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ABSTRACT 

Motivation: Exploring evolution on proteins has always been an 

attractive opportunity but also a harsh challenge for scientists. Cap-

turing the evolutionary information will help various computational 

biology tasks, such as structural prediction and functional prediction. 

By making use of both structural information and sequence infor-

mation on proteins, we try to extract and quantitate useful evolution-

ary information, further improving the remote homology detection as 

our final purpose. 

Results: Preliminary result is presented on superfamily Cyto-

chrome_c following the SCOP hierarchy. We demonstrate the criti-

cal demand for positional preference in the homology detection rou-

tine using simulated evolution. In addition, even though we have not 

seen quite positive tendency that relationship between sequence 

changes and structural variations imposes direct effect performance 

combining simulated evolution, it is expected that with complete 

experimental results accomplished and larger scale of data experi-

mented on, we would observe boosted consequence from the corre-

lational analysis. The most important of all, this possible conclusion 

will give a revolutionary understanding in the different effect of ami-

no acid mutations among protein primary structures and protein 

tertiary structures. 

1 INTRODUCTION  

A lot of work has been done around how to dig up the principles of 

mutation over protein amino acids (Socolich et al, 2005; Sasi-

dharan and Chothia, 2007; Sadowski and Jones, 2009; Kumar and 

Cowen, 2009, 2010). In general, the information embedded among 

sequences and structures gives the constraints of mutability in 

terms of the location concerned with amino acids close to this loca-

tion. A mutation will not corrupt the tertiary structures, nor will 

disrupt protein’s functions. Matrices such as BLOSUM (Eddy, 

2004) or PAM (Dayhoff, 1978) capturing the statistical pairwise 

patterns are commonly used as the pairwise substitution score 

measurement. More specifically, on beta-structural motifs residues 

that are hydrogen bonded in beta-sheets conserve high pairwise 

consistency(Kumar and Cowen 2010); on alpha-helical proteins, 

amino acids among paired coils are greatly correlated with their 

close neighbors(Berger, et al, 1995; McDonnell, et al, 2006). These 

principles can be used to capture the past mutational behavior and 

researchers attempted to dig them up through various methods 

such as Statistical Coupling Analysis(SCA), and probability ap-

proximation through co-occurrence frequencies. 
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A simple but excellent method (Sadowski and Jones, 2009) is 

brought forward so as to calculate the structural importance of 

amino acid positions by measuring the correlation between global 

structural change and the degree of mutational difference at a cer-

tain position within a multiple alignment. As is known widely, 

structure is more conserved than sequence. Therefore, the correla-

tion between these two types of information should imply the gap 

between sequence mutations and structural conservations. In par-

ticularly, the less correlation a certain position reveals, the more 

likely this position has gone through mutations. 

 

Correlational analysis can be easily embedded into this framework 

after constructing the feature vectors representing structural chang-

es and vectors for local sequence changes. Global structural feature 

vectors can be simply obtained through RMSD and local sequence 

feature vectors can be calculated via pairwise score from substitu-

tion matrices, such as BLOSUM and PAM. Hereafter, correlational 

co-efficient is calculated between these two types of vectors at 

each position. Further, the achieved correlational values will indi-

cate the preference of mutation and thus facilitate the simulated 

evolution models used in remote homology detection and various 

computational biology tasks. 

 

Consider the following situation on a protein where the primary 

structure has gone through several mutations on some positions, 

however, its tertiary structure did not vary but conserved mostly 

the original 3-dimensional structure. Therefore, those mutated 

positions should have lower consistency with the global structure 

than those without mutations. One measurement that can be calcu-

lated to capture this consistency is to compare the sequence chang-

es to the global structure variations among proteins over evolu-

tions. It is expected that low correlation should reveal low con-

sistency, and thus high likelihood of mutations. Motivated by this 

intuition, our work attempts to empirically verify the usage of cor-

relational analysis in approximating the positional preference for 

mutation. Preliminary result is presented and brings both demand 

and hope to light. 

2 METHODS 

In order to quantitate the evolutionary information, we employed a 

method based on the analysis of correlation between evolutionary 

conservation at a sequence position and change to global tertiary 

structure (Sadowski and Jones, 2009). We made the conjecture that 
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the lower the evolutionary conservation there is at a certain posi-

tion, the higher the likelihood that the position has gone through 

mutations within remote homology space. Then motivated by sim-

ulated evolution model (Kumar and Cowen, 2009), we can apply 

this mutational preference into the prior knowledge as input to the 

simulated evolution model, resulting in more accurate and appro-

priate artificial sequences in the training stage for profile hidden 

Markov model. In particular, we are exploring the probability that 

a certain position should be mutated within simulated evolution 

model; this probability should be approximated as, or at least posi-

tively correlated with, the correlation between sequence variation 

and structural changes within the homology space. Therefore, by 

quantitatively calculating this correlation, we get the approximate 

mutation probability so as to facilitate the simulated evolution 

model. 

 

Particularly, we quantitate the correlation between sequence in-

formation and structural information by using correlational analy-

sis on each column among multiple structural/sequence alignment. 

Then we use this correlation as the positional preference for muta-

tion.  

 

Given N proteins within the same homology space, we conduct 

multiple structure alignment and obtain both structural alignment 

and sequence alignment with Q columns. For each column, we 

calculate the representation though difference between M pairs of 

proteins, where M equals (N-1)*N/2. Lastly we reach the positional 

preference for mutation.  

 

More specifically, to generate the feature vectors representing 

global structural information for the alignment and each position’s 

local sequence information for the N columns, the pipeline (Figure 

1) is followed: 

(1) The input to positional preference framework is a set of 

protein structural data within the same homology space. 

(2) The proteins are structurally aligned using multiple struc-

tural alignment program, resulting in both multiple se-

quence alignment and multiple structure alignment. 

(3) For each pair of proteins, pairwise RMSD (root-mean-

square deviation) is computed on the superposition within 

the whole structural alignment (Figure 2). 

(4) For each column of the sequence alignment, the pairwise 

sequence scores are calculated using the substitution matrix 

BLOSUM62. 

(5) On each position represented by column, Pearson correla-

tion co-efficient(PCC) can be calculated with respect to the 

pairwise RMSD, the measurement of global structural 

changes, and pairwise sequence score, the measurement of 

local sequence changes. Output PCCs on each column as 

the positional preference for residue mutation. 
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Fig. 1. Framework for Calculating Positional Preference. 

 

 

Fig. 2. Sequence Score Vector for Each Column Representing Sequence 
Changes 

2.1 Datasets 
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Due to the final usage in remote homology detection on alpha-

helical proteins, we will conduct the positional preference analysis 

on all training groups of superfamilies. In particular, after removal 

of redundancy among proteins in SCOP(Lo Conto et al., 2002), 

superfamilies that have at least three families consisting of at least 

5 sequences are chosen as the experimental data. Among each 

superfamily, leave-one-family-out cross validation is conduct, in 

which the positional preference analysis for each training group of 

proteins is carried out. In details, on each round one family of pro-

teins is extracted and reserved as the test data while the other fami-

lies of proteins are used to train through multiple structure align-

ment, mutational analysis, simulated evolution, and profile hidden 

Markov modeling. Finally the reserved family in advance, together 

with equally sampled outliers are used to run the homology detec-

tion test.  

2.2 Multiple Structural Alignment 

In the positional preference framework, the module of multiple 

structure alignment is required and the required condition is that: 

the aligner should be able to give both structural alignment and 

sequence alignment. Above all, high evolutionary conservation and 

structural consistency are demanded. Therefore we employed one 

of the common used programs, MATT (Menke et al., 2008). 

2.3 Global Structural Variations and Local Sequence 

Changes 

Pairwise structural similarity scores are calculated using the 

RMSD on superpositions based on equaivalences taken from the 

multiple alignments; a fully pairwise RMSD vector for all pairs of 

proteins is thus used to represent the global structural variations.  

    (                 )  
∑      (                ) 
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where Eucli(*,*) is the Euclidean distance operator, atom1,i and 

atom2,i are the two Ca atoms at ith equivalent position in the align-

ment, U is the total number of columns without gaps for the two 

proteins in the alignment.  This score is used as one entry of the 

global structural vector with all pairs of RMSD. 

 

As for the sequence changes on each position, every residue pair in 

the alignment is scored using the substitution matrix BLOSUM62. 

Any pairs with gaps are scored as zero. 

2.4 Correlational Analysis 

The Pearson correlational coefficient (PCC) is calculated between 

global structural pairwise similarity score and each pairwise se-

quence score. The PCC at pth column is computed as follows: 
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where Strui is the RMSD on ith pair of proteins, mStru is the mean 

over all pairs, SeqScorep,i is the sequence score at pth column on ith 

pair, and mSeqScorep is the mean at pth column. 

 

Therefore, for each column we can get a PCC, used as the posi-

tional preference for mutation. Specifically, if we obtain |PCC| 

with value close enough to 1, we may be pretty sure that since this 

position is totally consistent with the tertiary structure and thus 

very unlikely there has been some special mutations at this posi-

tion, without considering the case where highly consistent muta-

tion pair exists. At the other hand, if we achieve a PCC much close 

to 0, we should be confident that since the residues at this position 

are extremely inconsistent with the structural changes, either struc-

ture has gone through significant changes or this position has gone 

through various mutations, unless the alignment is falsely formed 

with proteins in different homology spaces. 

3 RESULTS 

In preliminary experiments, we have test on superfamily Cyto-

chrome_c, and its three leave-one-family-out training groups of 

proteins for each family: Monodomain Cytochrome_c, N-terminal 

domain, and Cytochrome bc1 domain. The reason I choose this 

superfamily firstly is that on the remote homology detection exper-

iments, this superfamily yields the most degradation from detec-

tion with simulated evolution to that without simulated evolution. 

Specifically, Table 1 shows the number of columns in alignments, 

the number of proteins in each training data, and performance of 

detection using simulated evolution (the 4th column) and the per-

formance without simulated evolution. As indicated, on family 

Monodomain C., the detection AUC (area under the ROC curve) 

degrades from 88.55% to 66.49%. 

 

Family Name #columns #Proteins AUC(SimEvo) AUC 

Monodomain C.   3250 24 66.49% 88.55% 

N-terminal   714 88 100% 100% 

Cytochrome bc1   714 88 88.89% 86.11% 

Table 1. Related Descriptions of Superfamily Cytochrome_c 

 

3.1 Column-wise Correlation 

I calculated the PCCs for columns without gaps, among which 

there are 3 columns in the data on family N-terminal domain, 

where all sequences have the same residue and thus there is no 

variation. The limit of PCC in these cases is 1 and intuitively those 

columns should be considered as the most conserved positions and 

the likelihood of mutation should be the smallest. These cases are 

rare; however, what might be of interest is that these cases only 

exist in two families data: N-terminal and Cytochrome bc1, where 

simulated evolution didn’t degrade. It might reveal that on these 

two families proteins are more convergent and simulated evolution 

helps expand the homology space appropriately, while on family 

Monodomain, proteins are diverse and it is likely that augmented 

data from simulated evolution pulls the training data out of the 

homology space, thus degrading the detection performance. 
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Monodomain C. N-terminal 

column |PCC| column |PCC| 

2068 0.3590 340 0.3701 

1224 0.1644 339 0.3162 

1243 0.1543 400 0.3099 

2067 0.1364 337 0.2833 

1247 0.1314 255 0.2783 

Table 2. Top 5 Absolute PCCs 

 

Table 2 gives 5 columns with highest absolute PCCs on two fami-

lies training data. In addition, there are in total 13 columns on fam-

ily Monodomain C., where there is no gap; while there are 53 such 

columns on family N-terminal. This result is consistent on the 

former observation that proteins on family N-terminal’s training 

data are more convergent and thus augmented data from simulated 

evolution would help with higher likelihood.  

 

However, from the values of PCCs, family N-terminal tends to 

have more columns with higher absolute PCCs considering its total 

columns as 714 comparing to 3259 on family Monodomain C.. It is 

likely that more positions among family N-terminal’s alignment 

have higher PCCs, and thus these positions indicate high correla-

tion between sequence changes and structural variations. It goes 

against our conjecture that high correlation reveals low likelihood 

of mutation if the overall tendency also follow this pattern, because 

on family N-terminal we obtained relatively better detection per-

formance with simulated evolution. Yet it is also possible that 

these positions with high PCCs have so singular mutation probabil-

ity distribution that in the augmented data these positions tend to 

keep the original residue instead of changing due to high conserva-

tion. Also, we might also need more sophisticated observations on 

the current results. Therefore next we look further into the distribu-

tions of columns in terms of varieties. 

 

In order to look more specifically on the columns with high corre-

lation values and the columns with low correlation values, Figure 3 

& 4 show the column 2068 with its 3 neighbors(col_2066, 

col_2067, col_2068, col_2069 from left to right) as well as their 

absolute PCCs and the column 1225 which has lowest absolute 

PCC as well as its one neighbor(col_1224, col_1225, from left to 

right) on family Monodomain C.’s training data,. Moreover, the 

entropies are calculated on the two columns distributions, and the 

entropy on column 2068 is bigger than that on column 1225. 

Therefore, higher PCC doesn’t indicate lower varieties or lower 

varieties can’t guarantee high PCC, since here column 2068 has 

both higher PCC and higher entropy.  

 

 

Fig. 3.  Residues on Column with Highest Absolute PCC and that with 
Lowest Absolute PCC 

 

Fig. 4. Distribution of Residues on Column with Highest Absolute PCC 

and Column with Lowest Absolute PCC (Ent stands for the entropy of the 
distribution) 

3.2 *Comparing the Overall Correlation 

Here I also calculate the overall pairwise sequence score on the 

whole alignment. Then the Pearson correlation coefficients are 

calculated; results -0.1323 and -0.3556 are obtained on family 

Monod-omain C. and family N-terminal respectively. The family 

that doesn’t degrade from simulated evolution has higher absolute 

correlation coefficient. This gives similar prompt as before that 

goes against our conjecture; however, this fact probably comes 

from the difference of diversities. On the other hand, it also implies 

that positional preference analysis on individual position is re-

quired instead of the overall decision on all positions 

 

Intuitively, low variety might increase correlations between se-

quence changes and structural variations because proteins are con-

served on both sequence and structure. Thus it makes sense that 1) 
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experimentally family N-terminal should have low correlation 

values but due to its low variety 2) it ends up with higher correla-

tions on the conserved columns. For the rest columns, the less 

conserved ones, it is conceivable that they should have lower cor-

relation values and needs mutation, which explains the non-

degraded performance of homology detection with simulated evo-

lution. 

3.3 To Do List 

Probably the best way to untangle previous confusion is to com-

plete the experiment by conducting simulated evolution and taking 

the (1-PCC) as the input prior mutation probability. Hereafter ap-

ply profile training program and obtain the profile hidden Markov 

model. Consequently employ the reserved test data on HMM, re-

sulting in the homology detection performance, which might give 

the answer whether or not the positional preference characterize 

the mutation behavior accurately. Particularly, if the homology 

detection performance with positional preference yields better 

result, it can be accepted that the correlational analysis do give 

appropriate descriptions regarding the sequence mutation and pre-

serving the structural conservation. 

 

Above is the complement to the preliminary experiment on super-

family  Cytochrome_c. More experiments should be done on more 

superfamilies in the homology detection test including the other 10 

superfamilies of 66 families’ leave-one-family-out cross validation 

routine. For each of the experiment, the following routine is carried 

out: 

 Firstly, multiple structure alignment is conduct using 

some multiple structural aligner;  

 Secondly, correlational analysis is executed on the 

alignment so as to obtain the mutational preference on 

each position; 

 Thirdly, simulated evolution model is stimulated togeth-

er with the positional preference for mutations; in partic-

ularly in this stage, protein sequences are augmented 

with artificial sequences. These new generated sequences 

come from simulating mutation by approximating the 

residue mutation probability distribution; 

 Further, a profile HMM is trained from both the original 

real sequence and artificially generated sequences, and 

then homology detection stage is on with the reserved 

testing homology proteins and sampled outliers. The area 

under the curve (AUC) of receiver operating characteris-

tic(ROC) is used as the target to measure the accuracy 

and describability of the whole model on real world evo-

lution. By comparing the detection performance to that 

without positional preference for mutation, it can be intu-

itionally determined whether or not this mutational anal-

ysis is appropriate. 

4 DISCUSSION 

The correlational analysis for mutation makes it possible to quanti-

tate correlation between sequence information and structure infor-

mation. As has been accepted, structure is more conserved than 

sequence and thus from this gap we hope to handle the probability 

that an amino acid position has gone through mutations within 

homology space. 

 

The preliminary results show that more convergent group of pro-

teins yields better homology detection if augmented data from 

simulated evolution is utilized. More importantly, the results show 

that: a) on the training data of family Monodomain, since we know 

this dataset is quite diverse and thus the neighborhood of each 

position gives pretty noisy information on approximating the muta-

tion distribution during simulated evolution, resulting in false deci-

sions in mutating; b) There are positions with high correlation 

values but also high varieties. Thus we should make use of the 

positional analysis so as to reduce the mutation on positions with 

high correlation values because they preserve the characteristics of 

homology space. 

 

More experiments remain to be conduct on the other 66 families’ 

training data. Ideally, the performance of homology detection can 

be boosted by incorporating the positional preference when execut-

ing mutations.  
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