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Introduction

¢ An example of online convex optimization model
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v = . )55 S L 4y
' In each round t ] - Full Information
ment: f,(x), 0. : See [,(x) after

s function ' choosing x;

L ® S
r artinn
waction x,




Introduction

¢ An example of online convex optimization model
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Introduction

¢ The General Online Convex Optimization Model

/ Online Convex Optimization (OCO) \

Input: A convex set X
fort=12,..
predict a vector xt from X
receive a convex loss function fi: X -> R

\_ Suffer loss fi(x) 2

v 3 ¢

Minimize: regret = th(:zzt) —néngft(vr)
t=1 = =




Scenario No. 1:

¢ Online Linear Optimization

& Online Linear Optimization )

Input: A convex set X
fort=12,..
predict a vector xt from X
receive a convex loss function fi: X -> R

\_ Suffer loss fi(x) 2

r /3

Minimize: regret = th(a:t) —II}EIE}th(W)
=1 ==

fi(xt) =< x¢,2; >, for some z;

Regret Bound: using Gradient Descend Algorithm, achieve O(VTN),
where N is the dimension of x;.




Scenario No. 2:

o Prediction with Expert Advice

& Prediction with Expert Advice o

Input: A convex set X
fort=12,..
predict a vector xt from X
receive a convex loss function fi: X -> R

\_ Suffer loss fi(x) 2

r /3

Minimize: regret = fi(xe) —min Y fi(7m)

G ==t 7 = forsome Z,-.and Yo e k=1

Regret Bound: using Multiplicative Update Algorithm, achieve
O(VTInN), where N is the number of experts.




Scenario No. 3:

o Online Convex Optimization*: gradient of each loss function is A-smooth.

& Online Convex Optimization* )

Input: A convex set X
fort=12,..
predict a vector xt from X
receive a convex loss function fi: X -> R

\_ Suffer loss fi(x) 2

r /3

Minimize: regret = ft(x¢) —min fe(m)
o= Qe i)

IV £:(2) = Vfi(@)lly < Mz~ yll, . for any z.y € A]

Regret Bound: using Gradient Descend Algorithm, achieve O(VTN),
where N is the dimension of x;.




Scenario No. 4:

¢ Online Strictly Convex Optimization: f — convex loss function

& Online Strictly Convex Op‘rimiza’rion\

Input: A convex set X
fort=12,..
predict a vector xt from X
receive a convex loss function fi: X -> R

\_ Suffer loss fi(x) 2

r /3

Minimize: regret = fir(xy) —min Yy fi(m

Definition 3 For 5 > 0, we say that a function f: X — R is B-convex, if for all v,y € X,
F(@) = fy) + (VF().x — )+ B(V(y),x —y)°.

Regret Bound: using online Newton Step Algorithm, achieve O(NlogT),
where N is the dimension of x;.




Motivation: Variations in cost functions can be small

¢ What else could the regret bound depend on other than T7?
o0 better be small so as to be tight and easy to bound

o0 Variation-bounded regret (Previous work):

T rounds

) Q = S0y v — pl3
V=L -l S
' , L = LUt
= 23;1 ft/T 'L‘ o t=1"1
fi(x) = —1In (ve, x)




Motivation: Variations May Not be Reliable

¢ Example:

T
V=2 i = nll3

In some cases, the consecutive changes between loss functions are smooth and small.

¢ Deviation-bounded regret (Proposed work):

T
Dy =" max|Vfi(x) = V()]
t=1




Motivation: Deviations Can be Very Small

o Example (Linear Online Optimization):

T
S (o) = fulr ))ET}'DQJr%EO(\/D_Q)
t=1

n=+/2/De.mmm) O(/Do)




A Unified Algorithm

Algorithm 1 META algorithm

1: Initially, let 1 =2y = (1/N

2: Inround t € [T7:

2(a): Play .

2(b): Receive f; and compute £, = V fi ().

2(c): Update
Tip1 = argmingey ((€ ) + BRe (v, 24)),
Prp1 = argmingey (6, &) + BRe+1 (&, 241)).

1/N)T.

/ /

7, = arg minge y ((b,_y.2) + BRe (&, 2y))

R : RY — R be a differentiable function
BR (33, y) — R(ﬂ;’) — R(y) — <VR(y),, T — y) (Bregman divergence)




Proof for Regret Bound in Scenario No.1 and No.2 (linear)

T T T
D Filan) = fi(m) <Y S+ A
t=1 t=1 t=1

where Sy = (fy — fi—1, @ — 2341) and Ay = BRe(m, 2) — BRe(m, 2441)

2
- Rilx) = % ]2

T T T
DS <Y = fiall €D nllfe = fealls < nD2
t=1 t=1 t=1

T

1 2 2
> Ae=g0 (lln = a1l ~ m — eraal}) <

t=1

Z(ft(mt ft(w)<nD2+i<O(ﬁ)

—by choosing = /2/Da.

Ly sy (i) (Ina(i) —1)

T
Ife = fall2 <D nllfe = fioallo < nDs
1 t=1
1 1
A = ; (RE (7||x1) — RE (7||z7+1)) < ElnN

Z (fe(2¢) — fe(m)) < Do + 1lnN§O(\/DoolnN)
t=1

— by choosing 7 = +/(InN)/D4




Proof for Regret Bound in Scenario No.3 (A-smooth)

T T T T
S (fela) = fr ()<Y Si+> A —> By
t=1 t=1 t=1 =1

where Sy = (fy — fi—1, @ — 2341) and Ay = BRe(m, 2) — BRe(m, 2441)
By = BRt(xpq,3) + Bt (4, 24)

_ 1 2
- Rilx) = 21 ]2
T T T
DS < M= a2 <D nllfi = fialls
t=1 t=1 t=1
(||ﬂ —ol =l —aral3) <= S B > A YT (16 — &l - O(1)

Z (fel@e) = fe(m) <O (an i %) <0 (\/E)

— when A < 1/4/892 and n = 1/4/Ds.




Proof for Regret Bound in Scenario No.4 (5 — convex, A\-smooth)

T T

Z(ft(il‘t)—ft(’ﬁ Z +ZAt ZBt th

t=1 t=

2 2
where S; = (ft — ft 1, T¢ — f’-'t+1> and A = 5 ||?‘T «'Et"H ! ||’frr $t+1||H

By =5 | —mllH + 5 || — :ct||Ha,11d Cy = [B||r — azt”h where hy =/, é’T
S(x) = ||:c||H ,with H, =1 + 52T+ 8302 0 0]

T T - ~ 2
thl B > % thl ||37t - fct—1||2 - 0(1)

3" (filie) = fu(m)) < O((N/B)In Do)

t=1

—with A\ > 1 <1 and Dy > 1




Conclusion

¢ By introducing the notion of Lp-deviations, the work derived a tighter
bound as proved for four specific online learning scenarios using a
unified algorithm META, when the environment follows some stable
pattern or the adversary is kind, from the high-level understanding.

Deviation D,,

DAy $ A P . | S
H!vi;'vlt;l, ,L\.!"IU.’IUH!I

o Technically, the application of Bregman projections is vital.




Definition 2 Let R : RN — R be a differentiable function and X C RN a convex set.
Define the Bregman divergence of x,y € RN with respect to R by BR (x,y) = R(x) —R(y) —

(VR(y),z —y) . Define the projection of y € RN onto X according to B® by Ny g (y) =
arg min,e y BR (., 1).




Theorem 8 When the Lo-deviation of the loss functions is Do, the regret of our algorithm
is at most O(/D3).

Theorem 10 When the L -deviation of the loss functions is D, the regret of our algo-
rithm is at most O(v/ Dy InN).

Theorem 11 When the loss functions have Lo-deviation D9 and the gradient of each loss
function is A\-smooth, with A < 1/y/8Ds, the regret of our algorithm is at most O(\/Ds).

Theorem 15 Suppose the loss functions are 3-convex and their Lo-deviation is Do, with
3 <1 and Dy > 1. Furthermore, suppose the gradient of each loss function is A-smooth,

with A > 1, and has La-norm at most ~v. Then the regret of our algorithm is at most
O(542% + (N/B)In(AN D2)), which becomes O((N/3)InDs) for a large enough Ds.




