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Abstract—The combination of specialized hardware and embedded non-volatile memories (eNVM) holds promise for energy-efficient
DNN inference at the edge. However, integrating DNN hardware accelerators with eNVMs still presents several challenges. Multi-level
programming is desirable for achieving maximal storage density on chip, but the stochastic nature of eNVM writes makes them prone
to errors and further increases the write energy and latency. We present MEMTI, a memory architecture that leverages a multi-task
learning technique for maximal reuse of DNN parameters across multiple visual tasks. We show that by retraining and updating only
10% of all DNN parameters, we can achieve efficient model adaptation across a variety of visual inference tasks. The system
performance is evaluated by integrating the memory with the open-source NVIDIA Deep Learning Architecture (NVDLA).

Index Terms—DNN accelerators, edge computing, multi-task learning, non-volatile memories
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1 INTRODUCTION

IN recent years, deep neural networks (DNNs) have be-
come essential to tasks across application domains, in-

cluding image recognition and detection, language process-
ing, and translation. This increase in popularity, together
with the continued proliferation of low-power embedded
devices, has motivated the design of DNN-specific hard-
ware accelerators [1]. While many energy-efficient DNN
hardware implementations have been proposed, a major
challenge remains: the large memory requirement to store
DNN parameters. Although entirely on-chip storage would
guarantee better inference performance, limited on-chip
SRAM capacity inevitably leads to reliance on costly off-
chip memory accesses to DRAM.

Embedded non-volatile memories (eNVMs) provide
higher density than SRAM and can ameliorate the need
for power-hungry DRAM storage. However, the benefits
of eNVMs come at the cost of larger write energy and
write latency. Moreover, limited eNVM write endurance is
an obstacle to the adoption of certain technologies if DNN
parameter values require frequent updates. For instance,
embedded devices for robotics or augmented reality appli-
cations often required a combination of multiple inference
tasks, including image classification, object detection, and
action recognition. These cases highlight the need for scal-
able solutions that can flexibly accommodate DNN parame-
ters for multiple tasks.

We present a DNN model and memory co-design solu-
tion that leverages a machine learning technique described
in Section 2 to reduce eNVM writes, while enabling systems
to efficiently perform multiple inference tasks. Maximizing
the reuse of the learned parameters across different DNN-
dependent vision tasks without re-training enforces the as-
sumption of infrequent writes: parameters shared by multi-
ple tasks are trained and written only once, and therefore are
highly suitable for eNVM storage; in contrast, the remaining

parameters can be re-trained to accommodate new inference
tasks, and stored in SRAM. In addition to the storage density
benefits, we evaluate how the process of re-training specific
parameters can be used to recover from accuracy loss due
to the adoption of denser, fault-prone multi-level eNVM
storage. This paper provides the following contributions:

• Leverage residual adapters to optimize parameter
storage in dense eNVMs;

• Evaluate application accuracy with quantization and
MLC RRAM faults when a majority of DNN param-
eters is shared across inference tasks;

• Quantify the system-level performance and energy
advantages of a multi-task-enabled deep learning
architecture (NVDLA) integrated with optimized
eNVM solutions.

2 DNN AND MEMORY CO-DESIGN

Generalizing deep learning architectures to enable different
application domains and more varied inference tasks serves
as a way of supporting more powerful and versatile models.
For example, [2] combines several building blocks for trans-
lation, speech, and visual inference that can be trained on
all desired tasks simultaneously or on each task separately.
In either case, however, introducing new inference tasks
would require updating the entire set of model parameters.
Other works have leveraged the concept of transfer learning
to improve the performance of a single DNN on different
datasets. These approaches are based on the observation
that many visual inference tasks share low-level features,
such as edge and shape detection, in the front-end layers,
and become more task-specific as the computation moves
closer to the classification layers. However, in order to
preserve inference accuracy, transfer learning approaches
either share only a limited number of front-end layers or



2

TABLE 1
Summary of dataset characteristics, and maximum training accuracy
for the model trained entirely from scratch on each dataset or using

residual adapters on a pre-trained network. Pre-trained shared
parameters on ImageNet, with 67.65% accuracy.

Dataset
cifar100 aircraft daimlerpedcls gtsrb ucf101

# images 50K 7K 30K 40K 9K
# classes 100 100 2 43 101

Full model 72.78% 40.98% 99.88% 99.97% 73.77%
Only adapters 79.61% 43.8% 99.51% 99.94% 73.16%

Parameters overhead 10.4% 10.4% 10.1% 10.2% 10.4%
Training speed-up 4× 2× 1.35× 3.23× 4.74×

fine-tune parameters by re-training the transferred features
from one inference task to another [3]. A recent proposal
applies transfer learning to create a synthesizable fixed-
parameter feature extractor [4]. However, hard-wiring the
feature extractor in logic prevents from fine-tuning the pa-
rameters, limiting the amount of cross-task weight sharing.

While all these techniques enable a single DNN model to
perform different inference tasks, they still require updating
a considerable portion of parameters to achieve maximum
adaptation. We pursue a specific transfer learning technique
for which the learned parameters can be generalized across
multiple vision inference tasks by maximizing DNN pa-
rameter reuse and enabling efficient inference on embed-
ded devices. The high degree of DNN parameters reuse
reduces memory traffic requirements, which makes non-
volatile memories a compelling solution for retaining shared
parameters on-chip without incurring costs associated with
frequent memory writes.

2.1 Multi-task learning model
Our design is based on the DNN architecture presented
in [5], which uses residual adapter modules as a way to
parameterize a generic ResNet network. These parametric
modules are themselves residual blocks which use 1×1
filters and skip connection. In this setting, the number
of domain-specific parameters, which comprises adapter
filters, batch normalization, and fully-connected classifier
parameters, can be reduced to roughly 10% of the total
model size. For our experiments, we integrate the residual
adapter modules in a ResNet26 network.

The baseline network is pre-trained on ImageNet, which
is standard practice in transfer learning and model fine-
tuning techniques. The pre-trained version for ImageNet
achieves top-1 accuracy of 67.65%. The ResNet26 weight
parameters obtained during pre-training are the backbone
of this multi-task inference system as they are reused for
running inference on any additional visual task. The degree
of adaptation is tested against five datasets which have been
selected to be representative of popular image processing
tasks including classification (cifar100, aircraft), object de-
tection (German Traffic Signs, Daimler pedestrian classifica-
tion), and action recognition (UCF101 Dynamic Images).

Table 1 summarizes the best accuracy in the case of
the model being either trained entirely from scratch or
only for the task-specific parameters. As anticipated, for
all datasets, the adapters overhead is around 10%. The

accuracy of the network trained using adapters is always
better than or comparable to training the entire network
independently for each dataset. In addition, we observe that
the modified model converges to the best accuracy in fewer
training epochs, which results in training speed-up reported
in Table 1.

2.2 Non-volatile memory technologies
The landscape of non-volatile memories includes a wide
range of emerging technologies [6]. These memories are gen-
erally characterized by high energy efficiency and high stor-
age density, which can be further increased by programming
multiple levels in a single cell. We label this storage solution
as multi-level cell (MLC) storage, in contrast to single-level
cell (SLC) storage, for which each eNVM cell stores a single
binary value. In this work, we focus on a specific eNVM
implementation, namely RRAM. Various implementations
such as phase-change memories (PCM), embedded Flash
(eFlash), or ferroelectric memories (FeRAM) can also be
used for MLC storage. On the other hand, STT magnetic
memories (STT-MRAM), while having the best write and
read performance [6], are not a suitable candidate because
compelling MLC implementations with comparable density
have not been demonstrated to date.

There are alternative implementations with varying ad-
vantages and limitations. For example, the storage require-
ments for the DNN architecture we are leveraging could be
met by read-only memories (ROM) as well. ROMs ensure
the best density for storing the shared parameters, how-
ever, they also require configuring the network at fabrica-
tion time, which makes the design less scalable and cost-
effective. One-time programmable (OTP) memories such as
anti-fuse, while being amenable to post-fabrication config-
uration, are far less dense than other memory solutions,
even when compared to SRAM [7]. Previous work has
investigated how threshold voltage shifts induced by hot-
carrier injection in standard high-k transistors could be
used as non-volatile memories [8]. Moreover, recent work
has shown how eNVMs implemented with this approach
can be used for on-chip MLC weight storage for DNN
accelerators [9]. The same behavior has been demonstrated
on a variety of technologies, including bulk, silicon-on-
insulator, and FinFET devices. A major limitation for these
eNVMs is the long write latency, which falls in the range of
milliseconds.

2.3 MEMTI: Memory system for Energy-efficient Multi-
Task Inference
In order to complement the properties of residual adapter
networks and dense MLC RRAM storage, we propose
MEMTI, a Memory system for Efficient Multi-Task Infer-
ence. A large fraction of the parameters in a residual adapter
network is shared across multiple applications, and can be
efficiently stored in MLC RRAM, while application-specific
parameters can be stored in SRAM. By partitioning on-chip
memory area between RRAM and SRAM, we achieve the
best trade-off between storage density for the shared pa-
rameters and fast and energy-efficient updates for the task-
specific parameters (SRAM). Off-chip DRAM stores multi-
ple sets of task-specific parameters. The resulting memory
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Fig. 1. NVDLA system diagram, with additional optional interface to
multi-level-cell RRAM for on-chip weight storage.

hierarchy takes advantage of RRAM non-volatility for inter-
mittent operation by powering down the system between
inferences. In this scenario, only a small portion of the model
parameters must be written to SRAM during power up or
task switching. Moreover, storing task-specific parameters
in more robust memory allows us to mask MLC RRAM
faults via retraining, as shown in Section 4.

3 EVALUATION FRAMEWORK

To evaluate the proposed memory architecture, we quantify
the impact of RRAM fault characteristics and MLC encod-
ing on inference accuracy, memory architecture and array
properties, and system-level performance. The fault model
is derived from previous work integrating eNVM device
and circuit-level fault characteristics with DNNs evaluation
frameworks to allow for extensive memory and DNN co-
design space exploration [9]. We model MLC RRAM faults
based on stochastic level distribution which arise from the
random nature of memristors programming. When multiple
levels are programmed in a single RRAM cell, the distri-
butions overlap can be used to extrapolate the read fault
probabilities for each level.

The resulting error map is then integrated in a DNN
evaluation framework to simulate the impact MLC RRAM
faults on inference accuracy. The level distributions are ex-
trapolated from measured MLC RRAM characteristics [10].
We use a version of the residual adapter architecture im-
plemented in PyTorch to evaluate the DNN accuracy under
different storage schemes. The existing implementation is
modified by adding transform functions that manipulate the
weight parameters value according to different multi-level
encoding and compression techniques.

Based on the MLC RRAM fault probabilities, we sample
the value of the stored weight matrix based on a predefined
multi-level encoding configuration to evaluate the impact
on the model accuracy. In addition, we improve the fault
model by including the effects of the sensing circuitry on
the read error probability.

The corresponding framework is used to drive the de-
sign towards a solution that would minimize the on-chip
memory footprint without increasing the inference error.
After identifying the best MLC encoding without loss in
accuracy, we perform a memory design space exploration
using a modified version of NVSim [11]. Once again, we
consider the contribution of sense amplifiers to area, energy
and performance of the memory array. Reading back the
stored value requires converting the programmed analog
level to a binary word, and can be done using parallel sens-
ing or sequential sensing schemes. Parallel sensing is similar
to using a flash ADC, and requires each bitline to have dedi-
cated sense amplifiers for each possible stored level. Sequen-
tial sensing uses a single sense amplifier and recovers the
stored binary word iteratively for each bit. While sequential
sensing reduces the overall number of sense amplifiers,
we noticed that implementing parallel sensing with small
sense amplifiers does not incur an excessive area penalty.
The impact of off-chip memory accesses is quantified us-
ing a model of LPDDR4 DRAM. Power and performance
estimates are derived assuming a power consumption of
200mW at a 1GHz operating frequency. Finally, we inte-
grate the resulting memory hierarchy with a proven CNN
accelerator architecture developed by NVIDIA (NVDLA),
which, combined with NVSim results and DRAM estimates,
allows us to evaluate the system energy and performance
for different application scenarios.

4 MODEL COMPRESSION AND TRAINING TECH-
NIQUES

In this Section, we explore the trade-offs between different
storage techniques and model accuracy. In particular, we
look at the combined effect of circuit-level optimization
(RRAM MLC encoding) and reducing DNN model size
(quantization and pruning). Quantizing the whole model
using a fixed point encoding with 2 bits for sign and integer
and 6 bits for the fractional part achieves 80.3% accuracy
on cifar100. We highlight some key insights by considering
three examples. For all three cases, we take advantage of
the residual adapter ability to compensate for accuracy
loss associated with the faults in MLC RRAM and due
to reduced DNN weight precision. We demonstrate that
by fine-tuning only the task-specific parameters, the DNN
learns variability-induced errors affecting the parameters
stored in RRAM, and this helps maintain inference accuracy
closer to the baseline value. The benefit of this approach is
that the impact of faults in the non-volatile memory can
be minimized without introducing any additional circuit
overhead.

Our first example shows the implications of storing both
shared and task-specific parameters on 3 bits/cell MLC
RRAM. For 8-bit weights, we can reduce the effective fault
rate for the sign and integer values by spacing the levels as
described by the non-uniform encoding technique presented
in [9]. In addition, we also prune the shared parameters,
which has also been shown to help mask MLC errors in non-
volatile memories [9]. We observe that storing all weights
for cifar100 in MLC RRAM results in an average accuracy
over 100 trials of 28.34%, and retraining the residual pa-
rameters raises the accuracy to just 56.98%. These results
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Fig. 2. Accuracy for different datasets when the weights are stored using
MEMTI. The results before and after task-specific parameters retraining
are compared to the baseline model accuracy for the compressed, error-
free model. Each bar shows the mean accuracy and standard deviation
over 100 random trials.

highlight the importance of protecting the value of the task-
specific parameters from errors. Several approaches can be
used to mitigate the impact of MLC faults on accuracy.
Error correction codes (ECC) are an established solution for
improving the reliability of fault-prone MLC eNVMs and
they can be adopted with reasonable overheads in terms of
additional circuitry [12]. Alternatively, the memory density
can be traded off with resiliency to faults by adopting SLC
RRAM for storing the task specific parameters. Neither
solution solves the issues related to eNVM write endurance,
and these options represent possible extensions to working
with residual adapters for multi-task scenarios, rather than
concrete alternatives.

For these reasons, MEMTI proposes a hybrid memory
architecture in which shared and task-specific parameters
are split between RRAM and SRAM. Starting from the same
quantization and MLC configuration as in the previous
example, we show an average accuracy of 79.72% after
retraining the residual parameters if residual parameters are
stored securely in SRAM. In fact, this retraining strategy
can completely mask the impact of storing weights in MLC
RRAM; even for the worst case accuracy degradation when
storing shared parameters in RRAM (36.91%), re-training
and securely storing the residual adapter parameters results
in an accuracy of 79.24%, consistent with baseline accuracy.
Motivated by this result, we propose leveraging this tech-
nique to achieve even more aggressively dense storage by
reducing the number of bits for the shared weights to 6.
This configuration uses just 2 RRAM cells per weight. In
this case, training the residual adapters results in an average
accuracy of 79.05%. The worst-case accuracy before training
the adapters is 2.04%, and can be recovered up to 77.57%
after training. Figure 2 shows the same trend in terms of the
nominal baseline accuracy, accuracy before re-training, and
accuracy after retraining of the task-specific parameters for
all the different datasets introduced in Section 2 .

5 SYSTEM-LEVEL CHARACTERIZATION

As shown in Figure 1, the baseline NVDLA system com-
prises a convolutional core with 1024 MAC units fed by
a convolutional buffer and supplemented by several addi-
tional computational units for pooling and data transforma-

tion operations. NVDLA also supports a memory interface
block and DMA that fetches model weights per layer from
off-chip DRAM and leverages on-chip SRAM (2MB) to
buffer inputs and intermediate results of computation be-
tween layers in the DNN. We flexibly integrate MEMTI with
the NVDLA performance model as an additional memory
interface to leverage for model weights, either in addition
to or in place of fetching parameters from off-chip DRAM.

For a competitive multi-task inference application, we
evaluate the performance, energy, and area for the NVDLA
system when executing three inferences per input frame
using three representative visual tasks, namely image clas-
sification (cifar100), object detection (gtsrb), and action
recognition (UCF101). This series of tasks computed per
input frame would be appropriate, for example, for an
autonomous vehicle or a drone processing sensory data to
understand and interact with the surrounding environment.
For this application, we set the target operating frequency to
30 frames per second (FPS), or 90 inference tasks per second,
which satisfies a breadth of applications. Both NVSim and
NVDLA results are extrapolated for a system manufactured
using a 22nm technology node.

DRAM-based design: As a baseline case we assume that
the accelerator is continuously processing input frames and
fetching both shared and task-specific parameters from off-
chip DRAM for each layer’s computation. This DRAM-only,
always-on operation consumes a total power of 493mW
and a peak performance of 749FPS. The estimated power
includes datapath, DRAM refresh, and on-chip SRAM leak-
age. At this stage, the on-chip SRAM is exclusively used
for storing the input features and intermediate values. We
compute the energy per frame at peak performance to be
1.17mJ.

Provisioning for on-chip SRAM: We first show the case in
which we allocate enough on-chip SRAM to store the entire
set of parameters for a single task. For a system designed
to run a single inference task, having the option of storing
all the network parameters on chip allows to reduce the
memory access energy by 40×. This result demonstrates
the strong impact of off-chip memory access on the entire
system energy. These high energy savings are however im-
practical to realize with SRAM since for a 22nm technology
node, we estimate a total area of 6.55mm2. Moreover, when
we consider the full system energy in the multi-task scenario
described above, the periodic parameter updates and SRAM
leakage power reduce the energy savings to 0.64×.

Improving storage density with eNVM: As a first step
towards reducing both power consumption and memory
footprint we consider storing the weights on chip using
MLC RRAM. Without applying any DNN-level optimiza-
tion, a multi-task operation would still require updating all
the model parameters stored in RRAM when switching to
different inference tasks. While this type of operation has
a clear downside dictated by the RRAM write endurance,
our system level evaluation exposes other limitations. Al-
though the overall leakage power and on-chip memory area
can be reduced to 298mW and 0.347mm2 respectively, the
energy per inference increases to 14.58mJ. This is caused
by the combined effect of RRAM write energy and latency.
These examples highlight the need for a solution capable
of balancing on-chip memory density and write perfor-
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Fig. 3. Energy vs FPS for the different design configurations normalized
to the DRAM baseline. The power savings of the RRAM-based design
for higher frame rates is exacerbated by the frequent RRAM writes,
making the design less efficient than the DRAM-based baseline. On the
other hand, the energy per inference for MEMTI and RRAM adapters is
strictly better than the baseline.

mance. MEMTI for intermittent operation: MEMTI removes
the memory write costs by replacing the RRAM portion
storing the task-specific parameters with SRAM. This is
possible thanks to the adoption of residual adapters in the
DNN network. For the resulting design, the total system
power is 362mW and the energy per inference is 1.56mJ,
which is comparable with the baseline result. Isolating the
costs associated with weight storage emphasizes the benefits
introduced by MEMTI: power consumption is reduced by
3.9×, with an area overhead of 1.16mm2. The resulting
peak performance is 429FPS, well above the application
requirements. Intermittent operation is where MEMTI truly
stands out by taking advantage of the non-volatility of
RRAM. In this scenario, we fix the operation at 30FPS and
power down the system between frames, which reduces the
energy per inference by 10.65×.

A RRAM-based specialized design: Alternatively, we con-
sider the case specifically tailored for the three chosen tasks.
Using residual adapters still reduces the weights storage
requirements by a factor of 2.3×. However, based on the
results from Section 4, we use SLC RRAM to store the
task-specific parameters and preserve inference accuracy.
Therefore, we store the entire set of parameters in MLC
and SLC RRAM. Removing the need for additional SRAM
reduces the overall power to 343mW, and the area to 1mm2.
Allocating enough memory for storing all the parameters on
chip increases the energy savings compared to the baseline
by 13.6×, making this design the most area and energy
efficient. Nonetheless, MEMTI maintains the advantage in
terms of flexibility and robustness to RRAM errors thanks to
ease of reprogrammability for the task-specific parameters,
for which the memory capacity is determined only by the
network structure and therefore is independent from the
breadth of tasks considered in a specific application.

Figure 3 shows the relationship between FPS and energy
per inference normalized to the DRAM case. The all SRAM
and all RRAM configurations are heavily penalized by the
inability of efficiently implement a multi-task inference sys-
tem. On the other hand, a co-design of the memory and
DNN model using residual adapters shows much higher en-
ergy savings compared to the baseline. Table 2 summarizes
the results at 30 FPS for the different configuration cases.

TABLE 2
Summary of power, performance and area for the four design

configurations considered in this work. The energy savings are
normalized to the all DRAM configuration for the intermittent multi-task
operation over three tasks running at 30 FPS. On-chip RRAM shows

the physical memory capacity (i.e. number of cells).

Power Max FPS WMem Area Saved On-chip On-chip
[mW] [mm2] energy SRAM RRAM

all DRAM 493 749 – 1× 2MB –
all SRAM 634 485 6.55 0.64× 8.5MB –
all RRAM 298 47 0.347 1.62× 2MB 2.2MB
MEMTI 344 429 1.16 10.65× 2.7MB 2MB

RRAM adapters 301 396 1 13.6× 2MB 4MB

6 CONCLUSION

With the increasing adoption of DNN hardware accelera-
tors for edge devices, there is a growing need for scalable
design approaches that provide flexible and cost-effective
implementations. In evaluating the performance of different
memory solutions integrated with a DNN hardware accel-
erator, we show that technological improvements alone do
not always lead to the most optimized design, especially in
the context of multi-task inference. A co-design approach
that leverages the properties of emerging memory technolo-
gies and deep neural network models allows to achieve
both energy efficiency and flexibility. With this in mind,
we present MEMTI as a methodology for enabling energy-
efficient multi-task inference on edge devices, while reduc-
ing the cost of non-volatile memory writes. In addition,
training the task-specific parameters based on the memory
characteristics allows recovery of accuracy lost due to fault-
prone eNVM storage.
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