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Good Times

The original PAC learning model

X : instance space
C : concept class
H: hypothesis class
POS : an oracle that gives a positive example in unit time
NEG : an oracle that gives a negative example in unit time
D+: distribution over the positive subset of X given a concept c
D−: distribution over the negative subset of X given a concept c

Definition
We say C is PAC-learnable by H over X if:
∃ algorithm A, s.t.
∀ε, δ: the input from (0, 1)
∀c ∈ C : the target concept,
∀D+,D−: instance distribution w.r.t. c ,
h = A(ε, δ): err+(h) < ε and err−(h) < ε with prob. at least 1− δ
by accessing POS and NEG and running in finite amount of steps
where err+ = D+

c (neg(h)) and err− = D−
c (pos(h))



One More Thing

We have proved that 2-oracle model is equivalent to 1-oracle model



Not-So-Good Times

Learning with Malicous Errors

X : instance space
C : concept class
H: hypothesis class

POSβMAL :

{
POSold w.p. 1− β
some adversary w.p. β

NEGβ
MAL :

{
NEGold w.p. 1− β
some adversary w.p. β

D+: distribution over the positive subset of X given a concept c
D−: distribution over the negative subset of X given a concept c



Not-So-Good Times

β-tolerant PAC-Learning (0 ≤ β < 1/2)

We say C is β-tolerant PAC-learnable by H over X if:
∃ algorithm A, s.t.
∀ε, δ: the input from (0, 1)
∀c ∈ C : the target concept,
∀D+,D−: instance distribution w.r.t. c ,
h = A(ε, δ): err+(h) < ε and err−(h) < ε with prob. at least 1− δ
by accessing POSβMAL and NEGβ

MAL and running in finite amount
of steps
where err+ = D+

c (neg(h)) and err− = D−
c (pos(h))



How “Not-So-Good” Can “Oracles” Be?

If POSβMAL and NEG β
MAL always behave strangely

for example, when β = 1 and the adversary makes all “concepts”
look like the same by manipulating examples. We can’t learn
correct concepts, not even close. We will prove it

What is the largest possible β so that we can still learn
concepts?

A: PAC learning algorithm for C
EMAL(C ,A): defined to be the largest β such that A is a
β-tolerant learning algorithm for C (∼(ε, δ, β))
EMAL(C ): the supremum of EMAL(C ,A) over all possible A

Why do we have β < 1/2?

We will prove it
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β-tolerant learning algorithm for C (∼(ε, δ, β))
EMAL(C ): the supremum of EMAL(C ,A) over all possible A

Why do we have β < 1/2?

We will prove it for concept classes that are distinct



An Upper Bound for EMAL(C )

Theorem
Let C be a distinct representation class. Then

EMAL(C ) <
ε

1 + ε

Definition
A concept class C is distinct iff ∃c1, c2 ∈ C , u, v ,w , x ∈ X s.t.
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Proof for Theorem 1

Ideas:
Because C is distinct, we can make use of c1, c2, u, v ,w , x and
construct D+

1 ,D
−
1 ,D

+
2 ,D

−
2 such that when β is at least ε

1+ε , c1
and c2 can’t be learned for such distributions.

Proof:
Construct D+,D− as follows:

v        u x        w 

v       w x        u 

C1 

C2 

D+ D- 

Pr(     ) = 1-ε 
 

Pr(     ) = ε 



Proof for Theorem 1, Cont’d

Worst-case Oracle:
Construct the adversary for c1 as follows:
Whenever an error occurs (with prob. β), POSβMAL returns w and

NEGβ
MAL returns u;

Construct the adversary for c2 as follows:
Whenever an error occurs (with prob. β), POSβMAL returns u and

NEGβ
MAL returns w ;

v        u x        w 

v       w x        u 

C1 

C2 

D+ D- 

Pr(     ) = 1-ε 
 

Pr(     ) = ε 



Proof for Theorem 1, Cont’d

Induced Distribution:
When the target concept is c1, if we access POSβMAL:
Pr+c1 (u) = (1− β)ε, Pr+c1 (v) = (1− β)(1− ε), Pr+c1 (w) = β

if we access NEGβ
MAL:

Pr−c1 (w) = (1− β)ε, Pr−c1 (x) = (1− β)(1− ε), Pr−c1 (u) = β

When the target concept is c2, if we access POSβMAL:
Pr+c2 (u) = β, Pr+c2 (v) = (1− β)(1− ε), Pr+c2 (w) = (1− β)ε

if we access NEGβ
MAL:

Pr−c2 (w) = β, Pr−c2 (x) = (1− β)(1− ε), Pr−c2 (u) = (1− β)ε
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Proof for Theorem 1, Cont’d

If β = ε/(1 + ε), then both the two pairs of distributions
(Pr+c1 (),Pr+c2 ()), (Pr−c1 (),Pr−c2 ()) are identical respectively.

In other words, when we try to learn c1 and c2, oracles will give us
examples from exactly the same distributions.

Even when β > ε/(1 + ε), the adversary can simulate D+ and D−

appropriately so as to reduce the outcome error probability to
ε/(1 + ε).



Proof for Theorem 1, Cont’d

Further

v        u x        w 

v       w x        u 

C1 

C2 

D+ D- 

Pr(     ) = 1-ε 
 

Pr(     ) = ε 

If h is ε-good hypothesis learnt for c2, then
err+c2 (h) = D+

c2(neg(h)) < ε,
err−c2 (h) = D−

c2(pos(h)) < ε,
so w ∈ pos(h) and u ∈ neg(h). Yet:
err+c1 (h) = D+

c1(neg(h)) ≥ D+
c1({u}) = ε

err−c1 (h) = D−
c1(pos(h)) ≥ D−

c1({w}) = ε
Thus any ε-good hypothesis learnt for c2 is ε-bad for c1, vice versa.



Proof for Theorem 1, Cont’d

Therefore,
Concepts c1 and c2 can’t both be learnt by any algorithms. Thus,
C is not learnable if β ≥ ε/(1 + ε)

In all,

EMAL(C ) <
ε

1 + ε

, where C is a distinct concept class.



A Lower Bound for EMAL(C ) & Sample Complexity Bound

Theorem
Let β < ε/4, and A be a β-tolerant Occam algorithm for C by H.
Then A is a β-tolerant learning algorithm for C by H; the sample
size required is m = O(1/ε ln 1/δ + 1/ε ln |H|).

Definition
If an algorithm A accesses POSβMAL and NEGβ

MAL and takes inputs
0 < ε, δ < 1; suppose that for target representation c ∈ C and
0 ≤ β < ε/4, A makes m calls to POSβMAL and recieves points

u1, ..., um ∈ X , and m calls to NEGβ
MAL and receives points

v1, ..., vm ∈ X , and outputs hA ∈ H satisfying with probability at
least 1− δ, hA is almost-consistent with positive sample and
almost-consistent with negative sample, where “almost-consistent”:
|{ui : ui ∈ neg(hA)}| ≤ ε

2m (for positive sample),
|{vi : vi ∈ pos(hA)}| ≤ ε

2m (for negative sample).
Such an algorithm A is a β-tolerant Occam algorithm for C by H
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Proof for the Second Theorem
For simplicity, we prove for positive examples and the case for
negative examples is similar.

Define bad hypothesis:

Let h ∈ H be such that e+(h) ≥ ε.

Fix a bad hypothesis h:

The probability that h agrees with a point received from POSβMAL :
Pr(agree/no error) · (1− β) + Pr(agree/error) · β
≤ (1− ε) · (1− β) + β = 1− ε+ ε · β ≤ 1− ε+ ε/4 = 1− 3ε

4

The prob. that hbad is almost-consistent with positive sample:

Among m events of which each succeeds with prob. at least 3ε
4 , at

most ε/2 happens. By Chernoff bounds, we have ≤ e−mε/24.

Among |H | hypothesis, the prob. that one such hbad exists:

By union bound, the probability that one such hypothesis exists is
at most |H|e−mε/24. Solve |H|e−mε/24 ≤ δ/2 and we get
m ≥ 24/ε(ln |H|+ ln 2/δ).
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Proof for the Second Theorem

The same argument also holds for NEGβ
MAL.

Thus,
if the output h is almost-consistent with both positive sample and
negative sample, then with probability at least 1− δ, the error
probability is at most ε on both D+ and D−, as long as
m ≥ 24/ε(ln |H|+ ln 2/δ).



Discussion

Efficiency

The second theorem gives a polynomial upper bound on the
sample complexity for finite representation class (|H| is finite), as
well as an exhaustic search algorithm that is β-tolerant learning
algorithm. However, the time complexity of such algorithm can be
super-polynomial.

A tight bound on EMAL(C )

Theorem 1 tells us that EMAL(C ) < ε
1+ε = O(ε) for distinct

concept class. The second theorem tells us for finite representation
class, that ∀β < ε/4, C is efficiently learnable; in other words,
EMAL(C ) ≥ ε/4 = Ω(ε).
In conclusion, these give us the tight bound Θ(ε) on EMAL(C ) for
distinct and finite representation class.



Endding

Practically,

No matter how “Not-So-Good” the oracles are, we can learn
probably approximately correct concept given any accuracy
parameter ε as long as the error probability β is stringently
bounded by ε.

Thank you!



The End


