proof. By induction on 〈E, e, S〉 〈E ′, e′, S ′〉

• Case (E-Self). By assumption we have

(1) 〈E, self, S〉 〈E,E(self), S〉 by (E-Self)

(2) Γ `CT self : A

(3) Γ(self) ≤ TS

(4) Γ ∼ E

(5) TS ∼ S

(6) valid(CT )
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Since (2) must have been derived by (T-Self), by inversion of this rule we

have that A = Γ(self). Let ∆ = Γ and TS′ = TS. By equality of ∆ and Γ,

(2), (4), and the definition of environmental consistency, there exists A′ such

that ∆ `CT E(self) : A′ and A′ ≤ ∆(self). Then (a) holds since E(self) is

well typed. (b) holds since A′ ≤ ∆(self) = Γ(self) ≤ TS by (3). Because

A′ ≤ Γ(self) and ∆ = Γ, ∅, we have (e). Finally, (c) holds by (4), and (d)

holds by (5).

• Case (E-Var), (E-TSelf). Similar to (E-Self) case.

• Case (E-New). By assumption we have

(1) 〈E,A.new, S〉 〈E, [A], S〉 by (E-New)

(2) Γ `CT A.new : A by (T-New)

(3) A ≤ TS

(4) Γ ∼ E

(5) TS ∼ S

(6) valid(CT )

Let ∆ = Γ, TS′ = TS, and A′ = A. Then we get (a) from (T-Obj), (b) from

(3), (c) from (4), (d) from (5), and (e) immediately by definition of A′ and ∆.

• Case (E-Seq). Trivial.

• Case (E-EqTrue), (E-EqFalse). Trivial.

• Case (E-IfTrue). By assumption we have
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(1) 〈E, if v then e1 else e2, S〉 〈E, e1, S〉

(2) Γ `CT if v then e1 else e2 : A

(3) A ≤ TS

(4) Γ ∼ E

(5) TS ∼ S

(6) valid(CT )

By (2) and inversion of (T-If), there exits Av, A1, A2 such that:

(7) Γ `CT v : Av

(8) Γ `CT e1 : A1

(9) Γ `CT e2 : A2

(10) A = A1 ∪ A2

Let ∆ = Γ, TS′ = TS, and A′ = A1. Then from (8) we trivially have (a).

Additionally, A′ = A1 ≤ A1 t A2, and so A′ ≤ TS′ giving us (b). Finally, we

have (c) by (4), (d) by (5), and (e) by the fact that A′ ≤ A and ∆ = Γ, ∅.

• Case (E-IfFalse). Similar to (E-IfTrue) case.

• Case (E-Context). By assumption we have:

(1) 〈E,C[e], S〉 〈E ′, C[e′], S ′〉 where

(1a) 〈E, e, S〉 〈E ′, e′, S ′〉

(1b) ¬(e = vr.m(v) ∧ type_of(xr) = A ∧ A.m ∈ U) for some v, vr, A, m
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(1c) e 6= v for some v

(1d) e 6= C ′[e′] for some C ′, e′ by (E-Context)

(2) Γ `CT C[e] : A

(3) A ≤ TS

(4) Γ ∼ E

(5) TS ∼ S

(6) valid(CT )

First, note that we must have S ′ = S, because the only cases where this would

not happen would be if (E-AppUD) or (E-Ret) were used to derive (1a),

and this cannot be the case given (1b) and because (E-Ret) only applies to

top-level values and thus can’t apply to a context. Now note that since (2)

gives us Γ `CT C[e] : A, by inversion, there should exist Ae so that

(7) Γ `CT e : Ae

Let TSe be a type stack such that TSe ∼ S, Ae ≤ TSe, and all type environ-

ments in TSe are the same as those in TS ; it is straightforward to construct

such a TSe from the existing TS. Then, by (1a), (7), Ae ≤ TSe, (4), TSe ∼ S,

and (6), we satisfy the premises of the preservation theorem. Therefore, ap-

plying the inductive hypothesis, there exists ∆e,TS′e, A′e such that:

(ai) ∆e `CT e
′ : A′e

(bi) A′e ≤ TS′e
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(ci) ∆e ∼ E ′

(di) TS′e ∼ S ′

(ei) If S = S ′ then A′e ≤ Ae and ∆e = Γ,Γ′ for some Γ′

Let ∆ = ∆e and TS′ = TS. Now, because S ′ = S, by (gi) we have ∆ = Γ,Γ′.

By Lemma 1 we have Γ[� 7→ Ae] `CT C : A, and by the weakening lemma, we

also have ∆[� 7→ Ae] `CT C : A. By (ei) we also have A′e ≤ Ae. These, along

with (ai) and the substitution lemma 2, give us that ∆ `CT C[e′] : A′ for some

A′ where A′ ≤ A. This immediately gives us (a), and because A′ ≤ A and

A ≤ TS by (3) we get (b). Because ∆ = Γ,Γ′ and A′ ≤ A, we get (e). We get

(c) from (ci). (d) comes from (5) and the fact that S ′ = S.

• Case (E-AppLib). By assumption we have

(1) 〈E, dAresevr.m(v1), S〉 〈E, v, S〉 where

(1a) type_of(vr) = Arec

(1b) Arec.m ∈ L

(1c) v = call(Arec.m, vr, v1)

(1d) type_of(v) ≤ Ares

by (E-AppLib).

(2) Γ `CT dAresevr.m(v1) : A

(3) A ≤ TS

(4) Γ ∼ E
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(5) TS ∼ S

(6) valid(CT )

Because of (1b), we know that (2) must have been derived by (T-App-Lib).

Instantiating this rule with the obvious bindings, we get that A = Ares. Let

∆ = Γ, TS′ = TS, and A′ = type_of(v). If v is nil, we get (a) immediately

by (1d), definition of type_of, and (T-Nil); a similar argument holds for all

other potential values of v. In all cases, we get (b) from (1d) and (3). We get

(c) from (4), (d) from (5), and (e) from (1d) and definition of ∆.

• Case (E-AppUD). By assumption we have

(1) 〈E,C[vr.m(v)], S〉 〈[self 7→ vr, x 7→ v], e, (E,C) :: S〉 where

(1a) type_of(vr) = Arec

(1b) Arec.m ∈ U

(1c) def_of(Arec.m) = x.e

(2) Γ `CT C[vr.m(v)] : AC

(3) AC ≤ TS

(4) Γ ∼ E

(5) TS ∼ S

(6) valid(CT )

Noting the type checking rules for each context case, we know (2) must have

been derived by some rule of the form:
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Γ `CT vr.m(v) : Am
...

Γ `CT C[vr.m(v)] : AC

From this and the contextual substitution lemma 1, we know Γ[� 7→ Am] `CT

C : AC . Additionally, by inversion, we have

(7) Γ `CT vr.m(v) : Am

By (1a), definition of type_of, and the value type checking rules, we know that

Γ `CT vr : Arec. Because by (1b) we know that Arec.m ∈ U and U and L are

by definition disjoint, the type checking judgment (7) must have been derived

from rule T-App.

By instantiation of rule T-App with Am = A2 we get

Γ `CT vr : Arec A.m ∈ U
Γ `CT v : Aarg

CT(A.m) = A1 → A2 Aarg ≤ A1

Γ `CT vr.m(v) : A2

T-App

Thus, by inverting T-App, there must exist Aarg, A1, A2 such that:

(8) Γ `CT v : Aarg

(9) CT(A.m) = A1 → A2

(10) Aarg ≤ A1

Now, let ∆ = [x 7→ A1, self 7→ Arec]. Also, let TS′ = (Γ[A2], AC) :: TS.

By (1b), (1c), (6), (8), and (9), we know there exists A′ such that [self 7→

Arec, x 7→ A1] `CT e : A′ where A′ ≤ A2, which gives us (a); that is to say,
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the body of the method type checks as expected. (b) holds by construction of

TS′. (c) holds by construction of ∆. (e) holds trivially since S 6= S ′.

Finally, we show (d). By (4) we have Γ ∼ E, and as noted above we have

Γ[� 7→ A2] `CT C : AC . This gives us (Γ[A2], AC) ∼ (E,C). By (3) we have

AC ≤ TS, and by (5) we have TS ∼ S. Putting this all together, by the

definition of stack consistency, this gives us (ΓC [A2], AC) :: TS ∼ (E,C) :: S,

which is (d).

• Case (E-Ret). By assumption we have

(1) 〈E ′, v, (E,C) :: S〉 〈E,C[v], S〉

(2) Γ `CT v : A

(3) A ≤ (ΓC [AC ], A′C) :: TS

(4) Γ ∼ E ′

(5) (ΓC [AC ], A′C) :: TS ∼ (E,C) :: S

(6) valid(CT )

Let ∆ = ΓCand TS′ = TS. By (5) we have ΓC [� 7→ AC ] `CT C : A′C , and

by (3) we have A ≤ AC . Then by these, (2), and the substitution lemma 2,

we have that ΓC `CT C[v] : A′′C where A′′C ≤ A′C ; this also means that ∆ `CT

C[v] : A′′C .

Let A′ = A′′C and we have (a). By (5) and the definition of stack consistency

we have A′C ≤ TS, and since A′′C ≤ A′C , we have (b). Finally, (c) and (d) hold

by (5), and (e) holds trivially since S 6= S ′.
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Before proving progress, we introduce one assumption and one lemma:

Assumption 1 (Library Method Termination). For any A, m, v1, and v2 where

A.m ∈ L, call(A.m, v1, v2) will terminate and return a value.

This assumption is necessary to prove progress since we do not have the mech-

anism to refer to the step-by-step evaluation of library methods. A straightforward

expansion of λC would allow us to do so, but we omit such an expansion here for

simplicity.

Lemma 3 (Proper context). For any expression e, if e = C[e′] for some C, e′, then

there exists a proper context CP and proper subexpression eP such that e = CP [eP ],

eP 6= v for any value v, and 6 ∃C ′, e′′ such that eP = C ′[e′′].

Note that it is still possible in Lemma 3 that CP = C and eP = e. The high-

level idea behind the proof of Lemma 3 is that we construct the proper context by

recursively pushing the hole [] deeper into subcontexts while possible. With these,

we can proceed with defining and proving progress:

Theorem 3 (Progress). If

(1) Γ `CT e : A

(2) A ≤ TS

(3) Γ ∼ E

(4) TS ∼ S
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(5) valid(CT)

then one of the following holds

1. e is a value

2. There exists E ′, e′, S ′ such that 〈E, e, S〉 〈E ′, e′, S ′〉

3. 〈E, e, S〉 blame

Proof. By induction on e.

• Case nil, true, false, [A], or A. e is a value.

• Case self. By assumption (1) and (T-Self), we know self ∈ dom(Γ). By

(3), this means self ∈ dom(E). This means rule (ESelf) can be applied, so

we can take a step.

• Cases x, tself. Similar to self.

• Case e1 == e2 We split into cases on whether or not e1, e2 are values, for any

v1, v2:

– e1 ≡ v1 and e2 ≡ v2. This case is trivial since one of (E-EqTrue) or

(E-EqFalse) will always apply.

– e1 6≡ v1. Then e ≡ C[e1] with C ≡ [] == e2. By Lemma 3, there exists a

proper context CP and proper subexpression eP such that e ≡ CP [eP ]. If

eP 6≡ vr.m(v) for any vr, A,m, v where type_of(vr) = Ar∧Ar.m ∈ U , then

by the inductive hypothesis there exists E ′, e′P , S ′ such that 〈E, eP , S〉 
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〈E ′, e′P , S ′〉 (or such that we step to blame, in which case e steps to blame

and we are done). See the (E-Context) case of the preservation proof

for a discussion of how to satisfy the premises of the inductive hypothesis,

since the premises here a subset of those of preservation. By construction

of the proper subexpression as specified in Lemma 3, 6 ∃C ′, e′′ such that

eP = C ′[e′′], and eP 6= v for any value v. This satisfies all the premises of

(E-Context), therefore this rule would apply to CP [eP ] to take a step.

Otherwise, eP ≡ vr.m(v) with type_of(vr) = Ar ∧ Ar.m ∈ U . We know

that (1) must have been derived by rule (T-Eq). By inversion of this rule,

this means Γ `CT vr.m(v) : Am for some Am. By definition of type_of, it

must be that Am = Ar. Because Ar.m ∈ U and by definition U ∩ L = ∅,

we therefore know Γ `CT vr.m(v) : Am must have been derived from

(T-App). By inversion of this rule, we know CT(Ar.m) = A1 → A2 for

some A1, A2. By (5), this means def_of(Ar.m) = x.em for some em. If

vr is nil, then we return blame. Thus, we have satisfied all the premises

of rule (E-AppUD), therefore we can apply this rule and we are done.

– e1 ≡ v1 and e2 6≡ v2. Then e ≡ C[e2] with C ≡ v1 == []. By a similar

argument to the previous case, either (E-Context) or (E-AppUD) must

apply.

• Case e1; e2. We split cases on whether or not e1 is a value:

– e1 ≡ v. Then, the evaluation rule E-Seq on the expression v; e2 applies

to take a step.
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– Otherwise, e ≡ C[e1] with C ≡ []; e2. By a similar argument to the

e1 == e2 case, either (E-Context) or (E-AppUD) must apply.

• Case A.new. Trivial.

• Case if e0 then e1 else e2. We split cases on the structure of e0.

– e0 ≡ nil or e0 ≡ false. The rule E-IfFalse applies to take a step.

– e0 ≡ v where v is not nil or false. The rule E-IfTrue applies to take

a step.

– Otherwise, e ≡ C[e0] with C ≡ if [] then e1 else e2. By a similar

argument to the e1 == e2 case, either (E-Context) or (E-AppUD)

must apply.

• Case e1.m(e2). We split this case on the structure of e1, e2:

– e1 6≡ v. Then e ≡ C[e1] with C ≡ [].m(e2). By a similar argument to the

e1 == e2 case, either (E-Context) or (E-AppUD) must apply.

– e1 ≡ v1 and e2 6≡ v2. Then e ≡ C[e2] with C ≡ e1.m([]). By a similar

argument to the e1 == e2 case, either (E-Context) or (E-AppUD)

must apply.

– e1 = v1 and e2 = v2. If v1 is nil, we step to blame. Because e is a non-

checked method call, we know (1) must have been derived by (T-App).

By inversion of this rule, Γ `CT v1 : A1 for some A1, and that A1.m ∈ U

and CT(A.m) = Ain → Aout. By (7), this means def_of(A.m) = x.em for
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some em. This satisfies all the premises of rule (E-AppUD), therefore we

can apply this rule.

• Case dAresee1.m(e2). We split this case on the structure of e1, e2:

– e1 6≡ v. Then e ≡ C[e1] with C ≡ [].m(e2). By a similar argument to the

e1 == e2 case, either (E-Context) or (E-AppUD) must apply.

– e1 ≡ v1 and e2 6≡ v2. Then e ≡ C[e2] with C ≡ e1.m([]). By a similar

argument to the e1 == e2 case, either (E-Context) or (E-AppUD)

– e1 = v1 and e2 = v2. If v1 is nil, we return blame. Because e is a

checked method call, we know (1) must have been derived by (T-App-

Lib). By inversion of this rule, we know Γ `CT v1 : A1 for some A1,

where A1.m ∈ L. Let vres = call(A.m, v1, v2); by Assumption 1 we know

that this call will terminate and return a value. Then, if type_of(vres)

is not a subtype of Ares, we will return blame. Otherwise, we will have

satisfied all the preconditions of (E-AppLib), therefore we can apply this

rule and take a step.

We now introduce our theorem of soundness of the type checking judgment.

Theorem 4 (Soundness of Type Checking). If valid(CT) and ∅ `CT e ↪→ e′ : AC

and ∅ `CT e′ : A, then either e′ reduces to a value, e′ reduces to blame, or e′ does

not terminate.
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Program type checking rules CT |= P

CT(A.m) = A1 → A2 [self 7→ A, x 7→ A1] `CT e : A′2
A′2 ≤ A2

CT |= def A.m(x) : A1 → A2 = e
T-PDef

CT(A.m) = σ

CT |= lib A.m(x) : σ
T-PLib

CT |= P1 CT |= P2

CT |= P1, P2

T-PSeq

Figure A.5: Program type checking rules.

Proof. Let Γ = ∅, E = ∅, S = (∅,�) :: ·, and TS = (Γ[A], A) :: ·. By construction

we have A ≤ TS, Γ ∼ E, and TS ∼ S. Thus, we satisfy the preconditions of

progress and preservation, and soundness holds by standard argument.

With this soundness theorem, it is straightforward to extend soundness to the

check insertion rules. We make use of a lemma that states that the type assigned by

the check insertion rules will be equivalent to the type assigned by the type checking

rules.

Lemma 4. Γ `CT e ↪→ e′ : AC and Γ `CT e
′ : A if and only if Γ `CT e ↪→ e′ : A.

Proof. Straightforward by induction on check insertion rules Γ `CT e ↪→ e′ : A.

Theorem 5 (Soundness of Check Insertion). If valid(CT) and ∅ `CT e ↪→ e′ : A

then either e′ reduces to a value, e′ reduces to blame, or e′ does not terminate.

Proof. By Theorem 4 and Lemma 4.

202



A.2 Program Type Checking and Class Table Construction

The rules for type checking a program are given in Figure A.5. They rely on

using a class table. We omit a formal definition of the class table construction here

as it is straightforward. Informally: to construct a class table, traverse a program,

adding type annotations from definitions and declarations as you go. We can then

check that CT |= P to ensure that the program P type checks under the constructed

class table. If CT |= P , and the appropriate subtyping relations hold among methods

of subclasses, we can conclude that valid(CT) according to definition 4.
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Appendix B: SimTyper Evaluation Data

This appendix contains the data corresponding to the graphs in Chapter 5, as

well as some additional data.

Program # Meths LoC # Args # Vars # Usable # Overly
General

# No
Type

code.org 0 0 0 1 0 1 0
Discourse 0 0 0 8 8 0 0
Journey 0 0 0 0 0 0 0
Talks 0 0 0 2 1 1 0
MiniMagick 39 271 28 13 45 10 25
Money 54 350 36 38 83 29 16
Ronin 41 367 8 69 92 17 9
TZInfo 10 60 14 57 48 23 10
Total 144 1048 86 188 277 81 60

Table B.1: Data on the types that SimTyper inferred, but we did not have gold
standards to compare against. For each program, we list the number of method
types SimTyper inferred for which there was no gold standard, the lines of code
those methods comprised, the number of argument types those methods include,
and the number of instance, class, and global variables SimTyper inferred a type
for. Note that we did not include a column for the number of return types in the
methods, since this is equivalent to the number of methods. Then, of the total
argument, return, and variable types SimTyper inferred, we list the number of
these that were usable, overly general, and the number for which SimTyper failed
to infer any type.
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Program Match Match
up to Param.

C /CH/CD/CHD C/CH/CD/CHD
code.org 59 /106/ 87 / 119 14/ 19 / 14 / 19
Discourse 45 / 55 / 54 / 57 2 / 3 / 2 / 3
Journey 39 / 47 / 45 / 48 1 / 2 / 3 / 3

MiniMagick 25 / 29 / 31 / 35 1 / 1 / 2 / 2
Money 58 / 67 / 82 / 81 6 / 6 / 13 / 11
Ronin 102/134/161/ 167 16/ 15 / 43 / 42
Talks 105/136/138/ 140 13/ 20 / 16 / 22
TZInfo 117/166/261/ 266 7 / 7 / 19 / 18
Total 550/740/859/ 913 60/ 73 /112/ 120

(a) Number of inferred matches and matches up to parameter.

Program Different (Structural) No Type

C / CH / CD / CHD C /CH/CD/CHD
code.org 67(28) / 25(13) / 56(12) / 20(5) 23 / 13 / 6 / 5
Discourse 17(14) / 11(7) / 14(10) / 11(6) 13 / 8 / 7 / 6
Journey 7(7) / 2(2) / 6(3) / 4(0) 10 / 6 / 3 / 2

MiniMagick 8(5) / 8(5) / 12(2) / 10(2) 23 / 19 / 12 / 10
Money 47(41) / 41(26) / 47(25) / 47(12) 41 / 38 / 10 / 13
Ronin 81(53) / 68(29) / 123(23) /119(14) 144/126/ 16 / 15
Talks 38(26) / 21(7) / 37(13) / 29(7) 40 / 19 / 5 / 5
TZInfo 149(127)/ 119(78) / 129(59) /122(26) 178/159/ 42 / 45
Total 414(301)/295(167)/424(147)/362(72) 472/388/101/ 101

(b) Number of inferred different types, and number of positions for which SimTyper did
not infer any type.

Table B.2: SimTyper evaluation results corresponding to the plots in Figure 5.8.
For each benchmark, we list the number of matching, match up to parameter, and
different inferred types measured under all configurations (C/CH/CD/CHD). For
the different category, in parentheses we show the number of those types that were
structural. Additionally, the No Type category indicates the algorithm could not
find a more usable solution than giving a type variable for that position.

205



Cat. Match Match
up to Param. Different (Structural)

C /CH/CD/CHD C/CH/CD/CHD C / CH / CD / CHD
Args 69 /208/279/ 322 5 / 17 / 23 / 32 339(296)/222(166)/268(146)/219(71)
Vars 52 / 57 / 61 / 61 9 / 11 / 13 / 14 6(4) / 4(2) / 9(1) / 8(1)
Rets 429/475/519/ 530 46/ 45 / 76 / 74 69(0) / 69(0) / 147(0) / 135(0)

Table B.3: This table corresponds to the graphs in Figure 5.9. Measuring Sim-
Typer’s performance for arguments, variables, and returns. For each category, we
list the number of match, match up to parameter, and different inferred types mea-
sured under all for configurations (C/CH/CD/CHD). For the different category, in
parentheses we show the number of those types that were structural.

Configuration Match Match
up to Param. Different (Structural)

top-1 819 108 449(172)
top-3 859 112 424(147)
top-5 860 112 423(144)
top-7 860 113 422(143)

Table B.4: This table corresponds to the graphs in Figure 5.10a. Measuring
SimTyper’s performance under top-1, -3, -5, and -7 configurations. Measurements
were taken under the CD configuration. For the different category, in parentheses
we show the number of those different types that were structural types.

Embedding Method Match Match
up to Param. Different (Structural)

All 859 112 424(147)
Head 792 107 463(176)

Table B.5: This table corresponds to the graphs in Figure 5.10b. Measuring
SimTyper’s performance under for two different methods of generating embeddings
for arguments: Averaging vectors for all uses of an argument (All) or using just the
vector for the argument in the method header (Head). Measurements were taken
under the CD configuration. For the different category, in parentheses we show the
number of those different types that were structural types.
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Embedding Method Match Match
up to Param. Different (Structural)

N+S 859 112 424(147)
N 866 103 432(147)

Table B.6: This table corresponds to the graphs in Figure 5.10c. Measuring
SimTyper’s performance under for two different methods of generating embeddings
for returns: averaging method names and return sites (N+S), or using just method
names (N). Measurements were taken under the CD configuration. For the different
category, in parentheses we show the number of those different types that were
structural types.
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