Some Results from "Learning in the Presence of Malicious Errors", 88' STOC, Michael Kearns and Ming Li

Mengfei Cao

Tufts University

mcao01@cs.tufts.edu

March 5, 2013

Good Times

The original PAC learning model

- X: instance space
- C: concept class
- H: hypothesis class
- POS: an oracle that gives a positive example in unit time
- NEG: an oracle that gives a negative example in unit time
- D^+ : distribution over the positive subset of X given a concept c
- D^- : distribution over the negative subset of X given a concept c

Definition

We say *C* is PAC-learnable by *H* over *X* if: \exists algorithm *A*, s.t. $\forall \epsilon, \delta$: the input from (0, 1) $\forall c \in C$: the target concept, $\forall D^+, D^-$: instance distribution w.r.t. *c*, $h = A(\epsilon, \delta)$: $err^+(h) < \epsilon$ and $err^-(h) < \epsilon$ with prob. at least $1 - \delta$ by accessing *POS* and *NEG* and running in finite amount of steps where $err^+ = D_c^+(neg(h))$ and $err^- = D_c^-(pos(h))$

One More Thing

We have proved that 2-oracle model is equivalent to 1-oracle model

Not-So-Good Times

Learning with Malicous Errors

- X: instance space
- C: concept class
- H: hypothesis class

$$POS_{MAL}^{\beta}: \begin{cases} POS_{old} & \text{w.p. } 1-\beta \\ \text{some adversary} & \text{w.p. } \beta \end{cases}$$

$$NEG_{MAL}^{\beta}: \left\{ \begin{array}{ll} NEG_{old} & \text{w.p. } 1-\beta \\ \text{some adversary} & \text{w.p. } \beta \end{array} \right.$$

 D^+ : distribution over the positive subset of X given a concept c D^- : distribution over the negative subset of X given a concept c

Not-So-Good Times

 β -tolerant PAC-Learning (0 $\leq \beta < 1/2$)

We say C is β -tolerant PAC-learnable by H over X if:

 \exists algorithm A, s.t.

 $orall\epsilon,\delta$: the input from (0,1)

 $\forall c \in C$: the target concept,

 $\forall D^+, D^-$: instance distribution w.r.t. *c*,

 $h = A(\epsilon, \delta)$: $err^+(h) < \epsilon$ and $err^-(h) < \epsilon$ with prob. at least $1 - \delta$ by accessing POS^{β}_{MAL} and NEG^{β}_{MAL} and running in finite amount of steps

where
$$err^+ = D_c^+(neg(h))$$
 and $err^- = D_c^-(pos(h))$

If $\textit{POS}^{\beta}_{\textit{MAL}}$ and $\textit{NEG}^{\beta}_{\textit{MAL}}$ always behave strangely

What is the largest possible β so that we can still learn concepts?

Why do we have $\beta < 1/2$?

If POS^{β}_{MAL} and NEG^{β}_{MAL} always behave strangely

for example, when $\beta = 1$ and the adversary makes all "concepts" look like the same by manipulating examples. We can't learn correct concepts, not even close.

What is the largest possible β so that we can still learn concepts?

Why do we have $\beta < 1/2$?

If POS^{β}_{MAL} and NEG^{β}_{MAL} always behave strangely

for example, when $\beta=1$ and the adversary makes all "concepts" look like the same by manipulating examples. We can't learn correct concepts, not even close.

What is the largest possible β so that we can still learn concepts?

A: PAC learning algorithm for C $E_{MAL}(C, A)$: defined to be the largest β such that A is a β -tolerant learning algorithm for C ($\sim(\epsilon, \delta, \beta)$) $E_{MAL}(C)$: the supremum of $E_{MAL}(C, A)$ over all possible A

Why do we have $\beta < 1/2?$

If POS^{β}_{MAL} and NEG^{β}_{MAL} always behave strangely

for example, when $\beta=1$ and the adversary makes all "concepts" look like the same by manipulating examples. We can't learn correct concepts, not even close.

What is the largest possible β so that we can still learn concepts?

A: PAC learning algorithm for C $E_{MAL}(C, A)$: defined to be the largest β such that A is a β -tolerant learning algorithm for C ($\sim(\epsilon, \delta, \beta)$) $E_{MAL}(C)$: the supremum of $E_{MAL}(C, A)$ over all possible A

Why do we have $\beta < 1/2?$

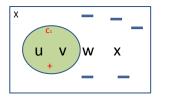
We will prove it for concept classes that are distinct

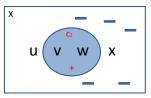
An Upper Bound for $E_{MAL}(C)$

Theorem

Definition

A concept class C is distinct iff $\exists c_1, c_2 \in C, u, v, w, x \in X$ s.t.





An Upper Bound for $E_{MAL}(C)$

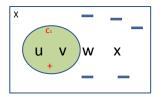
Theorem

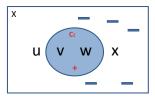
Let C be a distinct representation class. Then

$$E_{MAL}(C) < rac{\epsilon}{1+\epsilon}$$

Definition

A concept class C is distinct iff $\exists c_1, c_2 \in C, u, v, w, x \in X$ s.t.





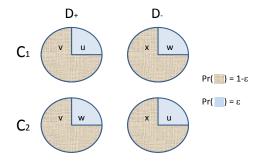
Proof for Theorem 1

Ideas:

Because C is distinct, we can make use of c_1, c_2, u, v, w, x and construct $D_1^+, D_1^-, D_2^+, D_2^-$ such that when β is at least $\frac{\epsilon}{1+\epsilon}$, c_1 and c_2 can't be learned for such distributions.

Proof:

Construct D^+, D^- as follows:



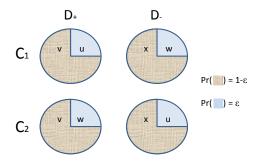
Worst-case Oracle:

Construct the adversary for c_1 as follows:

Whenever an error occurs (with prob. β), POS_{MAL}^{β} returns w and NEG_{MAL}^{β} returns u;

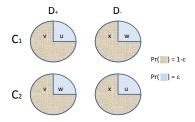
Construct the adversary for c_2 as follows:

Whenever an error occurs (with prob. β), POS^{β}_{MAL} returns u and NEG^{β}_{MAL} returns w;



Induced Distribution:

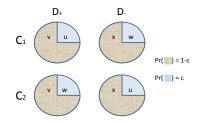
When the target concept is c_1 , if we access POS_{MAL}^{β} : $Pr_{c_1}^+(u) = (1 - \beta)\epsilon$, $Pr_{c_1}^+(v) = (1 - \beta)(1 - \epsilon)$, $Pr_{c_1}^-(w) = \beta$ if we access NEG_{MAL}^{β} : $Pr_{c_1}^-(w) = (1 - \beta)\epsilon$, $Pr_{c_1}^-(x) = (1 - \beta)(1 - \epsilon)$, $Pr_{c_1}^-(u) = \beta$ When the target concept is c_2 , if we access POS_{MAL}^{β} : $Pr_{c_2}^+(u) = \beta$, $Pr_{c_2}^+(v) = (1 - \beta)(1 - \epsilon)$, $Pr_{c_2}^+(w) = (1 - \beta)\epsilon$ if we access NEG_{MAL}^{β} : $Pr_{c_2}^-(w) = \beta$, $Pr_{c_2}^-(x) = (1 - \beta)(1 - \epsilon)$, $Pr_{c_2}^-(u) = (1 - \beta)\epsilon$



Induced Distribution:

When the target concept is c_1 , if we access POS_{MAL}^{β} : $Pr_{c_1}^+(u) = (1 - \beta)\epsilon$, $Pr_{c_1}^+(v) = (1 - \beta)(1 - \epsilon)$, $Pr_{c_1}^+(w) = \beta$

When the target concept is c_2 , if we access POS^{β}_{MAL} : $Pr^+_{c_2}(u) = \beta$, $Pr^+_{c_2}(v) = (1 - \beta)(1 - \epsilon)$, $Pr^+_{c_2}(w) = (1 - \beta)\epsilon$

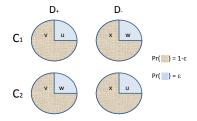


Induced Distribution:

When the target concept is c_1 ,

if we access NEG^{β}_{MAL} : $Pr^{-}_{c_{1}}(w) = (1 - \beta)\epsilon$, $Pr^{-}_{c_{1}}(x) = (1 - \beta)(1 - \epsilon)$, $Pr^{-}_{c_{1}}(u) = \beta$ When the target concept is c_{2} ,

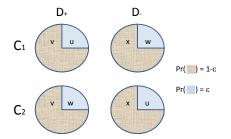
if we access NEG^{β}_{MAL} : $Pr^{-}_{c_2}(w) = \beta$, $Pr^{-}_{c_2}(x) = (1 - \beta)(1 - \epsilon)$, $Pr^{-}_{c_2}(u) = (1 - \beta)\epsilon$



If $\beta = \epsilon/(1 + \epsilon)$, then both the two pairs of distributions $(Pr_{c_1}^+(), Pr_{c_2}^+())$, $(Pr_{c_1}^-(), Pr_{c_2}^-())$ are identical respectively.

In other words, when we try to learn c_1 and c_2 , oracles will give us examples from exactly the same distributions.

Even when $\beta > \epsilon/(1 + \epsilon)$, the adversary can simulate D^+ and D^- appropriately so as to reduce the outcome error probability to $\epsilon/(1 + \epsilon)$.



If *h* is ϵ -good hypothesis learnt for c_2 , then $err_{c_2}^+(h) = D_{c_2}^+(neg(h)) < \epsilon$, $err_{c_2}^-(h) = D_{c_2}^-(pos(h)) < \epsilon$, so $w \in pos(h)$ and $u \in neg(h)$. Yet: $err_{c_1}^+(h) = D_{c_1}^+(neg(h)) \ge D_{c_1}^+(\{u\}) = \epsilon$ $err_{c_1}^-(h) = D_{c_1}^-(pos(h)) \ge D_{c_1}^-(\{w\}) = \epsilon$ Thus any ϵ -good hypothesis learnt for c_2 is ϵ -bad for c_1 , vice versa.

Therefore,

Concepts c_1 and c_2 can't both be learnt by any algorithms. Thus, C is not learnable if $\beta \ge \epsilon/(1+\epsilon)$

In all,

$$E_{MAL}(C) < rac{\epsilon}{1+\epsilon}$$

, where C is a distinct concept class.

A Lower Bound for $E_{MAL}(C)$ & Sample Complexity Bound

Theorem

Definition

If an algorithm A accesses POS^{β}_{MAI} and NEG^{β}_{MAI} and takes inputs $0 < \epsilon, \delta < 1$; suppose that for target representation $c \in C$ and $0 \le \beta < \epsilon/4$, A makes m calls to POS^{β}_{MAI} and recieves points $u_1, ..., u_m \in X$, and *m* calls to NEG^{β}_{MAL} and receives points $v_1, \ldots, v_m \in X$, and outputs $h_A \in H$ satisfying with probability at least $1 - \delta$, h_A is almost-consistent with positive sample and almost-consistent with negative sample, where "almost-consistent": $|\{u_i : u_i \in neg(h_A)\}| \leq \frac{\epsilon}{2}m$ (for positive sample), $|\{v_i : v_i \in pos(h_A)\}| \leq \frac{\epsilon}{2}m$ (for negative sample). Such an algorithm A is a β -tolerant Occam algorithm for C by H

A Lower Bound for $E_{MAL}(C)$ & Sample Complexity Bound

Theorem

Let $\beta < \epsilon/4$, and A be a β -tolerant Occam algorithm for C by H. Then A is a β -tolerant learning algorithm for C by H; the sample size required is $m = O(1/\epsilon \ln 1/\delta + 1/\epsilon \ln |H|)$.

Definition

If an algorithm A accesses POS^{β}_{MAI} and NEG^{β}_{MAI} and takes inputs $0 < \epsilon, \delta < 1$; suppose that for target representation $c \in C$ and $0 \le \beta < \epsilon/4$, A makes m calls to POS^{β}_{MAI} and recieves points $u_1, ..., u_m \in X$, and *m* calls to NEG^{β}_{MAL} and receives points $v_1, \ldots, v_m \in X$, and outputs $h_A \in H$ satisfying with probability at least $1 - \delta$, h_A is almost-consistent with positive sample and almost-consistent with negative sample, where "almost-consistent": $|\{u_i : u_i \in neg(h_A)\}| \leq \frac{\epsilon}{2}m$ (for positive sample), $|\{v_i : v_i \in pos(h_A)\}| \leq \frac{\epsilon}{2}m$ (for negative sample). Such an algorithm A is a β -tolerant Occam algorithm for C by H

For simplicity, we prove for positive examples and the case for negative examples is similar.

Define bad hypothesis:

Fix a bad hypothesis *h*:

The prob. that h_{bad} is almost-consistent with positive sample:

For simplicity, we prove for positive examples and the case for negative examples is similar.

Define bad hypothesis:

Let $h \in H$ be such that $e^+(h) \ge \epsilon$.

Fix a bad hypothesis *h*:

The prob. that h_{bad} is almost-consistent with positive sample:

For simplicity, we prove for positive examples and the case for negative examples is similar.

Define bad hypothesis:

Let $h \in H$ be such that $e^+(h) \ge \epsilon$.

Fix a bad hypothesis h:

The probability that *h* agrees with a point received from POS_{MAL}^{β} : $Pr(agree/no \ error) \cdot (1 - \beta) + Pr(agree/error) \cdot \beta$ $\leq (1 - \epsilon) \cdot (1 - \beta) + \beta = 1 - \epsilon + \epsilon \cdot \beta \leq 1 - \epsilon + \epsilon/4 = 1 - \frac{3\epsilon}{4}$

The prob. that h_{bad} is almost-consistent with positive sample:

For simplicity, we prove for positive examples and the case for negative examples is similar.

Define bad hypothesis:

Let $h \in H$ be such that $e^+(h) \ge \epsilon$.

Fix a bad hypothesis h:

The probability that *h* agrees with a point received from POS_{MAL}^{β} : $Pr(agree/no \ error) \cdot (1 - \beta) + Pr(agree/error) \cdot \beta$ $\leq (1 - \epsilon) \cdot (1 - \beta) + \beta = 1 - \epsilon + \epsilon \cdot \beta \leq 1 - \epsilon + \epsilon/4 = 1 - \frac{3\epsilon}{4}$

The prob. that h_{bad} is almost-consistent with positive sample: Among *m* events of which each succeeds with prob. at least $\frac{3\epsilon}{4}$, at most $\epsilon/2$ happens. By Chernoff bounds, we have $\leq e^{-m\epsilon/24}$.

For simplicity, we prove for positive examples and the case for negative examples is similar.

Define bad hypothesis:

Let $h \in H$ be such that $e^+(h) \ge \epsilon$.

Fix a bad hypothesis h:

The probability that *h* agrees with a point received from POS_{MAL}^{β} : $Pr(agree/no \ error) \cdot (1 - \beta) + Pr(agree/error) \cdot \beta$ $\leq (1 - \epsilon) \cdot (1 - \beta) + \beta = 1 - \epsilon + \epsilon \cdot \beta \leq 1 - \epsilon + \epsilon/4 = 1 - \frac{3\epsilon}{4}$

The prob. that h_{bad} is almost-consistent with positive sample: Among *m* events of which each succeeds with prob. at least $\frac{3\epsilon}{4}$, at most $\epsilon/2$ happens. By Chernoff bounds, we have $\leq e^{-m\epsilon/24}$.

Among |H| hypothesis, the prob. that one such h_{bad} exists: By union bound, the probability that one such hypothesis exists is at most $|H|e^{-m\epsilon/24}$. Solve $|H|e^{-m\epsilon/24} \le \delta/2$ and we get $m \ge 24/\epsilon (\ln |H| + \ln 2/\delta)$. The same argument also holds for NEG_{MAL}^{β} .

Thus,

if the output *h* is almost-consistent with both positive sample and negative sample, then with probability at least $1 - \delta$, the error probability is at most ϵ on both D^+ and D^- , as long as $m \geq 24/\epsilon(\ln|H| + \ln 2/\delta)$.

Discussion

Efficiency

The second theorem gives a polynomial upper bound on the sample complexity for finite representation class (|H| is finite), as well as an exhaustic search algorithm that is β -tolerant learning algorithm. However, the time complexity of such algorithm can be super-polynomial.

A tight bound on $E_{MAL}(C)$

Theorem 1 tells us that $E_{MAL}(C) < \frac{\epsilon}{1+\epsilon} = O(\epsilon)$ for distinct concept class. The second theorem tells us for finite representation class, that $\forall \beta < \epsilon/4$, C is efficiently learnable; in other words, $E_{MAL}(C) \geq \epsilon/4 = \Omega(\epsilon)$.

In conclusion, these give us the tight bound $\Theta(\epsilon)$ on $E_{MAL}(C)$ for distinct and finite representation class.

Endding

Practically,

No matter how "Not-So-Good" the oracles are, we can learn probably approximately correct concept given any accuracy parameter ϵ as long as the error probability β is stringently bounded by ϵ .

Thank you!

The End