Reading Report on "Online Optimization with Gradual Variations", the Best Student Paper from 12'COLT, by C. Chiang & T. Yang, et al.

> Mengfei Cao April 16

# Introduction

An example of online convex optimization model



#### **Online Learning: Model**

Full information

 See f<sub>t</sub>(x) after choosing x<sub>t</sub>

# Introduction

An example of online convex optimization model



# Introduction

The General Online Convex Optimization Model

Online Convex Optimization (OCO)

Input: A convex set X for t = 1,2,...predict a vector  $x_t$  from X receive a convex loss function  $f_t: X \rightarrow R$ suffer loss  $f_t(x_t)$ 

Minimize: regret = 
$$\sum_{t=1}^{T} f_t(x_t) - \min_{\pi \in S} \sum_{t=1}^{T} f_t(\pi)$$

<u>Regret Bound:</u> using Gradient Descend Algorithm, achieve O(+

#### Scenario No. 1:

Online Linear Optimization



Input: A convex set X for t = 1,2,...predict a vector  $x_t$  from X receive a convex loss function  $f_t: X \rightarrow R$ suffer loss  $f_t(x_t)$ 

Minimize: regret = 
$$\sum_{t=1}^{T} f_t(x_t) - \min_{\pi \in S} \sum_{t=1}^{T} f_t(\pi)$$

 $f_t(x_t) = \langle x_t, z_t \rangle$ , for some  $z_t$ 

<u>Regret Bound</u>: using Gradient Descend Algorithm, achieve  $O(\sqrt{TN})$ , where N is the dimension of  $x_t$ .

#### Scenario No. 2:

Prediction with Expert Advice

Prediction with Expert Advice

Input: A convex set X for t = 1,2,...predict a vector  $x_t$  from X receive a convex loss function  $f_t: X \rightarrow R$ suffer loss  $f_t(x_t)$ 

Minimize: regret = 
$$\sum_{t=1}^{T} f_t(x_t) - \min_{\pi \in S} \sum_{t=1}^{T} f_t(\pi)$$

 $f_t(x_t) = \langle x_t, z_t \rangle$ , for some  $z_t$ , and  $\forall x \in X$ : |x| = 1

<u>Regret Bound</u>: using Multiplicative Update Algorithm, achieve  $O(\sqrt{T \ln N})$ , where N is the number of experts.

# Scenario No. 3:

Online Convex Optimization\*: gradient of each loss function is <u>λ-smooth</u>.



#### Scenario No. 4:

• Online Strictly Convex Optimization:  $\beta - convex$  loss function

Online Strictly Convex Optimization

Input: A convex set X for t = 1,2,...predict a vector  $x_t$  from X receive a convex loss function  $f_t: X \rightarrow R$ suffer loss  $f_t(x_t)$ 

Minimize: regret = 
$$\sum_{t=1}^{T} f_t(x_t) - \min_{\pi \in S} \sum_{t=1}^{T} f_t(\pi)$$

**Definition 3** For  $\beta > 0$ , we say that a function  $f : \mathcal{X} \to \mathbb{R}$  is  $\beta$ -convex, if for all  $x, y \in \mathcal{X}$ ,  $f(x) \ge f(y) + \langle \nabla f(y), x - y \rangle + \beta \langle \nabla f(y), x - y \rangle^2$ .

<u>Regret Bound</u>: using online Newton Step Algorithm, achieve O(NlogT), where N is the dimension of  $x_t$ .

#### Motivation: Variations in cost functions can be small

What else could the regret bound depend on other than T?

better be small so as to be tight and easy to bound

Variation-bounded regret (Previous work):

| Problems                               | T rounds                        | Variation V             |  |
|----------------------------------------|---------------------------------|-------------------------|--|
| Online Linear<br>Optimization          | $\sqrt{NT}$ [Zin03]             | √ <i>V</i><br>[НК08]    |  |
| Prediction with<br>Expert Advice       | $\sqrt{T \ln N}$ [LW94]         | √ <u>VlnN</u><br>[НК08] |  |
| Online Convex<br>Optimization          | $\sqrt{NT}$ [Zin03]             | ?                       |  |
| Online Strictly<br>Convex Optimization | <b>Nlog</b> <i>Т</i><br>[нако7] | NlogV<br>[нкоэ]         |  |

$$\begin{cases} V = \sum_{t=1}^{T} \|f_t - \mu\|_2^2 \\ \mu = \sum_{t=1}^{T} f_t / T \end{cases}$$

$$\begin{cases} Q = \sum_{t=1}^{T} \|v_t - \mu\|_2^2 \\ \mu = \sum_{t=1}^{T} v_t / T \\ f_t(x) = -\ln \langle v_t, x \rangle \end{cases}$$

# Motivation: Variations May Not be Reliable

*Example:* 



$$V = \sum_{t=1}^{T} \|f_t - \mu\|_2^2$$

In some cases, the consecutive changes between loss functions are smooth and small.

O Deviation-bounded regret (Proposed work):

$$D_{p} = \sum_{t=1}^{T} \max_{x \in \mathcal{X}} \|\nabla f_{t}(x) - \nabla f_{t-1}(x)\|_{p}^{2}$$

 $D_2 \leq O(V)$ 

### Motivation: Deviations Can be Very Small

Example (Linear Online Optimization):



 $\sum_{t=1}^{T} \left( f_t(\hat{x}_t) - f_t(\pi) \right) \le \eta D_2 + \frac{2}{\eta} \le O\left(\sqrt{D_2}\right)$ 

 $\eta = \sqrt{2/D_2}, \Longrightarrow O(\sqrt{D_2})$ 

# A Unified Algorithm

Algorithm 1 META algorithm

1: Initially, let 
$$x_1 = \hat{x}_1 = (1/N, \dots, 1/N)^\top$$

- 2: In round  $t \in [T]$ :
- 2(a): Play  $\hat{x}_t$ .
- 2(b): Receive  $f_t$  and compute  $\ell_t = \nabla f_t(\hat{x}_t)$ .

$$x_{t+1} = \arg\min_{x \in \mathcal{X}} \left( \langle \ell_t, x \rangle + \mathcal{B}^{\mathcal{R}_t}(x, x_t) \right), \\ \hat{x}_{t+1} = \arg\min_{\hat{x} \in \mathcal{X}} \left( \langle \ell_t, \hat{x} \rangle + \mathcal{B}^{\mathcal{R}_{t+1}}(\hat{x}, x_{t+1}) \right).$$

$$\hat{x}_{t} = \arg\min_{\hat{x}\in\mathcal{X}} \left( \left\langle \ell_{t-1}, \hat{x} \right\rangle + \mathcal{B}^{\mathcal{R}_{t}}(\hat{x}, x_{t}) \right)$$
  

$$\mathcal{R} : \mathbb{R}^{N} \to \mathbb{R} \text{ be a differentiable function}$$
  

$$\mathcal{B}^{\mathcal{R}}(x, y) = \mathcal{R}(x) - \mathcal{R}(y) - \left\langle \nabla \mathcal{R}(y), x - y \right\rangle \text{ (Bregman divergence)}$$

Proof for Regret Bound in Scenario No.1 and No.2 (linear)

$$\sum_{t=1}^{T} f_t(\hat{x}_t) - f_t(\pi) \le \sum_{t=1}^{T} S_t + \sum_{t=1}^{T} A_t$$

where  $S_t = \langle f_t - f_{t-1}, \hat{x}_t - x_{t+1} \rangle$  and  $A_t = \mathcal{B}^{\mathcal{R}_t}(\pi, x_t) - \mathcal{B}^{\mathcal{R}_t}(\pi, x_{t+1})$ 

$$\begin{bmatrix}
\mathcal{R}_{t}(x) = \frac{1}{2\eta} \|x\|_{2}^{2} \\
\sum_{t=1}^{T} S_{t} \leq \sum_{t=1}^{T} \|f_{t} - f_{t-1}\|_{*}^{2} \leq \sum_{t=1}^{T} \eta \|f_{t} - f_{t-1}\|_{2}^{2} \leq \eta D_{2} \\
\sum_{t=1}^{T} A_{t} = \frac{1}{2\eta} \left( \|\pi - x_{1}\|_{2}^{2} - \|\pi - x_{T+1}\|_{2}^{2} \right) \leq \frac{2}{\eta} \\
\sum_{t=1}^{T} \left( f_{t}(\hat{x}_{t}) - f_{t}(\pi) \right) \leq \eta D_{2} + \frac{2}{\eta} \leq O\left(\sqrt{D_{2}}\right) \\
\text{by choosing } \eta = \sqrt{2/D_{2}}
\begin{bmatrix}
\mathcal{R}_{t}(x) = \frac{1}{\eta} \sum_{i=1}^{N} x(i) \left(\ln x(i) - 1\right) \\
\mathcal{R}_{t=1} \leq \sum_{i=1}^{T} x(i) \left(\ln x(i) - 1\right) \\
\sum_{i=1}^{T} S_{t} \leq \sum_{i=1}^{T} \|f_{t} - f_{t-1}\|_{*}^{2} \leq \frac{1}{\eta} \|f_{t} - f_{t-1}\|_{\infty}^{2} \leq \eta D_{\infty} \\
\sum_{i=1}^{T} A_{t} = \frac{1}{\eta} \left(\operatorname{RE}\left(\pi\|x_{1}\right) - \operatorname{RE}\left(\pi\|x_{T+1}\right)\right) \leq \frac{1}{\eta} \ln N \\
\sum_{i=1}^{T} \left(f_{t}(\hat{x}_{t}) - f_{t}(\pi)\right) \leq \eta D_{2} + \frac{2}{\eta} \leq O\left(\sqrt{D_{2}}\right) \\
\text{by choosing } \eta = \sqrt{2/D_{2}}
\end{bmatrix}$$

Proof for Regret Bound in Scenario No.3 ( $\lambda$ -smooth)

$$\sum_{t=1}^{T} \left( f_t \left( \hat{x}_t \right) - f_t \left( \pi \right) \right) \le \sum_{t=1}^{T} S_t + \sum_{t=1}^{T} A_t - \sum_{t=1}^{T} B_t$$

where  $S_t = \langle f_t - f_{t-1}, \hat{x}_t - x_{t+1} \rangle$  and  $A_t = \mathcal{B}^{\mathcal{R}_t}(\pi, x_t) - \mathcal{B}^{\mathcal{R}_t}(\pi, x_{t+1})$  $B_t = \mathcal{B}^{\mathcal{R}_t}(x_{t+1}, \hat{x}_t) + \mathcal{B}^{\mathcal{R}_t}(\hat{x}_t, x_t)$ 

$$\begin{array}{l}
\mathcal{R}_{t}(x) = \frac{1}{2\eta} \|x\|_{2}^{2} \\
\sum_{t=1}^{T} S_{t} \leq \sum_{t=1}^{T} \|f_{t} - f_{t-1}\|_{*}^{2} \leq \sum_{t=1}^{T} \eta \|f_{t} - f_{t-1}\|_{2}^{2} \\
\sum_{t=1}^{T} A_{t} = \frac{1}{2\eta} \left( \|\pi - x_{1}\|_{2}^{2} - \|\pi - x_{T+1}\|_{2}^{2} \right) \leq \frac{2}{\eta} \qquad \sum_{t=1}^{T} B_{t} \geq \frac{1}{4\eta} \sum_{t=1}^{T} \|\hat{x}_{t} - \hat{x}_{t-1}\|_{2}^{2} - O(1) \\
\sum_{t=1}^{T} (f_{t}(\hat{x}_{t}) - f_{t}(\pi)) \leq O\left(\eta D_{2} + \frac{1}{\eta}\right) \leq O\left(\sqrt{D_{2}}\right) \\
\text{when } \lambda \leq 1/\sqrt{8\eta^{2}} \text{ and } \eta = 1/\sqrt{D_{2}}.
\end{array}$$

Proof for Regret Bound in Scenario No.4 ( $\beta - convex, \lambda$ -smooth)

$$\sum_{t=1}^{T} \left( f_t \left( \hat{x}_t \right) - f_t \left( \pi \right) \right) \le \sum_{t=1}^{T} S_t + \sum_{t=1}^{T} A_t - \sum_{t=1}^{T} B_t - \sum_{t=1}^{T} C_t$$

where  $S_t = \langle f_t - f_{t-1}, \hat{x}_t - x_{t+1} \rangle$  and  $A_t = \frac{1}{2} \|\pi - x_t\|_{H_t}^2 - \frac{1}{2} \|\pi - x_{t+1}\|_{H_t}^2$  $B_t = \frac{1}{2} \|x_{t+1} - \hat{x}_t\|_{H_t}^2 + \frac{1}{2} \|\hat{x}_t - x_t\|_{H}^2$  and  $C_t = \beta \|\pi - \hat{x}_t\|_{h_t}^2$  where  $h_t = \ell_t \ell_t^\top$ 

$$\mathcal{R}_{t}(x) = \frac{1}{2} \|x\|_{H_{t}}^{2}, \text{ with } H_{t} = I + \beta \gamma^{2} I + \beta \sum_{\tau=1}^{t-1} \ell_{\tau} \ell_{\tau}^{\top}.$$

$$\sum_{t=1}^{T} B_t \ge \frac{1}{4} \sum_{t=1}^{T} \|\hat{x}_t - \hat{x}_{t-1}\|_2^2 - O(1)$$

$$\sum_{t=1}^{T} S_t + \sum_{t=1}^{T} A_t - \sum_{t=1}^{T} C_t \le O(1 + \beta \gamma^2) + \frac{8N}{\beta} \ln\left(1 + \frac{\beta}{4} \sum_{t=1}^{T} \left\|\ell_t - \ell_{t-1}\right\|_2^2\right)$$

 $\sum_{t=1}^{1} (f_t(\hat{x}_t) - f_t(\pi)) \leq O((N/\beta) \ln D_2)$ 

with  $\lambda \geq 1$   $\beta \leq 1$  and  $D_2 \geq 1$ 

# Conclusion

Ø By introducing the notion of <u>Lp-deviations</u>, the work derived a tighter bound as proved for <u>four</u> specific online learning scenarios using a <u>unified</u> algorithm META, when the environment follows some <u>stable</u> <u>pattern</u> or the <u>adversary</u> is kind, from the high-level understanding.

| Problem                                      | Deviation $m{D}_{p}$                                                                | $\mathcal{R}_t$                                                                                                              |
|----------------------------------------------|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| Problem                                      | Regret                                                                              | Algorithm                                                                                                                    |
| Online Linear<br>Optimization                | $\sum_{t=1}^{T} \ f_t - f_{t-1}\ _2^2$                                              | $\frac{1}{2\eta}   x  _2^2$                                                                                                  |
|                                              | $\sqrt{D_2}$                                                                        | Gradient Descent [Zink03] type                                                                                               |
| Prediction with<br>Expert Advice             | $\sum_{t=1}^{T} \ f_t - f_{t-1}\ _{\infty}^2$                                       | $\frac{1}{\eta}\sum_{i=1}^{N}x(i)(\ln x(i)-1)$                                                                               |
|                                              | $\sqrt{D_{\infty} \ln N}$                                                           | Exp. Weighted Average [CL06] type                                                                                            |
| Online Convex<br>Optimization                | $\sum_{t=1}^T \max_{x \in \mathcal{X}} \ \nabla f_t(x) - \nabla f_{t-1}(x)\ _2^2$   | $\frac{1}{2\eta} \ x\ _2^2$                                                                                                  |
|                                              | $\sqrt{D_2}$                                                                        | Gradient Descent [Zink03] type                                                                                               |
| Online <mark>β-convex</mark><br>Optimization | $\sum_{t=1}^{T} \max_{x \in \mathcal{X}} \ \nabla f_t(x) - \nabla f_{t-1}(x)\ _2^2$ | $\frac{\frac{1}{2} \ x\ _{H_t}^2}{H_t} \text{, with}$ $H_t = \lambda I + \beta \sum_{\tau=1}^{t-1} \ell_\tau \ell_\tau^\top$ |
|                                              | NlogD <sub>2</sub>                                                                  | Online Newton Step [HAK07] type                                                                                              |

Technically, the application of <u>Bregman</u> projections is vital.

**Definition 2** Let  $\mathcal{R} : \mathbb{R}^N \to \mathbb{R}$  be a differentiable function and  $\mathcal{X} \subseteq \mathbb{R}^N$  a convex set. Define the Bregman divergence of  $x, y \in \mathbb{R}^N$  with respect to  $\mathcal{R}$  by  $\mathcal{B}^{\mathcal{R}}(x, y) = \mathcal{R}(x) - \mathcal{R}(y) - \langle \nabla \mathcal{R}(y), x - y \rangle$ . Define the projection of  $y \in \mathbb{R}^N$  onto  $\mathcal{X}$  according to  $\mathcal{B}^{\mathcal{R}}$  by  $\prod_{\mathcal{X}, \mathcal{R}}(y) = \arg \min_{x \in \mathcal{X}} \mathcal{B}^{\mathcal{R}}(x, y)$ . **Theorem 8** When the L<sub>2</sub>-deviation of the loss functions is  $D_2$ , the regret of our algorithm is at most  $O(\sqrt{D_2})$ .

**Theorem 10** When the  $L_{\infty}$ -deviation of the loss functions is  $D_{\infty}$ , the regret of our algorithm is at most  $O(\sqrt{D_{\infty} \ln N})$ .

**Theorem 11** When the loss functions have  $L_2$ -deviation  $D_2$  and the gradient of each loss function is  $\lambda$ -smooth, with  $\lambda \leq 1/\sqrt{8D_2}$ , the regret of our algorithm is at most  $O(\sqrt{D_2})$ .

**Theorem 15** Suppose the loss functions are  $\beta$ -convex and their  $L_2$ -deviation is  $D_2$ , with  $\beta \leq 1$  and  $D_2 \geq 1$ . Furthermore, suppose the gradient of each loss function is  $\lambda$ -smooth, with  $\lambda \geq 1$ , and has  $L_2$ -norm at most  $\gamma$ . Then the regret of our algorithm is at most  $O(\beta\gamma^2 + (N/\beta)\ln(\lambda ND_2))$ , which becomes  $O((N/\beta)\ln D_2)$  for a large enough  $D_2$ .