Graph Vertex Colorability & the Hardness

Mengfei Cao COMP-150 Graph Theory Tufts University

In General:

- Graph-2-colorability is in N
- Graph-3-colorability is NP-complete (Reduce to k≥4) [2]
- Graph-3-colorability with $\Delta \le 4$ is NP-complete [1]

Introduce Planarity:

- Planar graph is 5-colorable (1890), 4-colorable (1977) [3]
- Planar and Δ -free graph is 3-colorable (1959) [4]
- Graph-3-colorability on planar graph is NP-complete [1]
- Graph-3-colorability on planar graph with $\Delta \le 4$ is NP-complete [5]

- Graph-3-colorability on Δ -free graph with $\Delta \leq 4$ is NP-complete [5]
- Graph-k-colorability on $\Delta\text{-free}$ graph with Δ bounded by a function of k, is NP-complete [5]

DFS, BFS

In General:

- Graph-2-colorability is in N
- Graph-3-colorability is NP-complete (Reduce to k≥4) [2]
- Graph-3-colorability with $\Delta \le 4$ is NP-complete [1]

Introduce Planarity:

- Planar graph is 5-colorable (1890), 4-colorable (1977) [3]
- Planar and Δ -free graph is 3-colorable (1959) [4]
- Graph-3-colorability on planar graph is NP-complete [1]
- Graph-3-colorability on planar graph with $\Delta \le 4$ is NP-complete [5]

- Graph-3-colorability on Δ -free graph with $\Delta \leq 4$ is NP-complete [5]
- Graph-k-colorability on $\Delta\text{-free}$ graph with Δ bounded by a function of k, is NP-complete [5]

In General:

- Graph-2-colorability is in N
- Graph-3-colorability is NP-complete (Reduce to k≥4) [2]
- Graph-3-colorability with $\Delta \le 4$ is NP-complete [1]

Introduce Planarity:

- Planar graph is 5-colorable (1890), 4-colorable (1977) [3]
- Planar and Δ -free graph is 3-colorable (1959) [4]
- Graph-3-colorability on planar graph is NP-complete [1]
- Graph-3-colorability on planar graph with $\Delta \le 4$ is NP-complete [5]

- Graph-3-colorability on Δ -free graph with $\Delta \leq 4$ is NP-complete [5]
- Graph-k-colorability on $\Delta\text{-free}$ graph with Δ bounded by a function of k, is NP-complete [5]

Graph-3-colorability

- In NP: verify a coloring in O(|E|+|V|), BFS or DFS
- Reduction from 3-SAT:
 - \checkmark An instance of 3-SAT with variables <u>U={u_j}</u> and clauses <u>C={Ci}</u>;
 - ✓ Consider the following transformation to graph G so that there exists a satisfying truth assignment for all $\{C_i\}$ i.f.f. there is a proper 3-coloring $\{0, 1, 2\}$:

- 1) 3-colorable;
- 2) Output = 0, when all inputs are 0; 2) Coloring -> assign 0, 1 or 2, o.w.

In General:

- Graph-2-colorability is in N
- Graph-3-colorability is NP-complete (Reduce to k₄) [2]
- Graph-3-colorability with ∆≤4 is NP-complete [1]

Introduce Planarity:

- Planar graph is 5-colorable (1890), 4-colorable (1977) [3]
- Planar and Δ -free graph is 3-colorable (1959) [4]
- Graph-3-colorability on planar graph is NP-complete [1]
- Graph-3-colorability on planar graph with $\Delta \le 4$ is NP-complete [5]

- Graph-3-colorability on Δ -free graph with $\Delta \leq 4$ is NP-complete [5]
- Graph-k-colorability on $\Delta\text{-free}$ graph with Δ bounded by a function of k, is NP-complete [5]

<u>Graph-3-colorability $\Delta \leq 4$ (G₃*)</u>

- In NP: verify a coloring in O(|E|+|V|), BFS or DFS
- Reduction from graph-3-colorability(G₃):
 - \checkmark An instance of graph G_3 ;
 - ✓ Consider the following transformation to graph G_3^* so that there exists a proper 3-coloring for G_3 i.f.f. there is a proper 3-coloring for G_3^* :

1) All the outlet vertices must share the same colors 2) Coloring to $G_3 \iff$ Coloring to G_3^*

In General:

- Graph-2-colorability is in N
- Graph-3-colorability is NP-complete (Reduce to k≥4) [2]
- Graph-3-colorability with $\Delta \le 4$ is NP-complete [1]

Introduce Planarity:

- Planar graph is 5-colorable (1890), 4-colorable (1977) [3]
- Planar and Δ -free graph is 3-colorable (1959) [4]
- Graph-3-colorability on planar graph is NP-complete [1]
- Graph-3-colorability on planar graph with $\Delta \le 4$ is NP-complete [5]

- Graph-3-colorability on Δ -free graph with $\Delta \leq 4$ is NP-complete [5]
- Graph-k-colorability on $\Delta\text{-free}$ graph with Δ bounded by a function of k, is NP-complete [5]

Introduce Planarity

Planar graph is 5-colorable (Heawood, 1890)

Consider 5 components

Grotzsch's Theorem

Planar graph is 4-colorable (Appel-Haken-Koch, 1977)

Unavoidable configurations

- Planar and Δ-free graph is 3-colorable (Grotzsch, 1959)
 - Graph-3-colorability on planar graph is NP-complete [1]
- Graph-3-colorability on planar graph with Δ≤4 is NP-complete [5]

From graph-3-colorability

In General:

- Graph-2-colorability is in N
- Graph-3-colorability is NP-complete (Reduce to k≥4) [2]
- Graph-3-colorability with $\Delta \le 4$ is NP-complete [1]

Introduce Planarity:

- Planar graph is 5-colorable (1
- Planar and Δ -free graph is 3-
- Graph-3-colorability on plana
- Graph-3-colorability on plana

```
, 4-colorable (1977) [3]
rable (1959) [4]
ιph is NP-complete [1]
ιph with ∆≤4 is NP-complete [5]
```

- Graph-3-colorability on Δ-free graph with Δ≤4 is NP-complete [5]
- Graph-k-colorability on Δ-free graph with Δ bounded by a function of k, is NP-complete [5]

<u>Graph-3-colorability, ∆-free & ∆≤4 (G3*)</u>

- In NP: verify a coloring in O(|E|+|V|), BFS or DFS
- Reduction from G3 with $\Delta \le 4$ (G3):
 - \checkmark An instance of graph G3 without 4-clique;
 - ✓ Consider the following auxiliary graph used to transform from G3 to graph G3* so that there exists a 3-coloring on G3 i.f.f. there is a proper 3-coloring on G3*:

Auxiliary graph H:

<u>A-free & 3-colorable;</u>
 b, e, f are colored 3 different colors;
 b and c share the same color 1;
 a and d are colored 2 and 3; therefore e and f are colored 3 and 2.
 So b and g have same color 1 and degree 2; -- outlets

✓ Start with $G_0 = G$:

✓Repeat for i=1,...,n:

- > Consider each vertex u_j , j=1,2,...,n;
- > If every neighborhood $N(u_j)$ in G_i has no edge or isomorphic to $K_{1,3}$, then $G_i = G_{i-1}$;
- ➤ Else partition N(u_j) into two independent sets with size ≤2 and substitute u_j with H(u_j), connecting the outlets to each sets;

 $\checkmark G^* = G_n$

- > G* has no triangles and $\Delta \le 4$;
- > A proper 3-coloring to G is also a
 - 3-coloring to G*

In General:

- Graph-2-colorability is in N
- Graph-3-colorability is NP-complete (Reduce to k≥4) [2]
- Graph-3-colorability with $\Delta \le 4$ is NP-complete [1]

Introduce Planarity:

- Planar graph is 5-colorable (1890), 4-colorable (1977) [3]
- Planar and Δ -free graph is 3-colorable (1959) [4]
- Graph-3-colorability on planar graph is NP-complete [1]
- Graph-3-colorability on planar graph with $\Delta \le 4$ is NP-complete [5]

- Graph-3-colorability on Δ -free graph with $\Delta \leq 4$ is NP-complete [5]
- Graph-k-colorability on Δ-free graph with Δ bounded by a function of k, is NP-complete [5]

<u>Graph-k-colorability (Δ ?)</u>

- Graph-k-colorability on Δ -free graph with Δ bounded by a function of k, is NP-complete [5]
- A randomized polynomial time algorithm (Karger, Motwani Sudan, 1998 [8]) gives

 $\min\{O(\Delta^{1/3}\log^{1/2} \Delta \log n), O(n^{1/4}\log^{1/2} n)\}$

approximation on 3-colorable graph; and

 $\min\{O(\Delta 1-2/k\log 1/2 \Delta \log n), O(n1-3/(k+1)\log 1/2n)\}$

approximation on k-colorable graph.

Approximation Bound

- Non-constant guarantee [10]:
 - For any e>0, it is hard to obtain $\Omega(n^{-e})$ factor approximation unless NP in ZPP(zero-error probabilistic polynomial time).
- Other approximation:
 - 3-color: $O(n^{1/2})$ [7], ~ $O(n^{0.25})$ [8], $O(n^{0.2072})$ [9]

References

[1] M.R. Garey and D.S. Johnson, <u>Computer and Intractability:</u> <u>A Guide to the Theory of Npcompleteness</u>, W.H. Freeman, San Fransisco, 1979.

[2] R.M. Karp, <u>Reducibility among combinatorial problems</u>, Plenum Press, New York, 1972.

[3] D. West, Introduction to Graph Theory, 2nd edition, Prentice-Hall, 2001

[4] B. Grfinbaum, <u>Grotzsch's theorem on 3-colorings</u>, Michigan Math. J. 10, 1963.

[5] F. Maffray and M. Preissmann, <u>On the NP-completeness of</u> <u>the k-colorability problem for triangle-free graphs</u>. *Discrete Math.* 162, 1996

[6] A. Wigderson. <u>Improving the performance guarantee for</u> <u>approximate graph coloring</u>. J. ACM, 30(4):729–735, 1983. [8] D. R. Karger, R. Motwani, and M. Sudan. <u>Approximate</u> <u>graph coloring by semidefinite programming</u>. In IEEE Symposium on Foundations of Computer Science, 1994.

[9] E. Chlamtac. <u>Approximation algorithms using hierarchies of</u> <u>semidefinite programming relaxations</u>. FOCS: Proceedings of the 48th Annual IEEE Symposium on Foundations of Computer Science, 2007

[10] U. Feige and J. Kilian. <u>Zero Knowledge and chromatic</u> <u>number.</u> In Proceedings of the 11th Annual Conference on Structure in Complexity Theory, 1996

Thanks!

Questions and Comments?