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Good Times

The original PAC learning model

X: instance space

C: concept class

H: hypothesis class

POS: an oracle that gives a positive example in unit time

NEG: an oracle that gives a negative example in unit time

DT distribution over the positive subset of X given a concept ¢
D~ distribution over the negative subset of X given a concept ¢

Definition

We say C is PAC-learnable by H over X if:

3 algorithm A, s.t.

Ve, §: the input from (0, 1)

Vc € C: the target concept,

VD*, D~: instance distribution w.r.t. c,

h = A(e, d): errt(h) < e and err™(h) < e with prob. at least 1 — ¢
by accessing POS and NEG and running in finite amount of steps
where err™ = D (neg(h)) and err— = D (pos(h))



One More Thing

We have proved that 2-oracle model is equivalent to 1-oracle model



Not-So-Good Times

Learning with Malicous Errors

X: instance space
C: concept class
H: hypothesis class

POS,14
some adversary

POSya1 - {

NEGy 14

B .
NEGa, - { some adversary

wp. 1—0
w.p. 3
wp. 1—0
w.p. 3

D™ distribution over the positive subset of X given a concept ¢
D~ distribution over the negative subset of X given a concept ¢



Not-So-Good Times

[-tolerant PAC-Learning (0 < 5 < 1/2)

We say C is [(-tolerant PAC-learnable by H over X if:

3 algorithm A, s.t.

Ve, d: the input from (0, 1)

Vc € C: the target concept,

VD™, D~ instance distribution w.r.t. c,

h = A(e,8): errt(h) < e and err—(h) < € with prob. at least 1 — §
by accessing POS‘,‘@,AL and NEG,@,AL and running in finite amount
of steps

where err™ = DF (neg(h)) and err— = D (pos(h))



How “Not-So-Good” Can “Oracles” Be?

If POS,,,, and NEG} ,, always behave strangely

What is the largest possible 5 so that we can still learn
concepts?

Why do we have g < 1/27
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A: PAC learning algorithm for C
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B-tolerant learning algorithm for C (~(e, 4, 3))

Epnar(C): the supremum of Epar(C, A) over all possible A
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How “Not-So-Good” Can “Oracles” Be?

If POS},,, and NEG),, always behave strangely
for example, when 8 =1 and the adversary makes all “concepts”

look like the same by manipulating examples. We can't learn
correct concepts, not even close.

What is the largest possible 5 so that we can still learn
concepts?

A: PAC learning algorithm for C

Emar(C, A): defined to be the largest 3 such that A is a
B-tolerant learning algorithm for C (~(e, 4, 3))

Epnar(C): the supremum of Epar(C, A) over all possible A

Why do we have g < 1/27

We will prove it for concept classes that are distinct



An Upper Bound for Epai(C)

Theorem

Definition
A concept class C is distinct iff dc1, 0 € C,u, v, w,x € X s.t.




An Upper Bound for Epai(C)

Theorem
Let C be a distinct representation class. Then

€

E, C _—
MAL( )<1+€

Definition
A concept class C is distinct iff dc1, 0 € C,u, v, w,x € X s.t.




Proof for Theorem 1

Ideas:

Because C is distinct, we can make use of c1, ¢, u, v, w, x and
construct D1 , Dy ,D2 , Dy such that when § is at least
and ¢, can’t be learned for such distributions.

1+e a

Proof:

Construct DT, D~ as follows:

D-

D-
C: v [ u ( X | w )
Pr( )=1-¢
( x| u )

C



Proof for Theorem 1, Cont'd

Worst-case Oracle:

Construct the adversary for ¢; as follows:

Whenever an error occurs (with prob. 3), POS,@AL returns w and
NEG,@AL returns u;

Construct the adversary for ¢, as follows:

Whenever an error occurs (with prob. ), POS,@AL returns u and
NEG,@AL returns w;

D+ D-
Pr( )=1-¢
Pr( )=¢



Proof for Theorem 1, Cont'd

Induced Distribution:

When the target concept is ¢, if we access POS,?/,AL:
Prjl(u) = (1— B)e, Prjl(v) =(1-p8)(1-e), Prg(w) =7
if we access NEG,@,AL:

Pre,(w) = (1 = Be, Pre(x) = (L= B) (1 —¢), Pre(u) =8
When the target concept is ¢y, if we access POS,[\'},,AL:
Pri(u) =B, Pri(v) =(1—B)(1—¢), Pri(w) = (1—pB)e
if we access NEG,@,A,_:

Pre,(w) = B, Pre,(x) = (1 = B)(1 —¢), Prg,(u) = (1 - B)e

Pr( )=¢

D- D-
Pr( )=1=
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Proof for Theorem 1, Cont'd

Induced Distribution:
When the target concept is ¢y,

if we access NEG,@,AL:
Pre,(w) = (1 = Be, Pre(x) = (L= B)(1 —¢), Pre(u) =8

When the target concept is ¢,

if we access NEG,@A,_:

Pre,(w) = B, Pre,(x) = (1 = B)(1 —¢), Prg,(u) = (1 - B)e

Pr( )=¢

D- D-
Pr( )=1=



Proof for Theorem 1, Cont'd

If 5= ¢/(1+ ¢), then both the two pairs of distributions
(Pr(), Pr&()). (Pre (), Pr;,()) are identical respectively.

In other words, when we try to learn ¢; and ¢, oracles will give us
examples from exactly the same distributions.

Even when 7 > ¢/(1 + ¢), the adversary can simulate D" and D~
appropriately so as to reduce the outcome error probability to

e/(1+e).



Proof for Theorem 1, Cont'd

Further

Pr( )=¢

D+ D-
Pr( )=1-¢

If his e-good hypothesis learnt for ¢y, then
erry (h) = D2 (neg(h)) <e,

err,(h) = D, (pos(h)) < e,

so w € pos(h) and u € neg(h). Yet:
errct(h) = Dég(neg(h)) > Déq({u}) =¢
errc_l(h) = DC_I(pos(h)) > Dc_l({w}) =€

Thus any e-good hypothesis learnt for ¢, is e-bad for c1, vice versa.



Proof for Theorem 1, Cont'd

Therefore,

Concepts ¢; and ¢ can't both be learnt by any algorithms. Thus,
C is not learnable if 3 > ¢/(1 +¢)

In all,

€
1+e

EI\/IAL(C) <

, where C is a distinct concept class.



A Lower Bound for Epar(C) & Sample Complexity Bound

Theorem

Definition

If an algorithm A accesses POS,/\B/,AL and NEG,@,AL and takes inputs
0 < €,0 < 1; suppose that for target representation ¢ € C and

0 < B < e/4, A makes m calls to POS,@,AL and recieves points
ui,...,um € X, and m calls to NEG,?,,AL and receives points
Vi,...,Vm € X, and outputs hg € H satisfying with probability at
least 1 — 9, hy is almost-consistent with positive sample and
almost-consistent with negative sample, where “almost-consistent”:
{ui : ui € neg(ha)}| < 5m (for positive sample),

[{vi : vi € pos(ha)}| < §m (for negative sample).

Such an algorithm A is a -tolerant Occam algorithm for C by H



A Lower Bound for Epar(C) & Sample Complexity Bound

Theorem

Let 5 < €/4, and A be a -tolerant Occam algorithm for C by H.
Then A is a B-tolerant learning algorithm for C by H; the sample
size required is m = O(1/eIn1/0 + 1/eln|H]).

Definition

If an algorithm A accesses POS,?/,AL and NEG,@,AL and takes inputs
0 < €,0 < 1; suppose that for target representation ¢ € C and

0 < B < e/4, A makes m calls to POS,@,AL and recieves points
ui,...,um € X, and m calls to NEG,?,,AL and receives points
Vi,...,Vm € X, and outputs hg € H satisfying with probability at
least 1 — 9, hy is almost-consistent with positive sample and
almost-consistent with negative sample, where “almost-consistent”:
{ui : ui € neg(ha)}| < 5m (for positive sample),

[{vi : vi € pos(ha)}| < §m (for negative sample).

Such an algorithm A is a -tolerant Occam algorithm for C by H



Proof for the Second Theorem
For simplicity, we prove for positive examples and the case for
negative examples is similar.

Define bad hypothesis:

Fix a bad hypothesis h:

The prob. that hp,4 is almost-consistent with positive sample:

Among |H| hypothesis, the prob. that one such hp,q exists:
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Proof for the Second Theorem
For simplicity, we prove for positive examples and the case for
negative examples is similar.

Define bad hypothesis:
Let h € H be such that e™(h) > e.

Fix a bad hypothesis h:

The probability that h agrees with a point received from POS,\/J;,AL :
Pr(agree/no error) - (1 — ) + Pr(agree/error) - B
<(1-¢ -(1-B)+B=1l—€ct+e-B<l—e+e/d=1-3

The prob. that hp,4 is almost-consistent with positive sample:

Among m events of which each succeeds with prob. at least %, at

most €/2 happens. By Chernoff bounds, we have < e me/24,

Among |H| hypothesis, the prob. that one such hp,q exists:
By union bound, the probability that one such hypothesis exists is
at most |H|e=™/?*_ Solve |H|e~™/?* < §/2 and we get

m > 24/e(In|H| 4+ In2/9).



Proof for the Second Theorem

The same argument also holds for NEG,@,AL.
Thus,

if the output h is almost-consistent with both positive sample and
negative sample, then with probability at least 1 — 9, the error
probability is at most € on both D™ and D™, as long as

m > 24/e(In|H| 4+ In2/9).



Discussion

Efficiency

The second theorem gives a polynomial upper bound on the
sample complexity for finite representation class (|H| is finite), as
well as an exhaustic search algorithm that is B-tolerant learning
algorithm. However, the time complexity of such algorithm can be
super-polynomial.

A tight bound on Epa.(C)

Theorem 1 tells us that Epa(C) < T = O(e) for distinct
concept class. The second theorem tells us for finite representation
class, that V3 < €¢/4, C is efficiently learnable; in other words,
EMAL(C) Z 6/4 == Q(é)

In conclusion, these give us the tight bound ©(e) on Epar(C) for
distinct and finite representation class.



Endding

Practically,

No matter how “Not-So-Good" the oracles are, we can learn
probably approximately correct concept given any accuracy
parameter € as long as the error probability 3 is stringently
bounded by e.

Thank you!



The End



