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Abstract

 

The work presents a feature selection method 
using evidence maximization for linear 
regression model. This method works for any 
given number as the size of selected feature 
subset and gives the MAP solution to regression 
problem that also maximizes the evidence 
function. Experiments are conduct by looking at 
the optimality through comparing two variants of 
this feature selection method to Bayesian 
regression with a shared prior; another 
experiment is conduct by comparing the feature 
selection method using evidence function and 
that using correlational co-efficient. 

1.  Introduction 

Feature selection is a critical issue in various research 
areas such as computational biology, where datasets are 
provided with several features but it is unknown which 
features are relevant or there is the problem of curse of 
dimensionality. Typically these two purposes are also the 
general goals in other fields; in addition improving the 
prediction performance, enhancing model describability 
and exalting the understanding of the data’s generation 
are also vital and will benefit from the solution to feature 
selection. Many methods have been brought forward such 
as wrapper method and been used widely; this paper 
mainly concentrates on the feature ranking in Bayesian 
linear model for regression. 

Various methods to measure the correlation between 
features and target have been studied such as Pearson 
correlation coefficient, performance of single feature 
classifiers and so on. However, there are issues such as 
complexity, redundancy and optimality that would 
provide compromise between measurements on each 
method. 

Next the Bayesian linear model for regression is 
introduced briefly and the evidence approximation is 
followed. What is interesting is that this evidence 
approximation not only offers choices of models, but also 
offers the opportunity to conducting feature selection by 
ranking features according to correlational values.  

————— 
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1.1  Bayesian Linear Regression 

The Bayesian linear model for regression is used to pred-
ict the value of one or more continuous target variables t 
given the value of a D-dimensional vector x of input 
variables. This paper focuses on the situation where there 
are N observations {xn}, where n=1,…,N, together with 
single valued target values {tn}; the purpose is to 
approximate the value of t for a new value of x through a 
linear combination of feature basis. Specifically, a basis 
function Φ(x) is given so as to allow non-linearity w.r.t. 
input features vectors x. The following computation 
follows: 

 (   )  ∑     ( )
 
                           (1) 

where w=(w0,…,wM-1)
T and Φ=(Φ0,…, ΦM-1)

T. 

In order to characterize the observations in reality, 
Gaussian noise is added so that the target value t is: 

 ( )    (   )                              (2) 

where e~N(0, 
 

 
I), and   is the model parameter. 

Therefore t has the normal distribution N(y(x,w),
 

 
I). The 

task is to calculate w so as to maximize the posterior 

probability of w. The posterior follows the form: 

 (         )   (       )   (   )        (3) 

where  (   ) is the preset prior in normal distribution 
N(m0,S0), and the setting follows m0=0, S0=α(diagonal 
matrix) for simplicity. Here α is a matrix as model 
parameter. As for the likelihood, it has the form: 

 (       )  ∏  (         )
 
              (4)  

where p(tn|xn,w,β) is Gaussian probability density 

function for observation xn. (The product comes from the 

independent identically distributed assumption) 

From equation (3), we can calculate the posterior 

distribution of w. It follows Gaussian distribution N(mN, 

SN): 

     (  
     

    )                    (5) 

   (  
     

  )                          (6) 

Ideally by integrating over all these parameters as well as 
w, we can make predictions on any new examples, but 
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this computation is intractable. Instead we need to specify 

these parameters. 

Now instead we can derive the MAP (maximum a 

posteriori estimation) solution for wMAP using mN because 

the mean of Gaussian distribution is also the mode. By 

applying parameters (   ) and feature vectors into (5) 
and (6), we can solve the Bayesian regression problem. 

Nevertheless, even though we have simplified by setting 

     and   to be a diagonal matrix, still  and   

representing the model remain to be determined as they 

are not universal but case-sensitive to different version 

space. 

Next an evidence approximation method (Bishop [Chap 

3.5], 2006) is introduced so as to unravel the model 

selection problem. 

1.2  Evidence Maximization 

Instead of integrating over all parameters and w, an 
evidence function is defined by integrating w only and 
then a maximization routine is imposed. The evidence 
function E(*) is defined as the marginal probability of 
target t: 

                        E(x    )= (       ) 

   (       ) (   )dw      (7) 

Then maximize this evidence by equaling the derivative 
to zero w.r.t   and  . The solution to these equations 
gives the optimal parameter values to   and   assuming 
that evidence characterizes model optimality.   

Due to lack of closed form solutions, an iterative routine 
is applied and the convergent solution to   and   is 
obtained. 

2.  Feature Selection 

It seems to be always true that the more information is 
utilized, the more accurate the model should be over 
training. However there are issues such as curse of 
dimensionality, or irrelevant features. Feature selection 
facilitates high-dimensional calculation in that it reduces 
the dimensionality. Also, under some circumstances the 
selected features can also avoid over-fitting problem in a 
lot of learning tasks by removing redundant or irrelevant 
features. Further, it enhances the interpret-ability of the 
model. 

Naively, exhausting all subsets of the feature space will 
give the best one by learning on each subset. However, it 
requires exponential calculation and thus is computa-
tionally intractable. In addition, different measurement of 
feature set might give different result, which adds up the 
difficulty in finding the general optimum but also gives 
the flexibility of finding optimal solution in specific case. 
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Figure 1. Model Selection Framework 

 

Under the Bayesian linear regression situation, the prior 
gives an alternative to approximating optimal   Recall that 
in the Bayesian regression setting, a conjugate prior is 
used for w, where the mean values are zero and the 
covariance matrix is diagonal, such that every feature 
dimension is independent from each other and has 
variance     , where i=1,…,M. Intuitively, when     , 
this  feature should have 0 variance and thus be totally 
irrelevant with target t; on the other hand, when    is 
close to 0, this feature should have values distributed 
widely in R on various different  examples. Even though 
the latter case doesn’t guarantee high dependency of 
target on this particular feature, yet it is sufficient to show 
that there is the correlation between target value and this 
feature. Therefore, by deriving (       ) s.t. 
maximizing the evidence function, we can set a threshold 
to separate the relevant features from irrelevant features. 
The advantage is that this feature selection strategy gives 
the flexibility that for any given number k, it can result in 
a feature subset with size k, by cutting off at the kth value 
among   vector. 
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Again, by taking derivation of (7) w.r.t   and   and 
setting to zero, we derive the iterative solutions to all 
parameters: 

       
  ,                                (8) 

   (    ( )    
  )  ,                     (9) 

           ,                             (10) 

  
       

  

  
 ,                               (11) 

        
|       |

 

  ∑  
,                         (12) 

where    is the    entry in    and     is the element at 
    row and     column. 

By setting initial values to   and  , then updating   , 
  ,   sequentially, we can calculate the new   and  , 
finally converging to optimal    and   . 

Thus there is the feature selection algorithm based on 
evidence approximation method. 

 

 Algorithm 1  Model Selection Using Evidence 
 
 Input: feature vectors  (  ) ,i=1,…,N,  in   ; initial 
values (  

      
    ); 

 Init:     ,      
 , i=1,…,M 

 repeat 
     Update         using (8), (9), (10); 
 until  No changes between two iterations of parameters 
 Output:         and         
 

 

 

 Algorithm 2  Feature Selection Using Evidence 
 
 Input: feature vectors  (  ) ,i=1,…,N,  in   ; k   , 
indicating the number of features to be selected; 
  Step 1: apply Algorithm 1 and obtain        ; 

  Step 2: choose k columns             s.t        
 , 

where   is the    value among    non-decreasing order; 
  Step 3: apply Algorithm 1 on the subspace by selected k 
features and obtain       

 ; 
Output:       

  
 

 

Possible Problems:  

 Convergence Condition: intuitively the concavity 
of evidence function guarantees that the iteration 
will terminate but it remains to be theoretically 
verified. 

 Convergence Speed: even though compared to 
exhaustive search the feature selection using 

evidence function outperforms at speed, it might 
end up with extremely low speed when the 
iteration progresses slowly; thus it remained to 
be studied which optimization algorithm should 
be used so as to find parameters to maximize the 
evidence function. 

 Global optimum V.S. local optimum: it is not 
guaranteed to obtain global optimum especially 
when multiple peaks are present; also it relies on 
the choice of initialization. 

 Stability: regarding the computation issue, since 
equation (9) requires computing inverse of 
matrix, near-singular matrices make it difficult to 
progress, which in the experiment turns out to be 
a critical issue. 

 Optimality: this algorithm doesn’t distinguish 
repetitive features explicitly; namely if some 
feature is highly correlated with target but exists 
in multiple observations, therefore they will fill 
in more quota among the pre-defined feature set 
size k, than it is supposed to be. However it 
doesn’t have to be true because the model has the 
assumption that features are independent from 
each other due to the zero co-variance in the 
prior. Therefore implicitly this algorithm might 
work on this problem but remains to be 
theoretically verified. Further this effect can be 
moderated by sequential feature selection 
through cross validation or other methods such 
as wrapper. 

A specific issue is that during feature selection stage, two 
different variants can be applied so as to obtain final 
weight vector     : one normal strategy is to train 
    in the k-dimensional selected feature space using 
model selection module; the other faster way is just using 
the corresponding    w.r.t. selected column from      
trained on the whole feature space. The former strategy 
(noted as Retrain After Selection) should suffice so as to 
give best model on the selected feature space as long as 
the iterative routine works. The latter strategy (noted as 
Fast Train), however, seems to degrade because the entry 
comes from the maximization on all feature space. Unless 
the removed features have no any contribution to 
predicting targets, the weight vector     

 trained from 
the selected features should outperform because it has 
looser constraints in maximizing evidence function, 
resulting in higher evidence. Nevertheless, in the 
experiment it is shown that the latter strategy doesn’t 
really output awkward performance but can save huge 
amount of time. 
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Figure 2. Feature Selection Framework 

3.  Experiments 

3.1  Dataset 

Three datasets are used with different number of features 
and examples so as to test the feature selection utility 
(Table 1), among which both training data and test data 
are provided.  

3.2  Comparison Between Two Variants of Feature 

Selection Using Evidence Maximization 

On each dataset, firstly three sets of weight vector      
are trained from the whole training data: two identical sets 
for feature selection, and one for model selection with 
fixed  . Then by setting k from 1 to M, where M is the 
dimensionality on whole training data, separately apply 
two strategies to obtain the final     

 , one using the 
original entry in     (Fast Train), and the other using 
model selection again to train     

  (Retrain After 
Selection).  

 

Figure 3. Comparison Between Retrain After Selection 

(namely train new w after feature selection) and Fast Train 

(namely use w entry of selected feature from first w) as well as 

model selection using fixed α. (x-axis is the number of features 

selected, namely k; y-axis is the mean-square-error on test 

dataset) 

As indicated in Fig. 3, on the first dataset, when the 
selected 5 features are used, the Bayesian linear model 
with different    can perform equally to that with the 
same   ; this also holds for the other two datasets and the 
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percentage of selected features so as to perform equally is 
at most 50%. 

In addition, compared to Fast Train, the Retrain After 
Selection achieves earlier convergence and thus needs 
even less features. However, the running time degrades a 
lot; in particular after the first model selection, the Fast 
Train strategy only requires  (     ) so as to select the 
k columns and corresponding k entries in     ; but the 
Retrain After Selection requires another set of iterations 
so as to obtain the MAP solution, which is  (     
     ) where Iter is the number of iterations before 
convergence. Typically one for the total 100 rounds of 
experiments on the second dataset, the time spent on Fast 
Train is less than 1 second while the time spent on Retain 
After Selection is more than 2 minutes. 

Finally, actually it was expected that by applying different 
priors on each feature, the optimal MSE on test dataset 
should be lower than that using the same prior on all 
features. However, only on the first dataset the optimal 
MSE using different features is obtained when 7 features 
are selected and the value is 4.1536; the method using the 
same prior and all features gives MSE as 4.1801. On the 
other two datasets, the performance of model selection 
using the same prior has slightly better MSE than that 
with different priors. Intuitively by using different priors 
on features, it expands the weight vector space and thus 
may potentially obtain better solution; however according 
to the observations in the experiment, the issue of 
calculating matrix inverse is critical. When setting the 
convergence condition, it can’t be two precise; otherwise 
there will be a cyclic process where it never terminates. 
Also the least-square based approximation is applied by 
using pinv() function in MATLAB. Therefore the 
precision limits the performance of both model selection 
and feature selection when different priors are added 
because from equations (9) and (10) the inverse has to be 
calculated explicitly and precisely. 

3.3  Comparison Between Method Based On Corre-
lational Co-efficient And That Using Evidence 

Function 

Another intuitional measurement of correlation between 
features and target is by calculating the correlational co-
efficient: 

  (    )  
∑ (  (  )   

 )(    
 ) 

∑ (  (  )   
 )
 

 ∑ (    
 )
 

 

            (14) 

where    is the     column in the training data, t=(t1,…,tN) 
is the label vector,   (  ) is the    example’s    feature 
value,   

  is the mean value of     feature, t* is the mean 
value of label vector. 

Then apply this co-efficient vector to obtain the ranking 
of features. Thereafter for each given number k, select 
first ranked-k features as the subset. Followed is the 
routine where model selection is executed based on the 
selected feature space. 

 

Figure 4. Comparison Between Feature Selection Using 

Evidence Function and Feature Selection Using Correlational 

Co-efficient. (x-axis is the number of features selected, namely 

k; y-axis is the mean-square-error on test dataset) 

As shown in Fig. 4, these two feature selection methods 
give almost the same performance for different sizes of 
feature sets. Even though by visually checking the subset 
for each size, the resulting two subsets are not identical, 
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however they give almost the same MSE on the test 
dataset. 

Consider the complexity: the correlational co-efficient 
based method requires O(M*N) time to calculate the co-
efficient for each feature; the evidence function based 
method requires O(Iter*(M3+M*N)), where Iter is the 
number of iterations required for convergence, O(M3) is 
used for calculating inverse and O(M*N) is used for 
matrix multiplications. Therefore in this case it seems that 
the correlational co-efficient based method outperforms. 

However, consider the redundancy removal capability: it 
is for sure that the correlational co-efficient based method 
can’t distinguish multiple repeated features at all; yet the 
evidence function based method might work implicity 
from the discussion in the previous sections. 

   

4.  Discussion 

Further work regarding theoretical verification remaining 
to be done around convergence issue, optimality issue, 
etc. Also a typical application into computational biology 
is quite straightforward: distinguish positive protein 
families where a simulated evolution model fits from 
protein families where this simulated evolution model 
does not fit. The label of each family is represented by the 
difference between percentages of AUC (area under the 
curve) for ROC (receiver operating characteristic) on 
protein homology detection tasks with and without 
simulated evolution. Therefore it is a regression problem 
and the correlational values are needed so as to conduct 
feature selection. 

 

Acknowledgments 

It is a pleasure to thank Prof. Roni Khardon for excellent 
lectures in this semester. I also would like to thank Prof. 
Khardon for advice on the project, which made it 
possible. 

References 

Christopher M. Bishop. (2006) Pattern Recognition and 
Machine Learning. Springer.. 

Mitchell T. (1997) Machine Learning. McGraw Hill.. 

MacKay, D. J. C. (1992) The evidence framework applied 
to classification networks. Neural Computation, 4(5), 
720-736. 

Khardon R.,(2011) Statistical Pattern Recognition Course 
Webpage: http://www.cs.tufts.edu/~roni/Teaching/SPR/ 

Guyon I. and Elisseeff A.. (2003) An introduction to 
variable and feature selection. Journal of Machine 
Learning Research, 3:1157-1182. 

Minka, T. (2000). Bayesian linear regression (Technical 
Report). MIT. 

Kumar A. and Cowen L.. (2010) Recognition of beta 
structural motifs using hidden Markov models trained 
with simulated evolution. Bioinformatics, 26:i287-i293. 

 

Table 1. Datasets Attributes. 

DATA SET #TRAIN-

EXAMPLES 

#TEST-

EXAMPLES 

#FEATURES 

100-10 100 100 10 
100-100 100 100 100 

1000-100 1000 1000 100 

 

 

 

 

 

 

Appendix 

1. Model_Selection.m: select models, calculates model 
parameters. 

function Model_Selection 
% 
%  Filename:      Model_Selection.m 
%  Date:          Dec. 11th, 2011 
%  Name:          Mengfei Cao 
%  Descriptions: 
%                 Take 3 datasets as input 

with both training 
%                 and test data, including 

features and labels; 
%                 1) Use iterative 

algorithm to calculate the 
%                 parameters that maximize 

the evidence function; 
%                 (so that by setting 

different threshold we can  
%                 select features from 

alpha vector)  
%                 2) Use the MAP solution 

to calculate the MSE. 
% 
%  Code written in MATLAB 7.11.0(R2010b) 
% 

  
pnExampleCount = [100 100 1000]; 
pnFeatureCount = [10 100 100]; 

  
initvalue = [1000 10 500]; 
alpha = zeros(100,3); 
mn_res = zeros(100,3); 
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for i=1:3 
    tic; 
    sTrainDataFile = sprintf('train-%d-

%d.csv', pnExampleCount(i),... 
        pnFeatureCount(i) ); 
    sTestDataFile = sprintf('test-%d-

%d.csv', pnExampleCount(i),... 
        pnFeatureCount(i) ); 
    sTrainLabelFile = sprintf('trainR-%d-

%d.csv', pnExampleCount(i),... 
        pnFeatureCount(i) ); 
    sTestLabelFile = sprintf('testR-%d-

%d.csv', pnExampleCount(i),... 
        pnFeatureCount(i) ); 
    X = csvread( sTrainDataFile );   phi = 

X; clear X;  
    t = csvread( sTrainLabelFile ); 
    test_data = csvread( sTestDataFile ); 
    test_label = csvread( sTestLabelFile ); 

     

     
    M = length(phi(1,:)); 
    N = length(phi(:,1)); 

     

    alpha1 = ones(M, 1); 
    alphaI1 = diag(alpha1); 
    beta1 = initvalue(i);  

     
    alpha2 = 50000*ones(M, 1); 
    alphaI2 = diag(alpha2); 
    beta2 = 50000; 

     
    MSE_test1 = 1; MSE_test2 = 0; 
    mn2 = zeros(M,1);mn = mn2; 
    while((abs(beta1-beta2)>0.00000001 ... 
        || norm(alpha1-alpha2) > 

0.00000001) ... 
        && sum(isnan(alpha1))<1 && 

isnan(beta1)~=1 ... 
        && max(alpha1)~=Inf && 

abs(MSE_test2-MSE_test1)>1e-5 ) 

         
        Sn_i = diag(alpha1)*eye(M) + 

beta1*phi'*phi; 
        if(sum(sum(isnan(Sn_i)))>0) 
            break; 
        end       

         
        mn2 = mn; 
        mn = beta1*(Sn_i\phi'*t); 

        
        Sn_i = pinv(Sn_i); 

                 

        gama = 1 - 

diag(diag(alpha1).*Sn_i); 

                 
        err = test_data*mn - test_label; 
        MSE_test1 = MSE_test2; 
        MSE_test2 = mean(err.*err); 

         
        alpha2 = alpha1; 
        beta2 = beta1; 

         
        alpha1 = abs(gama./(mn.*mn));  
        beta1 = (N-sum(gama))/((t-

phi*mn)'*(t-phi*mn)); 

  
    end 
    alpha(1:M, i) = alpha2; 
    beta(i) = beta2; 
    MSE_test(i) = MSE_test1; 
    mn_res(1:M, i) = mn2; 

     
    tt(i) = toc; 
end 
save('projectres.mat', 'alpha', 'beta', 

'MSE_test', 'mn_res', 'tt'); 

  

 

2. SelectedFeature.m: select features using alpha, retrain 
after selection 

function SelectedFeature 
% 
%  Filename:      SelectedFeature.m 
%  Date:          Dec. 11th, 2011 
%  Name:          Mengfei Cao 
%  Descriptions: 
%                 Take alpha vector as 

input and 
%                 select feature by 

choosing features 
%                 with small alpha 
% 
%  Code written in MATLAB 7.11.0(R2010b) 
% 

  
load('projectres.mat'); 
%'alpha', 'beta', 'MSE_test', 'mn_res' 

  
M = [10 100 100]; 
pnExampleCount = [100 100 1000]; 
pnFeatureCount = [10 100 100]; 
MSE = zeros(100, 3); 
initvalue = [1000 10 500]; 
for i=1:3 
    sTrainDataFile = sprintf('train-%d-

%d.csv', pnExampleCount(i),... 
        pnFeatureCount(i) ); 
    sTestDataFile = sprintf('test-%d-

%d.csv', pnExampleCount(i),... 
        pnFeatureCount(i) ); 
    sTrainLabelFile = sprintf('trainR-%d-

%d.csv', pnExampleCount(i),... 
        pnFeatureCount(i) ); 
    sTestLabelFile = sprintf('testR-%d-

%d.csv', pnExampleCount(i),... 
        pnFeatureCount(i) ); 
    X = csvread( sTrainDataFile );   phi = 

X; clear X;  
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    t = csvread( sTrainLabelFile ); 
    test_data = csvread( sTestDataFile ); 
    test_label = csvread( sTestLabelFile ); 

     

    alphai = alpha(:,i); 
    [alphai order] = 

sort(alpha(1:M(i),i)'); 
    alphai = alphai'; 
    order = order'; 
    N = length(phi(:,1)); 
    phij = phi(:,order(1)); 
    test_dataj = test_data(:,order(1)); 
    for j=1:M(i) 
        if j~=1 
            phij = [phij phi(:,order(j))]; 
            test_dataj = [test_dataj 

test_data(:,order(j))]; 
        end 

  
        alpha1 = ones(j, 1); 
        alphaI1 = diag(alpha1); 
        beta1 = initvalue(i);  

  
        alpha2 = 50000*ones(j, 1); 
        alphaI2 = diag(alpha2); 
        beta2 = 50000; 

  
        MSE_test1 = 1; MSE_test2 = 0; 
        mn2 = zeros(j,1);mn = mn2; 
        while((abs(beta1-

beta2)>0.00000001 ... 
            || norm(alpha1-alpha2) > 

0.00000001) ... 
            && sum(isnan(alpha1))<1 && 

isnan(beta1)~=1 ... 
            && max(alpha1)~=Inf && 

abs(MSE_test2-MSE_test1)>1e-5) 

  
            Sn_i = diag(alpha1)*eye(j) + 

beta1*phij'*phij; 
            if(sum(sum(isnan(Sn_i)))>0) 
                ; 
            else       
                mn2 = mn; 
                mn = beta1*(Sn_i\phij'*t); 

  
                Sn_i = pinv(Sn_i); 

  
                gama = 1 - 

diag(diag(alpha1).*Sn_i); 

  
                err = test_dataj*mn - 

test_label; 
                MSE_test1 = MSE_test2; 
                MSE_test2 = mean(err.*err); 

  
                alpha2 = alpha1; 
                beta2 = beta1; 

  
                alpha1 = 

abs(gama./(mn.*mn));  

                beta1 = (N-sum(gama))/((t-

phij*mn)'*(t-phij*mn)); 

  
            end 
        end 

  
        MSE(j,i) = MSE_test1; 

  
    end 
end 
save('Final.mat', 'MSE'); 

 
 

3. SelectedVector.m: feature selection and use the 
corresponding weight vector entry instead of retraining. 

function SelectedVector 
% 
%  Filename:      SelectedVector.m 
%  Date:          Dec. 11th, 2011 
%  Name:          Mengfei Cao 
%  Descriptions: 
%                 Take alpha vector as 

input and 
%                 select feature by 

choosing features 
%                 with small alpha; 
%                 fast train: directly use 

the w entry 
%                 from original weight 

vector 
% 
%  Code written in MATLAB 7.11.0(R2010b) 
% 

  
load('projectres.mat'); 
%'alpha', 'beta', 'MSE_test', 'mn_res' 

  
M = [10 100 100]; 
pnExampleCount = [100 100 1000]; 
pnFeatureCount = [10 100 100]; 
MSE = zeros(100, 3); 

  
for i=1:3 
    sTrainDataFile = sprintf('train-%d-

%d.csv', pnExampleCount(i),... 
        pnFeatureCount(i) ); 
    sTestDataFile = sprintf('test-%d-

%d.csv', pnExampleCount(i),... 
        pnFeatureCount(i) ); 
    sTrainLabelFile = sprintf('trainR-%d-

%d.csv', pnExampleCount(i),... 
        pnFeatureCount(i) ); 
    sTestLabelFile = sprintf('testR-%d-

%d.csv', pnExampleCount(i),... 
        pnFeatureCount(i) ); 
    X = csvread( sTrainDataFile );   phi = 

X; clear X;  
    t = csvread( sTrainLabelFile ); 
    test_data = csvread( sTestDataFile ); 
    test_label = csvread( sTestLabelFile ); 
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    alphai = alpha(:,i); 
    [alphai order] = 

sort(alpha(1:M(i),i)'); 
    alphai = alphai'; 
    order = order'; 
    phij = phi(:,order(1)); 
    mn = mn_res(order(1),i); 
    test_dataj = test_data(:,order(1)); 
    for j=1:M(i) 
        if j~=1 
            phij = [phij phi(:,order(j))]; 
            mn = [mn;mn_res(order(j),i)]; 
            test_dataj = [test_dataj 

test_data(:,order(j))]; 
        end 

  
        err = test_dataj*mn - test_label; 
        MSE(j,i) = mean(err.*err); 

     
    end 
end 
save('SelectedVector.mat', 'MSE'); 

  

 

 

4. SelectedFeaturefromCoeff.m: feature selection using 
correlation coefficient 

function SelectedFeaturefromCoeff 
% 
%  Filename:      

SelectedFeaturefromCoeff.m 
%  Date:          Dec. 11th, 2011 
%  Name:          Mengfei Cao 
%  Descriptions: 
%                 Feature selection using 
%                 correlation coefficient 
% 
%  Code written in MATLAB 7.11.0(R2010b) 
% 
load('coeffi.mat'); 
% 'R' 

  
R = -abs(R); 

  
M = [10 100 100]; 
pnExampleCount = [100 100 1000]; 
pnFeatureCount = [10 100 100]; 
MSE = zeros(100, 3); 
initvalue = [1000 10 500]; 
for i=1:3 
    sTrainDataFile = sprintf('train-%d-

%d.csv', pnExampleCount(i),... 
        pnFeatureCount(i) ); 
    sTestDataFile = sprintf('test-%d-

%d.csv', pnExampleCount(i),... 
        pnFeatureCount(i) ); 
    sTrainLabelFile = sprintf('trainR-%d-

%d.csv', pnExampleCount(i),... 
        pnFeatureCount(i) ); 

    sTestLabelFile = sprintf('testR-%d-

%d.csv', pnExampleCount(i),... 
        pnFeatureCount(i) ); 
    X = csvread( sTrainDataFile );   phi = 

X; clear X;  
    t = csvread( sTrainLabelFile ); 
    test_data = csvread( sTestDataFile ); 
    test_label = csvread( sTestLabelFile ); 

     
    [Ri order] = sort(R(1:M(i),i)'); 
     Ri = Ri'; 

     

     

     
    N = length(phi(:,1)); 
    phij = phi(:,order(1)); 
    test_dataj = test_data(:,order(1)); 
    for j=1:M(i) 
        if j~=1 
            phij = [phij phi(:,order(j))]; 
            test_dataj = [test_dataj 

test_data(:,order(j))]; 
        end 

  
        alpha1 = ones(j, 1); 
        alphaI1 = diag(alpha1); 
        beta1 = initvalue(i);  

  
        alpha2 = 50000*ones(j, 1); 
        alphaI2 = diag(alpha2); 
        beta2 = 50000; 

  
        MSE_test1 = 1; MSE_test2 = 0; 
        mn2 = zeros(j,1);mn = mn2; 
        while((abs(beta1-

beta2)>0.00000001 ... 
            || norm(alpha1-alpha2) > 

0.00000001) ... 
            && sum(isnan(alpha1))<1 && 

isnan(beta1)~=1 ... 
            && max(alpha1)~=Inf && 

abs(MSE_test2-MSE_test1)>1e-5) 

  
            Sn_i = diag(alpha1)*eye(j) + 

beta1*phij'*phij; 
            if(sum(sum(isnan(Sn_i)))>0) 
                ; 
            else       
                mn2 = mn; 
                mn = beta1*(Sn_i\phij'*t); 

  
                Sn_i = pinv(Sn_i); 

  
                gama = 1 - 

diag(diag(alpha1).*Sn_i); 

  
                err = test_dataj*mn - 

test_label; 
                MSE_test1 = MSE_test2; 
                MSE_test2 = mean(err.*err); 
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                alpha2 = alpha1; 
                beta2 = beta1; 

  
                alpha1 = 

abs(gama./(mn.*mn));  
                beta1 = (N-sum(gama))/((t-

phij*mn)'*(t-phij*mn)); 

  
            end 
        end 

  
        MSE(j,i) = MSE_test1; 

     
    end 
end 
save('FinalCorre3.mat', 'MSE'); 

 

  

5. CoefficientVector.m: calculate correlation coefficient 

for each feature 
function CoefficientVector 
% 
%  Filename:      CoefficientVector.m 
%  Date:          Dec. 11th, 2011 
%  Name:          Mengfei Cao 
%  Descriptions: 
%                 Calculate Coefficient 
% 
%  Code written in MATLAB 7.11.0(R2010b) 
% 
pnExampleCount = [100 100 1000]; 
pnFeatureCount = [10 100 100]; 

  
R = zeros(100,3); 

  
for i=1:3 
    tic; 
    sTrainDataFile = sprintf('train-%d-

%d.csv', pnExampleCount(i),... 
        pnFeatureCount(i) ); 
    sTestDataFile = sprintf('test-%d-

%d.csv', pnExampleCount(i),... 
        pnFeatureCount(i) ); 
    sTrainLabelFile = sprintf('trainR-%d-

%d.csv', pnExampleCount(i),... 
        pnFeatureCount(i) ); 
    sTestLabelFile = sprintf('testR-%d-

%d.csv', pnExampleCount(i),... 
        pnFeatureCount(i) ); 
    X = csvread( sTrainDataFile );   phi = 

X; clear X;  
    t = csvread( sTrainLabelFile ); 
    test_data = csvread( sTestDataFile ); 
    test_label = csvread( sTestLabelFile ); 

     

     
    M = length(phi(1,:)); 
    N = length(phi(:,1)); 

     

    for j=1:M 

        
        temp = corrcoef(t,phi(:,j)); 
        R(j,i) = temp(1,2); 
    end 

     
    tt(i) = toc; 
end 
save('coeffi.mat', 'R'); 
 

 

6. GetOrderDiff.m: look into the difference between two 
feature selection methods’ result 

function GetOrderDiff 
% 
%  Filename:      GetOrderDiff.m 
%  Date:          Dec. 11th, 2011 
%  Name:          Mengfei Cao 
%  Descriptions: 
%                 Look into the difference 
%                 between two feature 

selection 
%                 methods 
% 
%  Code written in MATLAB 7.11.0(R2010b) 
% 
load('coeffi.mat');%R 
load('projectres.mat');%alpha 
alphaa = alpha(:,:); 
clear alpha; 

  

M = [10 100 100]; 
for i=1:3 
    temp = R(1:M(i),i); 
    [c d] = sort(temp); 
    order_corre = d; 

  

     

    temp = alphaa(1:M(i),i); 
    [c d] = sort(temp); 
    order_EV = d; 
    diff = order_corre-order_EV; 
    save(sprintf('order%d.mat',i),... 
        'order_corre','order_EV','diff'); 
end 


