
1

CHIPKIT: An agile, reusable open-source
framework for rapid test chip development

Paul N. Whatmough1,2, Marco Donato1, Glenn G. Ko1, Sae Kyu Lee3, David Brooks1, and Gu-Yeon Wei1

1Harvard University
2Arm Research
3IBM Research

Abstract—The current trend for domain-specific architectures (DSAs) has led to renewed interest in research test chips to
demonstrate new specialized hardware. Tape-outs also offer huge pedagogical value garnered from real hands-on exposure to the
whole system stack. However, success with tape-outs requires hard-earned experience, and the design process is time consuming and
fraught with challenges. Therefore, custom chips have remained the preserve of a small number of research groups, typically focused
on circuit design research. This paper describes the CHIPKIT framework: a reusable SoC subsystem which provides basic IO, an
on-chip programmable host, off-chip hosting, memory and peripherals. This subsystem can be readily extended with new IP blocks to
generate custom test chips. Central to CHIPKIT, is an agile RTL development flow, including a code generation tool called VGEN.
Finally, we discuss best practices for full-chip validation across the entire design cycle.

Index Terms—Agile design, design reuse, testing, open-source

F

1 INTRODUCTION

R ESEARCH test chips are the ultimate demonstration
of the true value of novel computer architecture and

circuits innovation. In addition, taping out test chips in
a research or academic setting provides huge pedagogical
value, offering real insight across the whole stack. Nonethe-
less, taping-out test chips remains very challenging, espe-
cially for the uninitiated. Custom chips are time consuming
to design, fabricate and test, and are error prone – often re-
quiring expensive re-spins to fix problems. In this paper, we
explore two key themes of agile and reusable design, to help
reduce the barrier to entry for chip tape-outs. Emphasizing
reuse greatly reduces development cost and at the same
time minimizes the opportunity for silicon bugs, freeing
the designer to focus on differentiating features. While agile
design seeks to follow a methodology where changes can
be readily implemented late into the design cycle, without
significant disruption or risk.

A number of exciting and ambitious open source hard-
ware projects currently provide an exciting range of IP
blocks to use in test chip projects. In addition to this, many
IP companies are offering broad access to their products
for non-commercial use. However, turning a few IP blocks
into a functioning chip that can be easily measured and
debugged is still very challenging due to a significant re-
maining experience gap in terms of both methodology and
IP blocks.

This paper describes CHIPKIT1, a straightforward
framework for the rapid development of successful research
test chips. We describe a front-to-back design example,
drawing on multiple generations of successful test chips
designed at Harvard (Fig. 1), which follow a consistent

1. Available online: https://github.com/whatmough/CHIPKIT

W-MEM
BANK1
256KB

W-MEM
BANK0
256KB

W-MEM
BANK3
256KB

W-MEM
BANK2
256KB

DNN ENGINE

SR
A

M
12

8K
BARM

M0

2.5 mm

2.
5

m
m

TSMC 28HPC TSMC 16FF+ TSMC 16FFC

5mm

5m
m

5

4 x 1MB SRAM

NIC-4004x CCA AO
N

Dual-A53
2MB L2$ eF

PG
A

2x
2

Ar
ra

y

Fig. 1. Three recent chips [1], [2], [3] built using the CHPIKIT framework.

design approach. These span a range of complexities, from
smaller single-accelerator micro-controller based SoCs [1],
[2], through to large multi-accelerator SoCs with Arm
Cortex-A multi-core CPU clusters [3], [4]. However, they
all share the same basic framework, with the same SoC
subsystem for system bring up, communication and control.
Following this framework has allowed new tape-outs to be
developed with very low-risk and high success rate. To help
researchers bootstrap their own chip designs, the contents of
this paper is supported with the release of our open source
CHIPKIT project.

This paper provides the following contributions:
• Reusable SoC Subsystem, a simple on-chip CPU host,

a flexible interconnect, memory, basic peripherals, and
robust off-chip communication and hosting (Section 2).

• Agile RTL Development Methodology, suitable for in-
experienced designers, with robust RTL coding guide-
lines and a code generation tool, VGEN (Section 3).

• Full-Chip Validation Methodology, covering the en-
tire design flow, which is critical to ensure functional
correctness (Section 4).

https://github.com/whatmough/CHIPKIT

2

Arm
Cortex-M0

UART Host

AH
B

Bus Master
Mux

IMEM
64KB

AP
B

GPIO

DMEM
64KB

Bridge
Watchdog

Timer

Real-Time
Clock(RTC)

UARTsUSB-UART

RTC OSC

PCB Reset

RESETn

HCLK

DIAG

USB-UART

GPIO

M

S

S

S

SM

S

S

S

De
bu

g
Si

gn
al

s

Cu
st

om

Ac
ce

le
ra

to
r I

P
Cu

st
om

 M
em

or
y

Sy
st

em

Reusable SoC Subsystem

Fig. 2. Reusable SoC subsystem, extended with a custom IP block.

2 REUSABLE SOC SUBSYSTEM

The design goal for the reusable SoC subsystem (Fig. 2) is to
provide the minimum components to robustly handle essen-
tial bring up and test of custom IP projects. The following
subsections briefly introduce the key components.

2.1 CPU Host

The traditional digital chip testing approach of using exter-
nal pattern generators and logic analyzers to drive and read
chip pins is slow and error prone. Instead, our subsystem
includes two bus masters that can be used to run tests:
a CPU and a UART master. This configuration allows the
chip to be hosted either autonomously by the on-chip CPU,
or from an external PC over USB-UART. We use a 32-
bit Arm Cortex-M02 microcontroller, which is an extremely
area efficient and easy to use design with broad software
compatibility.

2.2 UART Host

We have developed and extensively used a simple and
robust on-chip UART bus master peripheral (included in
CHIPKIT) to allow an external PC host to drive transac-
tions onto the on-chip interconnect. This is a very useful
capability for running tests, loading binaries, moving data
etc. However, it also allows whole tests to be developed
and run from an external PC in any language (e.g. Python),
which is a very convenient approach to chip testing. The
peripheral provides a simple interactive text interface in
any standard terminal emulator, with no CPU overhead.
Single read and write transactions on-chip are initiated
using simple commands, such as R 0x70000000 to read
a 32-bit word at the specified hex address. More extensive
tests are easily scripted in any language using a standard
serial port library. UART-to-USB transceivers on the PCB
enable a PC to easily connect to the test chip over a USB
cable.

2. Available online: www.arm.com/resources/designstart

2.3 Interconnect

An on-chip interconnect allows components on the SoC to
communicate. We adhere to well-documented, open indus-
try standard bus protocols, which allows access to a broad IP
ecosystem, including verification components such as pro-
tocol checkers. In particular, we have extensively used three
protocols from the AMBA standards 3, selected based on re-
quired features and performance: APB for low-performance
peripherals, AHB where-ever possible for general-purpose,
and AXI for high-performance and more features.

We typically need multiple buses, and often partition
them (even on simple chips) based on usage and traffic types
and volumes, which helps with throughput, as well as de-
sign and verification. A silicon bug in an interconnect could
easily hang the whole chip and therefore the interconnect
IP must be robust and carefully verified. It should also be
flexible and easy to modify as the tape-out project evolves.
Open-source solutions for interfacing the components in a
complex heterogeneous systems have been proposed [5].
However, these solutions may go beyond the requirements
of smaller SoCs used for prototyping novel DSA hardware
blocks. To better serve this purpose, CHIPKIT includes a
simple single-layer AHB interconnect, which is very easy
to setup and maintain. It makes use of the SystemVerilog
(SV) interface feature to drastically simplify RTL. An SV
interface is used to bundle the signals in each port, which
can be either of type master or slave. These bundles can
then be connected using a single modport instance. The
address decoder in the interconnect is defined by a single
SV header file which describes the entire memory map for
the interconnect segment. Adding or removing an IP is as
simple as modifying the header file for the interconnect,
which makes the SoC extremely agile. An automatic default
slave in the decoder catches and returns an error response
for accesses to unused regions to prevent deadlocks.

2.4 Off-Chip Interfaces

Robust off-chip IO for control and data movement is essen-
tial for painless test chip bring up and test. Where possible,
reusing the same basic off-chip signal IO arrangement re-
duces risk and development effort. The essentials include an
off-chip clock and reset, UARTs, general purpose IO (GPIO),
real-time clock (RTC) oscillator, diganostic (DIAG) signals,
and any CPU debug interfaces.

When using the on-chip CPU host, printf() calls can
be retargeted to the UART slaves. This is also useful in RTL
simulation, where the CPU can terminate a test at the end
of a program by writing a unique ASCII code to the slave
UART which is used by the test bench to end simulation.

It is often necessary to debug issues during test chip
bring-up, which can be very challenging in silicon due to
lack of visibility. To help increase visibility, we include a
diagnostic (DIAG) pin multiplexer to allow multiple signals
to be observed off-chip (Fig. 2), without requiring a large
number of chip pins. The mux select signal is controlled
by a memory-mapped register. Typical signals to observe
include clocks, resets, power rails, power gate enables, FSM

3. Specifications available online: https://developer.arm.com/archit
ectures/system-architectures/amba

www.arm.com/resources/designstart
https://developer.arm.com/architectures/system-architectures/amba
https://developer.arm.com/architectures/system-architectures/amba

3

states, interrupts etc. Using at least two DIAG pins allows
relative observation, e.g. observe clock and reset at the same
time. The DIAG multiplexers themselves can be trivially im-
plemented and automatically populated with signals using
a VGEN script (Section 3).

2.5 On-Chip Memories

On-chip SRAM memories are included for storing binary
programs and data. ROMs may also be useful, such as for a
boot loader. To be bus accessible, SRAM and ROM macros
require a bus interface, and CHIPKIT includes a suitable
AHB SRAM interface.

Control and status registers (CSRs) are very common
at both the SoC and IP level. In particular, research test
chips tend to include a larger number of CSRs in order
to configure experiments and turn them on or off (so-
called chicken bits). CSRs can quickly become very time-
consuming to implement, document, modify and maintain.
CHIPKIT provides an agile flow to automatically generate
CSRs from a single database using a VGEN Python script,
which we will describe in Section 3. This approach makes it
very convenient to add CSRs as needed during RTL design.

2.6 Peripherals

The SoC includes some basic low-bandwidth peripherals
arranged on a compact APB interconnect. These include
UART slaves, a watchdog timer, and a real-time counter
(RTC). The RTC is especially useful for measuring the run-
time of a given workload while characterizing the chip.

2.7 Clocks, Resets and Power

A simple and robust clock and reset architecture is essential
in research test chips to prevent potential complications in
what is a truely essential aspect of digital electronics. A
single off-chip clock (HCLK) and asynchronous active-low
reset (RESETn) is supplied to the chip from the PCB (Fig 2).
Due to the controlled slew rate of standard IO cells, HCLK is
typically limited to a maximum of a few hundred MHz. Any
faster clocks must be generated on-chip. A straightforward
approach to generating fast clocks on-chip is to used an
open-loop digitally-controlled oscillator (DCO), which can
be implemented using a netlist of digital standard cells,
without any custom hand layout.

Multiple power domains are useful on test chips, to mea-
sure power consumption of individual blocks, or to perform
fine-grained dynamic voltage and frequency scaling (DVFS).
However, power domains add a huge amount of complexity
in both RTL development and (especially) implementation,
which brings risk. For research test chips, we suggest using
a lightweight approach; in particular it is a good idea to
avoid the use of power-gates and level-shifters, which add
a huge amount of complexity in the EDA flow, along with
validation overhead. This approach is usually feasible if the
voltage ranges are sufficiently close and there is no strong
requirement to power-off domains.

2.8 Adding Custom IP Blocks

The SoC subsystem is a foundation upon which research
test chips can be rapidly constructed by adding new IP
blocks [1], [2] or even whole subsystems [3].

The method of interfacing new blocks will largely de-
pend on the complexity of the IP to be added. The simplest
approach is a slave programming model, where a software
driver programs the accelerator with data and control in-
formation, before initiating the accelerator, which executes
the task and returns an interrupt on completion. Higher-
performance blocks will require a more sophisticated inter-
face, such as including a master bus interface on the accel-
erator to allow it to initiate data transfers independently. In
fact, programming models and interfacing of accelerators is
a very active area of research, especially considering things
like data movement cost, virtualization and coherency [6],
[7].

A fast clock domain will allow an accelerator to achieve
higher performance. Note that this introduces an asyn-
chronous or isochronous clock-domain crossing (CDC)
around the bus interface, which will require a CDC bridge
to ensure correct data transfer.

3 AGILE RTL DEVELOPMENT

Research test chip projects are typically severely time con-
strained. Therefore, it is important to use an RTL develop-
ment approach that is 1) efficient, 2) minimizes opportunity
for bugs, and 3) is supported by front-to-back EDA tool
flows. In recent years, there has been a significant research
effort exploring new hardware design languages [8], [9], as
well as high-level synthesis (HLS) from C++/SystemC [10].
Chipyard4 provides an comprehensive SoC design frame-
work in Chisel. In contrast, CHIPKIT focuses on parame-
terized SystemVerilog (SV) for RTL design. Compared to
Chisel, SV is mature, natively supported by EDA tools [11],
and relatively well supported [12]. SV also does not require
an opaque translation step to generate RTL for simulation
and implementation. Which can speed up validation and
implementation, which tend to far exceed the time originally
spent on design.

We have found that the quality of RTL coding in
academia is often poor, especially in comparison to industry
RTL. Poor RTL can lead to long debug cycles and is time
conusming to maintain and update. It can even lead to
silicon bugs. We have found that introducing strict coding
guidelines can effectively solve this problem. Therefore, in
this section, we discuss the components of an agile RTL
development process, that uses standard commercial sim-
ulation and implementation tools.

3.1 SystemVerilog Coding Style

SV is a very large language with many verification-oriented
features that are not relevant to writing synthesizable RTL.
Therefore, we use a strict RTL coding style, which can be
summarized in the following directives:

• Separate logic and registers. Makes RTL easier to parse
and pipelining easier to modify.

4. Available online: https://github.com/ucb-bar/chipyard

https://github.com/ucb-bar/chipyard

4

` i n c l u d e RTL . svh

module my counter (
input l o g i c clock ,
input l o g i c reset n ,

input l o g i c enable ,
output l o g i c [3 1 : 0] count

) ;

// Use ” l o g i c ” type e x c l u s i v e l y , not ” wire ” or ” reg ”
l o g i c [3 1 : 0] count next ;

// Use ”always comb” keyword f o r l o g i c
always comb count next = count + 32 ' d1 ;

// Use a macro to i n f e r r e g i s t e r s
`FF (count next , count , c lock , enable , reset n , ' 0) ;

endmodule // my counter

Fig. 3. SystemVerilog coding guidelines example.
‘

• Use rising-edge registers with active-low async reset.
Simplifies timing constraint development.

• Use the logic type exclusively. Replaces both the
older wire and (very confusing) reg types. Provides
compile-time checking for multiple drivers.

• Use the always_comb keyword for logic. Provides
compile-time checking for unintended latches or regis-
ters.

• Use the always_ff keyword to infer registers. Pro-
vides compile-time checking for unintentional latches.

• Use automatic module instantiation connections (.*).
These significantly reduce the verbosity of connecting
modules and provide additional compile-time check-
ing.

In addition to these guidelines, we also recommend the
strict use of a pre-processor macro for register inference.
This has a number of advantages, including: 1) significant
reduction in lines of code, 2) removes the risk of poor
inference style, 3) enforces use of a rising-edge, async active-
low reset, 4) allows the register inference template to be
changed to suit ASIC or FPGA. A macro is used instead
of a module to reduce simulation overhead. Fig. 3 gives
an example module for a simple counter, following our
guidelines, including the use of the CHIPKIT SV header
(RTL.svh) which includes a register macro (‘FF()).

3.2 Instantiated Library Components

Physical IP such as SRAMs, IO cells, clock oscillators, and
synchronizers need to be instantiated in the RTL. It’s worth
remembering that various versions of these cells may be
required over the lifetime of the IP or full-chip, including
RTL functional models as well as various ASIC and FPGA
libraries. Therefore, it is helpful to wrap instantiated compo-
nents inside a module, which can then be easily switched.
Each set of wrapped component instantiation modules is
stored in a different directory for each library, with the
correct directory included at compile time.

RTL Modules

vgen -update

Human-Editable
CSV Database

vgen -generate

Generated Code

...
my_sig_csr
... Custom

Postfix

Update database
with new

matching signals

Generate code
from database

RTL (*.v)
Instance (*.v)
Docs (*.md)

SW (*.c, *.py)
Tests (*.c, *.py)

...
my_sig_csr
...

Fig. 4. VGEN agile templating flow for the CSR generation example.

3.3 VGEN Code Templating
In chip development, it is common to encounter repetitive
coding tasks. Typical examples include SoC memory-maps,
CSRs, IO signals/pads, clocks and resets and debug signals.
These can be tedius and error-prone and introduce signifi-
cant risk into the tape-out project. The perennial preferred
approach is to write generators. CHIPKIT includes VGEN,
which is a simple Python framework for writing templated
code generators.

As a prototypical example, consider the implementation
of CSRs (Section 2). Whenever a new CSR is added during
the design process, the following need to be updated: 1)
RTL, 2) documentation, 3) C/Python software views, 4)
CSR tests. A typical CSR module with 100 register defini-
tions requires over a thousand lines of RTL to be written,
maintained and validated. Adding a new CSR therefore,
becomes an extremely time-consuming and error-prone pro-
cess. VGEN automates the generation of all this code requir-
ing only 126 lines of code.

Fig. 4 gives an outline of the VGEN flow, which operates
in two stages. The first step is to update a CSR database with
signals from the design, which can be done periodically as
the RTL is developed. The VGEN tool automatically updates
the database (vgen -update) by parsing RTL modules to
find signal names with a matching prefix or postfix that indi-
cates a CSR should be attached to the signal. Any matching
signals are then cross-referenced against the database to see
if they already exist and if any extracted parameters, such
as the bitwidth of the register have changed. If it is a new
addition or a modification, the change will be made in the
database. The database is stored in comma-separated value
(CSV) format, which allows it to be easily viewed and edited
in a spreadsheet program. The CSV database can be version
controlled alongside the RTL.

The second stage of operation is to proceed and gen-
erate templated output code with values from the database
(vgen -generate). For CSRs, an RTL module is generated
with memory-mapped registers as described in the CSV
database, along with code for a module instantiation tem-
plate. Documentation in Markdown format is also gener-
ated, along with C and Python software register definitions
and tests to confirm correct operation of the automatically
generated code.

VGEN is a lightweight Python module. The database
data structure is represented as a list of dictionaries. The
keys for the dictionaries are defined in the header line of
the CSV file, so it is easy to add new attributes by simply
editing the CSV file. CHIPKIT currently includes example
VGEN scripts for generating CSRs and IO pads, and is easily
extensible to other common chip design tasks.

5

4 TEST CHIP VALIDATION

Validation effort typically far outweighs design, and should
thus be a primary consideration. Although this is a huge
topic, the following section presents some general advice
and guidelines to help ensure first time right silicon for
research test chips.

4.1 IP-Level

As a first step, documentation should be considered an es-
sential form of IP validation. Adopting a Markdown format
for documentation allows it to be developed and version
controlled alongside the RTL. As a priority, documentation
should also include a detailed block diagram of the IP.
Another useful first step is to implement an integration shell,
which has the interface signals described in the documenta-
tion. This is very useful for preliminary SoC development. It
should compile without error, but typically does not include
much, if any, functionality. As the IP matures, the integration
shell can be replaced with the full RTL, accompanied by
suitable integration tests.

RTL simulation at various granularities, is the workhorse
of IP development. This typically involves a testbench, a set
of self-checking tests and an associated Makefile or script
to run them. Smaller ad-hoc unit-tests and RTL assertions
should also be developed as new modules are coded.

As the IP approaches the feature-complete milestone,
the timing and power closure process will proceed, and a
greater breadth and depth of validation will help improve
the quality of the design. Simulator coverage tools give a
good indication of the maturity of test suits and which
parts of the IP warrant further attention. Linting tools
provide a static check for RTL coding errors and clock-
domain crossing issues. Other static tools can help with
optimizing clock gate enables and RAM enable efficiency.
Early synthesis trials will help flush out long timing paths
in the design. Power analysis will give an indication of the
power consuming blocks in the design, indicating targets
for further optimization.

4.2 SoC-Level

At the SoC level, many of the same guidelines discussed for
the IP level apply. However, there are also a greater number
of details that tend to make it difficult to achieve high test
coverage. Top of the list for validation scrutiny is everything
required for initial bring up, including clocks, resets, power
sequencing (if any), and basic off-chip communication. It
is essential that these design components work without
fail, and the boot sequence must be carefully validated
before tape-out. The interconnect is another critical area
for validation. A comprehensive, automatically-generated
test is useful to check correct operation of all regions in
the memory map, both valid and unmapped. For large
memories, rather than just testing the first few words, be
sure to toggle all address and data bits to catch accidental
signal truncation in RTL hierarchies, which is common. At
the SoC-level, there is a trade-off between coverage and
run-time, so it may be necessary to optimize big tests to
achieve the best coverage in reasonable run time. Finally, it’s
important to re-run IP-level tests on the SoC to check correct

interface and functionality assumptions hold. The ultimate
goal is to run all the tests in simulation that you intend to
measure on the silicon.

With some additional effort, the accuracy with which
RTL simulation models real circuits can be enhanced. A
good example of this is to setup an option to run simula-
tion regressions with undefined SRAM initial states (“X”
values), which removes dependence on SRAM power-up
states, which will be random on real silicon. Similarly,
clock domain crossings (CDCs) are a big concern in this
regard. Hence, another useful simulation capability is to set
any asynchronous clocks to be randomly jittered in period
relative to each other, which helps to catch CDC paths
with missing synchronizers. If possible, reset synchronizers
should be avoided in favor of individually controllable
resets, which provide greater control for debug.

4.3 Design for Test and Debug
The test and (occasional) debug process will be much
smoother if carefully considered at design time. The IP
should include instrumentation to perform any measure-
ments required to demonstrate and measure the expected
operation. This typically means some kind of performance
counters, usually manipulated using CSRs. For example,
clock cycle or memory access counters provide essential
data to characterize performance. Some kind of infinite loop
or autonomous self-test mode can also be useful to allow
easy average power measurements without including any
data loading phase that is otherwise required to test the
design.

It’s almost inevitable that at some point it will be neces-
sary to debug unexpected behaviour on real silicon. Debug-
ging any design aspect that includes significant complexity
can be very challenging partly due to limited visibility in
real silicon. Therefore, this should be considered during
design time. The DIAG mux approach described in Section 2
is a cheap way to provide visibility from outside the chip,
and should include all clocks, resets and other critical hard-
ware state. Full control of clocks and resets from the SoC by
means of dedicated CSRs is also essential. Finally, it is also
a good general rule to make all SRAMs and register files
in the chip memory mapped. Although this adds additional
complexity, it helps when writing self-checking tests and is
invaluable when debugging SRAM circuit performance.

4.4 FPGA Emulation
Successfully validating a test chip RTL codebase on an
FPGA will drastically increase the chances of success on
ASIC. The process of running the RTL through an FPGA
toolflow can uncover a myriad of functional and timing
issues. As well as helping uncover bugs in the RTL, FPGA
implementation will also help with timing constraint debug.
The FPGA emulation will also be significantly faster than
RTL simulation, which enables much more extensive stress
test regressions. Finally, FPGA emulation is a great chance
to check the correct operation of off-chip interfaces with
the opportunity to run a more convincing end-to-end test,
without any “magic” help from testbenches which can do
things in simulation that are not possible on a real chip,
such as pre-loading SRAM in zero time. The RTL coding

6

guidelines presented in Section 3.1 along with the guidelines
for instantiated library components in Section 3.2 should
make porting the SoC to FPGA straightforward.

4.5 Physical Design

Physical design is the final process before tape-out, and is
obviously a critical focus for full-chip validation, which we
will discuss briefly here from the RTL design perspective.

As soon as the RTL codebase will compile, the physical
design flow can be developed, starting with developing
timing constraints in synthesis. Beyond this, static timing
analysis (STA) reports from the implementation flow pro-
vide the feedback for RTL timing closure. This process is
iterative, as refactoring logic and pipelines to reduce the
gate delays on a path tends to reveal other near-critical paths
which need attention. Therefore, it is helpful to start using
STA early in the design process as the microarchitecture
solidifies. Throughout this process, VGEN code generation
(Section 3.3) can be used to automatically generate repetitive
design-specific scripting, such as IO pad placement scripts,
as the project evolves.

As the design matures, the validation effort in the back-
end will ramp. Logical equivalence check (LEC) tools allow
synthesis and layout netlists to be formally checked against
the RTL. These netlists should also be simulated in the
RTL testbench, using the library vendor Verilog models of
cells and SRAMs. Netlists are simulated in various degrees,
including without annotating delays to cells and wires (zero-
delay mode), through to full annotation with dynamic timing
checks. The former (zero-delay) is relatively easy to setup
and should be included in regressions early in the validation
stage. The latter (full timing annotation) can take some work
to get running. However, annotated netlist simulation (over
PVT corners) is essential to help debug any potential errors
in the timing constraints, which will not be caught by STA
alone.

5 CONCLUSION

Chip tape-outs can be time consuming and error prone.
This paper describes CHIPKIT, an agile reusable frame-
work for rapidly developing robust test chips. The basis
of this framework is a straightforward SoC subsystem that
provides basic IO, communication and both on and off -
chip hosting. Research chips with various experiments can
readily be built on top of this, without having to reinvent the
wheel each time. With the current interest around domain-
specific accelerators, we believe the CHIPKIT framework
will enable more research teams to demonstrate their work
in custom silicon.

6 ACKNOWLEDGEMENTS

This work was supported by the Applications Driving
Architectures (ADA) Research Center, a JUMP Center co-
sponsored by SRC and DARPA.

REFERENCES

[1] P. N. Whatmough, S. K. Lee, D. Brooks, and G. Wei, “DNN
Engine: A 28-nm timing-error tolerant sparse deep neural network
processor for IoT applications,” IEEE Journal of Solid-State Circuits,
vol. 53, pp. 2722–2731, Sep. 2018.

[2] S. K. Lee, P. N. Whatmough, D. Brooks, and G. Wei, “A 16-
nm always-on DNN processor with adaptive clocking and multi-
cycle banked SRAMs,” IEEE Journal of Solid-State Circuits, vol. 54,
pp. 1982–1992, July 2019.

[3] P. N. Whatmough, S. K. Lee, M. Donato, H. Hsueh, S. Xi, U. Gupta,
L. Pentecost, G. G. Ko, D. Brooks, and G. Wei, “A 16nm 25mm2

SoC with a 54.5x flexibility-efficiency range from dual-core Arm
Cortex-A53 to eFPGA and cache-coherent accelerators,” in 2019
Symposium on VLSI Circuits, pp. C34–C35, June 2019.

[4] G. G. Ko, Y. Chai, M. Donato, P. N. Whatmough, T. Tambe, R. A.
Rutenbar, D. Brooks, and G.-Y. Wei, “A 3mm2 programmable
bayesian inference accelerator for unsupervised machine percep-
tion using parallel gibbs sampling in 16nm,” in 2020 Symposium on
VLSI Circuits, Accepted 2020.

[5] L. P. Carloni, “The case for Embedded Scalable Platforms,” in 2016
53nd ACM/EDAC/IEEE Design Automation Conference (DAC), pp. 1–
6, June 2016.

[6] B. Venu, “Enabling Hardware Accelerator and SoC Design Space
Exploration.” https://community.arm.com/developer/research
/b/articles/posts/enabling-hardware-accelerator-and-soc-desi
gn-space-exploration.

[7] S. L. Xi, Y. Yao, K. Bhardwaj, P. Whatmough, G.-Y. Wei, and
D. Brooks, “SMAUG: End-to-end full-stack simulation infrastruc-
ture for deep learning workloads,” 2019.

[8] J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman, R. Avižienis,
J. Wawrzynek, and K. Asanović, “Chisel: Constructing hardware
in a Scala embedded language,” in DAC Design Automation Con-
ference 2012, pp. 1212–1221, June 2012.

[9] D. Lockhart, G. Zibrat, and C. Batten, “PyMTL: A unified frame-
work for vertically integrated computer architecture research,” in
2014 47th Annual IEEE/ACM International Symposium on Microar-
chitecture, pp. 280–292, Dec 2014.

[10] B. Khailany, E. Krimer, R. Venkatesan, J. Clemons, J. S. Emer,
M. Fojtik, A. Klinefelter, M. Pellauer, N. Pinckney, Y. S. Shao,
S. Srinath, C. Torng, S. L. Xi, Y. Zhang, and B. Zimmer, “Invited: A
modular digital VLSI flow for high-productivity SoC design,” in
2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC),
pp. 1–6, June 2018.

[11] S. Sutherland and D. Mills, “Synthesizing SystemVerilog: Busting
the myth that SystemVerilog is only for verification,” in Synopsys
Users Group Conference, 2013.

[12] M. B. Taylor, “Basejump STL: SystemVerilog needs a standard tem-
plate library for hardware design,” in 2018 55th ACM/ESDA/IEEE
Design Automation Conference (DAC), pp. 1–6, June 2018.

Paul N. Whatmough leads research on hardware for machine learn-
ing at Arm Research Boston, and is an Associate at Harvard Uni-
versity. His research interests include efficient algorithms, computer
architecture, and circuits. Whatmough received a PhD in electrical
engineering from University College London, U.K. Contact him at
paul.whatmough@arm.com.

Marco Donato is a Research Associate at Harvard University. His
research interests include novel design methodologies targeting energy-
efficient, reliable circuits and architectures for emerging computing
paradigms. Donato received a PhD in electrical engineering from Brown
University. Contact him at mdonato@seas.harvard.edu.

Glenn G. Ko is a postdoctoral researcher at Harvard University. His
research interests include machine learning, algorithm-hardware co-
design and scalable accelerator architectures on the cloud and edge.
Ko received a PhD in electrical and computer engineering from the
University of Illinois at Urbana-Champaign and worked on Samsung
Exynos SoCs prior to that. Contact him at gko@seas.harvard.edu.

Sae Kyu Lee is a Senior Hardware Engineer at IBM T.J Watson Re-
search Center. His research interests include circuits, architecture and
design methodologies for energy-efficient accelerators. Lee received a
PhD in electrical engineering from Harvard University. Contact him at
saekyu.lee@ibm.com.

https://community.arm.com/developer/research/b/articles/posts/enabling-hardware-accelerator-and-soc-design-space-exploration
https://community.arm.com/developer/research/b/articles/posts/enabling-hardware-accelerator-and-soc-design-space-exploration
https://community.arm.com/developer/research/b/articles/posts/enabling-hardware-accelerator-and-soc-design-space-exploration

7

David Brooks is the Haley Family Professor of Computer Science
at Harvard University. His research interests include architectural and
software approaches to address power, thermal, and reliability issues for
embedded and high-performance computing systems. Brooks received
a PhD in electrical engineering from Princeton University. Contact him
at dbrooks@seas.harvard.edu.

Gu-Yeon Wei is a Gordon McKay Professor of Electrical Engineering
and Computer Science at Harvard University. His research interests
include mixed-signal integrated circuits, computer architecture, and run-
time software, looking for cross-layer opportunities to develop energy-
efficient systems. Wei received a PhD in electrical engineering from
Stanford University. Contact him at guyeon@seas.harvard.edu.

	Introduction
	Reusable SoC Subsystem
	CPU Host
	UART Host
	Interconnect
	Off-Chip Interfaces
	On-Chip Memories
	Peripherals
	Clocks, Resets and Power
	Adding Custom IP Blocks

	Agile RTL Development
	SystemVerilog Coding Style
	Instantiated Library Components
	VGEN Code Templating

	Test Chip Validation
	IP-Level
	SoC-Level
	Design for Test and Debug
	FPGA Emulation
	Physical Design

	Conclusion
	Acknowledgements
	References
	Biographies
	Paul N. Whatmough
	Marco Donato
	Glenn G. Ko
	Sae Kyu Lee
	David Brooks
	Gu-Yeon Wei

