
Feature Selection Using Evidence Function on Bayesian Linear Regression

 -- Course Project Report for COMP-136, Fall 2011

Mengfei Cao MCAO01@CS.TUFTS.EDU

Abstract

The work presents a feature selection method
using evidence maximization for linear
regression model. This method works for any
given number as the size of selected feature
subset and gives the MAP solution to regression
problem that also maximizes the evidence
function. Experiments are conduct by looking at
the optimality through comparing two variants of
this feature selection method to Bayesian
regression with a shared prior; another
experiment is conduct by comparing the feature
selection method using evidence function and
that using correlational co-efficient.

1. Introduction

Feature selection is a critical issue in various research
areas such as computational biology, where datasets are
provided with several features but it is unknown which
features are relevant or there is the problem of curse of
dimensionality. Typically these two purposes are also the
general goals in other fields; in addition improving the
prediction performance, enhancing model describability
and exalting the understanding of the data’s generation
are also vital and will benefit from the solution to feature
selection. Many methods have been brought forward such
as wrapper method and been used widely; this paper
mainly concentrates on the feature ranking in Bayesian
linear model for regression.

Various methods to measure the correlation between
features and target have been studied such as Pearson
correlation coefficient, performance of single feature
classifiers and so on. However, there are issues such as
complexity, redundancy and optimality that would
provide compromise between measurements on each
method.

Next the Bayesian linear model for regression is
introduced briefly and the evidence approximation is
followed. What is interesting is that this evidence
approximation not only offers choices of models, but also
offers the opportunity to conducting feature selection by
ranking features according to correlational values.

—————
Dept. Computer Science, Tufts University, Medford, MA 02155, USA

1.1 Bayesian Linear Regression

The Bayesian linear model for regression is used to pred-
ict the value of one or more continuous target variables t
given the value of a D-dimensional vector x of input
variables. This paper focuses on the situation where there
are N observations {xn}, where n=1,…,N, together with
single valued target values {tn}; the purpose is to
approximate the value of t for a new value of x through a
linear combination of feature basis. Specifically, a basis
function Φ(x) is given so as to allow non-linearity w.r.t.
input features vectors x. The following computation
follows:

 () ∑ ()

 (1)

where w=(w0,…,wM-1)
T and Φ=(Φ0,…, ΦM-1)

T.

In order to characterize the observations in reality,
Gaussian noise is added so that the target value t is:

 () () (2)

where e~N(0,

I), and is the model parameter.

Therefore t has the normal distribution N(y(x,w),

I). The

task is to calculate w so as to maximize the posterior

probability of w. The posterior follows the form:

 () () () (3)

where () is the preset prior in normal distribution
N(m0,S0), and the setting follows m0=0, S0=α(diagonal
matrix) for simplicity. Here α is a matrix as model
parameter. As for the likelihood, it has the form:

 () ∏ ()

 (4)

where p(tn|xn,w,β) is Gaussian probability density

function for observation xn. (The product comes from the

independent identically distributed assumption)

From equation (3), we can calculate the posterior

distribution of w. It follows Gaussian distribution N(mN,

SN):

 (

) (5)

 (

) (6)

Ideally by integrating over all these parameters as well as
w, we can make predictions on any new examples, but

Final Report for COMP-136, 2011 Fall

this computation is intractable. Instead we need to specify

these parameters.

Now instead we can derive the MAP (maximum a

posteriori estimation) solution for wMAP using mN because

the mean of Gaussian distribution is also the mode. By

applying parameters () and feature vectors into (5)
and (6), we can solve the Bayesian regression problem.

Nevertheless, even though we have simplified by setting

 and to be a diagonal matrix, still and

representing the model remain to be determined as they

are not universal but case-sensitive to different version

space.

Next an evidence approximation method (Bishop [Chap

3.5], 2006) is introduced so as to unravel the model

selection problem.

1.2 Evidence Maximization

Instead of integrating over all parameters and w, an
evidence function is defined by integrating w only and
then a maximization routine is imposed. The evidence
function E(*) is defined as the marginal probability of
target t:

 E(x)= ()

 () ()dw (7)

Then maximize this evidence by equaling the derivative
to zero w.r.t and . The solution to these equations
gives the optimal parameter values to and assuming
that evidence characterizes model optimality.

Due to lack of closed form solutions, an iterative routine
is applied and the convergent solution to and is
obtained.

2. Feature Selection

It seems to be always true that the more information is
utilized, the more accurate the model should be over
training. However there are issues such as curse of
dimensionality, or irrelevant features. Feature selection
facilitates high-dimensional calculation in that it reduces
the dimensionality. Also, under some circumstances the
selected features can also avoid over-fitting problem in a
lot of learning tasks by removing redundant or irrelevant
features. Further, it enhances the interpret-ability of the
model.

Naively, exhausting all subsets of the feature space will
give the best one by learning on each subset. However, it
requires exponential calculation and thus is computa-
tionally intractable. In addition, different measurement of
feature set might give different result, which adds up the
difficulty in finding the general optimum but also gives
the flexibility of finding optimal solution in specific case.

Init

Update
mN, SN

α1,…,αM

, β

convergent

Not

α1,…,αM

, β

yes

wMAP=mN

Figure 1. Model Selection Framework

Under the Bayesian linear regression situation, the prior
gives an alternative to approximating optimal Recall that
in the Bayesian regression setting, a conjugate prior is
used for w, where the mean values are zero and the
covariance matrix is diagonal, such that every feature
dimension is independent from each other and has
variance , where i=1,…,M. Intuitively, when ,
this feature should have 0 variance and thus be totally
irrelevant with target t; on the other hand, when is
close to 0, this feature should have values distributed
widely in R on various different examples. Even though
the latter case doesn’t guarantee high dependency of
target on this particular feature, yet it is sufficient to show
that there is the correlation between target value and this
feature. Therefore, by deriving () s.t.
maximizing the evidence function, we can set a threshold
to separate the relevant features from irrelevant features.
The advantage is that this feature selection strategy gives
the flexibility that for any given number k, it can result in
a feature subset with size k, by cutting off at the kth value
among vector.

Final Report for COMP-136, 2011 Fall

Again, by taking derivation of (7) w.r.t and and
setting to zero, we derive the iterative solutions to all
parameters:

 , (8)

 (()
) , (9)

 , (10)

 , (11)

| |

 ∑
, (12)

where is the entry in and is the element at
 row and column.

By setting initial values to and , then updating ,
 , sequentially, we can calculate the new and ,
finally converging to optimal and .

Thus there is the feature selection algorithm based on
evidence approximation method.

 Algorithm 1 Model Selection Using Evidence

 Input: feature vectors () ,i=1,…,N, in ; initial
values (

);

 Init: ,
 , i=1,…,M

 repeat
 Update using (8), (9), (10);
 until No changes between two iterations of parameters
 Output: and

 Algorithm 2 Feature Selection Using Evidence

 Input: feature vectors () ,i=1,…,N, in ; k ,
indicating the number of features to be selected;
 Step 1: apply Algorithm 1 and obtain ;

 Step 2: choose k columns s.t
 ,

where is the value among non-decreasing order;
 Step 3: apply Algorithm 1 on the subspace by selected k
features and obtain

 ;
Output:

Possible Problems:

 Convergence Condition: intuitively the concavity
of evidence function guarantees that the iteration
will terminate but it remains to be theoretically
verified.

 Convergence Speed: even though compared to
exhaustive search the feature selection using

evidence function outperforms at speed, it might
end up with extremely low speed when the
iteration progresses slowly; thus it remained to
be studied which optimization algorithm should
be used so as to find parameters to maximize the
evidence function.

 Global optimum V.S. local optimum: it is not
guaranteed to obtain global optimum especially
when multiple peaks are present; also it relies on
the choice of initialization.

 Stability: regarding the computation issue, since
equation (9) requires computing inverse of
matrix, near-singular matrices make it difficult to
progress, which in the experiment turns out to be
a critical issue.

 Optimality: this algorithm doesn’t distinguish
repetitive features explicitly; namely if some
feature is highly correlated with target but exists
in multiple observations, therefore they will fill
in more quota among the pre-defined feature set
size k, than it is supposed to be. However it
doesn’t have to be true because the model has the
assumption that features are independent from
each other due to the zero co-variance in the
prior. Therefore implicitly this algorithm might
work on this problem but remains to be
theoretically verified. Further this effect can be
moderated by sequential feature selection
through cross validation or other methods such
as wrapper.

A specific issue is that during feature selection stage, two
different variants can be applied so as to obtain final
weight vector : one normal strategy is to train
 in the k-dimensional selected feature space using
model selection module; the other faster way is just using
the corresponding w.r.t. selected column from
trained on the whole feature space. The former strategy
(noted as Retrain After Selection) should suffice so as to
give best model on the selected feature space as long as
the iterative routine works. The latter strategy (noted as
Fast Train), however, seems to degrade because the entry
comes from the maximization on all feature space. Unless
the removed features have no any contribution to
predicting targets, the weight vector

 trained from
the selected features should outperform because it has
looser constraints in maximizing evidence function,
resulting in higher evidence. Nevertheless, in the
experiment it is shown that the latter strategy doesn’t
really output awkward performance but can save huge
amount of time.

Final Report for COMP-136, 2011 Fall

Init

α1,…,αM

, β

Model
Selection

Choose k features
corresponding to

first k αi

Model
Selection

α1,…,αk,
wMAP

Figure 2. Feature Selection Framework

3. Experiments

3.1 Dataset

Three datasets are used with different number of features
and examples so as to test the feature selection utility
(Table 1), among which both training data and test data
are provided.

3.2 Comparison Between Two Variants of Feature

Selection Using Evidence Maximization

On each dataset, firstly three sets of weight vector
are trained from the whole training data: two identical sets
for feature selection, and one for model selection with
fixed . Then by setting k from 1 to M, where M is the
dimensionality on whole training data, separately apply
two strategies to obtain the final

 , one using the
original entry in (Fast Train), and the other using
model selection again to train

 (Retrain After
Selection).

Figure 3. Comparison Between Retrain After Selection

(namely train new w after feature selection) and Fast Train

(namely use w entry of selected feature from first w) as well as

model selection using fixed α. (x-axis is the number of features

selected, namely k; y-axis is the mean-square-error on test

dataset)

As indicated in Fig. 3, on the first dataset, when the
selected 5 features are used, the Bayesian linear model
with different can perform equally to that with the
same ; this also holds for the other two datasets and the

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8 9 10

Dataset 1: 100-10

Retrain After Selection Fast Train Fixed Alpha

0

10

20

30

40

50

60

70

80

90

100

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

Dataset 2: 100-100

Retrain After Selection Fast Train Fixed Alpha

0

10

20

30

40

50

60

70

80

90

100

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

Dataset 3: 1000-100

Retrain After Selection Fast Train Fixed Alpha

Final Report for COMP-136, 2011 Fall

percentage of selected features so as to perform equally is
at most 50%.

In addition, compared to Fast Train, the Retrain After
Selection achieves earlier convergence and thus needs
even less features. However, the running time degrades a
lot; in particular after the first model selection, the Fast
Train strategy only requires () so as to select the
k columns and corresponding k entries in ; but the
Retrain After Selection requires another set of iterations
so as to obtain the MAP solution, which is (
) where Iter is the number of iterations before
convergence. Typically one for the total 100 rounds of
experiments on the second dataset, the time spent on Fast
Train is less than 1 second while the time spent on Retain
After Selection is more than 2 minutes.

Finally, actually it was expected that by applying different
priors on each feature, the optimal MSE on test dataset
should be lower than that using the same prior on all
features. However, only on the first dataset the optimal
MSE using different features is obtained when 7 features
are selected and the value is 4.1536; the method using the
same prior and all features gives MSE as 4.1801. On the
other two datasets, the performance of model selection
using the same prior has slightly better MSE than that
with different priors. Intuitively by using different priors
on features, it expands the weight vector space and thus
may potentially obtain better solution; however according
to the observations in the experiment, the issue of
calculating matrix inverse is critical. When setting the
convergence condition, it can’t be two precise; otherwise
there will be a cyclic process where it never terminates.
Also the least-square based approximation is applied by
using pinv() function in MATLAB. Therefore the
precision limits the performance of both model selection
and feature selection when different priors are added
because from equations (9) and (10) the inverse has to be
calculated explicitly and precisely.

3.3 Comparison Between Method Based On Corre-
lational Co-efficient And That Using Evidence

Function

Another intuitional measurement of correlation between
features and target is by calculating the correlational co-
efficient:

 ()
∑ (()

)(
)

∑ (()
)

 ∑ (
)

 (14)

where is the column in the training data, t=(t1,…,tN)
is the label vector, () is the example’s feature
value,

 is the mean value of feature, t* is the mean
value of label vector.

Then apply this co-efficient vector to obtain the ranking
of features. Thereafter for each given number k, select
first ranked-k features as the subset. Followed is the
routine where model selection is executed based on the
selected feature space.

Figure 4. Comparison Between Feature Selection Using

Evidence Function and Feature Selection Using Correlational

Co-efficient. (x-axis is the number of features selected, namely

k; y-axis is the mean-square-error on test dataset)

As shown in Fig. 4, these two feature selection methods
give almost the same performance for different sizes of
feature sets. Even though by visually checking the subset
for each size, the resulting two subsets are not identical,

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9 10

Dataset 1: 100-10

Feature Selection Using Evidence Feature Selection Using CC

Fixed Alpha

0

10

20

30

40

50

60

70

80

90

100

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

Dataset 2: 100-100

Feature Selection Using Evidence Feature Selection Using CC

Fixed Alpha

0

10

20

30

40

50

60

70

80

90

100

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

Dataset 3: 1000-100

Feature Selection Using Evidence Feature Selection Using CC

Fixed Alpha

Final Report for COMP-136, 2011 Fall

however they give almost the same MSE on the test
dataset.

Consider the complexity: the correlational co-efficient
based method requires O(M*N) time to calculate the co-
efficient for each feature; the evidence function based
method requires O(Iter*(M3+M*N)), where Iter is the
number of iterations required for convergence, O(M3) is
used for calculating inverse and O(M*N) is used for
matrix multiplications. Therefore in this case it seems that
the correlational co-efficient based method outperforms.

However, consider the redundancy removal capability: it
is for sure that the correlational co-efficient based method
can’t distinguish multiple repeated features at all; yet the
evidence function based method might work implicity
from the discussion in the previous sections.

4. Discussion

Further work regarding theoretical verification remaining
to be done around convergence issue, optimality issue,
etc. Also a typical application into computational biology
is quite straightforward: distinguish positive protein
families where a simulated evolution model fits from
protein families where this simulated evolution model
does not fit. The label of each family is represented by the
difference between percentages of AUC (area under the
curve) for ROC (receiver operating characteristic) on
protein homology detection tasks with and without
simulated evolution. Therefore it is a regression problem
and the correlational values are needed so as to conduct
feature selection.

Acknowledgments

It is a pleasure to thank Prof. Roni Khardon for excellent
lectures in this semester. I also would like to thank Prof.
Khardon for advice on the project, which made it
possible.

References

Christopher M. Bishop. (2006) Pattern Recognition and
Machine Learning. Springer..

Mitchell T. (1997) Machine Learning. McGraw Hill..

MacKay, D. J. C. (1992) The evidence framework applied
to classification networks. Neural Computation, 4(5),
720-736.

Khardon R.,(2011) Statistical Pattern Recognition Course
Webpage: http://www.cs.tufts.edu/~roni/Teaching/SPR/

Guyon I. and Elisseeff A.. (2003) An introduction to
variable and feature selection. Journal of Machine
Learning Research, 3:1157-1182.

Minka, T. (2000). Bayesian linear regression (Technical
Report). MIT.

Kumar A. and Cowen L.. (2010) Recognition of beta
structural motifs using hidden Markov models trained
with simulated evolution. Bioinformatics, 26:i287-i293.

Table 1. Datasets Attributes.

DATA SET #TRAIN-

EXAMPLES

#TEST-

EXAMPLES

#FEATURES

100-10 100 100 10
100-100 100 100 100

1000-100 1000 1000 100

Appendix

1. Model_Selection.m: select models, calculates model
parameters.

function Model_Selection
%
% Filename: Model_Selection.m
% Date: Dec. 11th, 2011
% Name: Mengfei Cao
% Descriptions:
% Take 3 datasets as input

with both training
% and test data, including

features and labels;
% 1) Use iterative

algorithm to calculate the
% parameters that maximize

the evidence function;
% (so that by setting

different threshold we can
% select features from

alpha vector)
% 2) Use the MAP solution

to calculate the MSE.
%
% Code written in MATLAB 7.11.0(R2010b)
%

pnExampleCount = [100 100 1000];
pnFeatureCount = [10 100 100];

initvalue = [1000 10 500];
alpha = zeros(100,3);
mn_res = zeros(100,3);

Final Report for COMP-136, 2011 Fall

for i=1:3
 tic;
 sTrainDataFile = sprintf('train-%d-

%d.csv', pnExampleCount(i),...
 pnFeatureCount(i));
 sTestDataFile = sprintf('test-%d-

%d.csv', pnExampleCount(i),...
 pnFeatureCount(i));
 sTrainLabelFile = sprintf('trainR-%d-

%d.csv', pnExampleCount(i),...
 pnFeatureCount(i));
 sTestLabelFile = sprintf('testR-%d-

%d.csv', pnExampleCount(i),...
 pnFeatureCount(i));
 X = csvread(sTrainDataFile); phi =

X; clear X;
 t = csvread(sTrainLabelFile);
 test_data = csvread(sTestDataFile);
 test_label = csvread(sTestLabelFile);

 M = length(phi(1,:));
 N = length(phi(:,1));

 alpha1 = ones(M, 1);
 alphaI1 = diag(alpha1);
 beta1 = initvalue(i);

 alpha2 = 50000*ones(M, 1);
 alphaI2 = diag(alpha2);
 beta2 = 50000;

 MSE_test1 = 1; MSE_test2 = 0;
 mn2 = zeros(M,1);mn = mn2;
 while((abs(beta1-beta2)>0.00000001 ...
 || norm(alpha1-alpha2) >

0.00000001) ...
 && sum(isnan(alpha1))<1 &&

isnan(beta1)~=1 ...
 && max(alpha1)~=Inf &&

abs(MSE_test2-MSE_test1)>1e-5)

 Sn_i = diag(alpha1)*eye(M) +

beta1*phi'*phi;
 if(sum(sum(isnan(Sn_i)))>0)
 break;
 end

 mn2 = mn;
 mn = beta1*(Sn_i\phi'*t);

 Sn_i = pinv(Sn_i);

 gama = 1 -

diag(diag(alpha1).*Sn_i);

 err = test_data*mn - test_label;
 MSE_test1 = MSE_test2;
 MSE_test2 = mean(err.*err);

 alpha2 = alpha1;
 beta2 = beta1;

 alpha1 = abs(gama./(mn.*mn));
 beta1 = (N-sum(gama))/((t-

phi*mn)'*(t-phi*mn));

 end
 alpha(1:M, i) = alpha2;
 beta(i) = beta2;
 MSE_test(i) = MSE_test1;
 mn_res(1:M, i) = mn2;

 tt(i) = toc;
end
save('projectres.mat', 'alpha', 'beta',

'MSE_test', 'mn_res', 'tt');

2. SelectedFeature.m: select features using alpha, retrain
after selection

function SelectedFeature
%
% Filename: SelectedFeature.m
% Date: Dec. 11th, 2011
% Name: Mengfei Cao
% Descriptions:
% Take alpha vector as

input and
% select feature by

choosing features
% with small alpha
%
% Code written in MATLAB 7.11.0(R2010b)
%

load('projectres.mat');
%'alpha', 'beta', 'MSE_test', 'mn_res'

M = [10 100 100];
pnExampleCount = [100 100 1000];
pnFeatureCount = [10 100 100];
MSE = zeros(100, 3);
initvalue = [1000 10 500];
for i=1:3
 sTrainDataFile = sprintf('train-%d-

%d.csv', pnExampleCount(i),...
 pnFeatureCount(i));
 sTestDataFile = sprintf('test-%d-

%d.csv', pnExampleCount(i),...
 pnFeatureCount(i));
 sTrainLabelFile = sprintf('trainR-%d-

%d.csv', pnExampleCount(i),...
 pnFeatureCount(i));
 sTestLabelFile = sprintf('testR-%d-

%d.csv', pnExampleCount(i),...
 pnFeatureCount(i));
 X = csvread(sTrainDataFile); phi =

X; clear X;

Final Report for COMP-136, 2011 Fall

 t = csvread(sTrainLabelFile);
 test_data = csvread(sTestDataFile);
 test_label = csvread(sTestLabelFile);

 alphai = alpha(:,i);
 [alphai order] =

sort(alpha(1:M(i),i)');
 alphai = alphai';
 order = order';
 N = length(phi(:,1));
 phij = phi(:,order(1));
 test_dataj = test_data(:,order(1));
 for j=1:M(i)
 if j~=1
 phij = [phij phi(:,order(j))];
 test_dataj = [test_dataj

test_data(:,order(j))];
 end

 alpha1 = ones(j, 1);
 alphaI1 = diag(alpha1);
 beta1 = initvalue(i);

 alpha2 = 50000*ones(j, 1);
 alphaI2 = diag(alpha2);
 beta2 = 50000;

 MSE_test1 = 1; MSE_test2 = 0;
 mn2 = zeros(j,1);mn = mn2;
 while((abs(beta1-

beta2)>0.00000001 ...
 || norm(alpha1-alpha2) >

0.00000001) ...
 && sum(isnan(alpha1))<1 &&

isnan(beta1)~=1 ...
 && max(alpha1)~=Inf &&

abs(MSE_test2-MSE_test1)>1e-5)

 Sn_i = diag(alpha1)*eye(j) +

beta1*phij'*phij;
 if(sum(sum(isnan(Sn_i)))>0)
 ;
 else
 mn2 = mn;
 mn = beta1*(Sn_i\phij'*t);

 Sn_i = pinv(Sn_i);

 gama = 1 -

diag(diag(alpha1).*Sn_i);

 err = test_dataj*mn -

test_label;
 MSE_test1 = MSE_test2;
 MSE_test2 = mean(err.*err);

 alpha2 = alpha1;
 beta2 = beta1;

 alpha1 =

abs(gama./(mn.*mn));

 beta1 = (N-sum(gama))/((t-

phij*mn)'*(t-phij*mn));

 end
 end

 MSE(j,i) = MSE_test1;

 end
end
save('Final.mat', 'MSE');

3. SelectedVector.m: feature selection and use the
corresponding weight vector entry instead of retraining.

function SelectedVector
%
% Filename: SelectedVector.m
% Date: Dec. 11th, 2011
% Name: Mengfei Cao
% Descriptions:
% Take alpha vector as

input and
% select feature by

choosing features
% with small alpha;
% fast train: directly use

the w entry
% from original weight

vector
%
% Code written in MATLAB 7.11.0(R2010b)
%

load('projectres.mat');
%'alpha', 'beta', 'MSE_test', 'mn_res'

M = [10 100 100];
pnExampleCount = [100 100 1000];
pnFeatureCount = [10 100 100];
MSE = zeros(100, 3);

for i=1:3
 sTrainDataFile = sprintf('train-%d-

%d.csv', pnExampleCount(i),...
 pnFeatureCount(i));
 sTestDataFile = sprintf('test-%d-

%d.csv', pnExampleCount(i),...
 pnFeatureCount(i));
 sTrainLabelFile = sprintf('trainR-%d-

%d.csv', pnExampleCount(i),...
 pnFeatureCount(i));
 sTestLabelFile = sprintf('testR-%d-

%d.csv', pnExampleCount(i),...
 pnFeatureCount(i));
 X = csvread(sTrainDataFile); phi =

X; clear X;
 t = csvread(sTrainLabelFile);
 test_data = csvread(sTestDataFile);
 test_label = csvread(sTestLabelFile);

Final Report for COMP-136, 2011 Fall

 alphai = alpha(:,i);
 [alphai order] =

sort(alpha(1:M(i),i)');
 alphai = alphai';
 order = order';
 phij = phi(:,order(1));
 mn = mn_res(order(1),i);
 test_dataj = test_data(:,order(1));
 for j=1:M(i)
 if j~=1
 phij = [phij phi(:,order(j))];
 mn = [mn;mn_res(order(j),i)];
 test_dataj = [test_dataj

test_data(:,order(j))];
 end

 err = test_dataj*mn - test_label;
 MSE(j,i) = mean(err.*err);

 end
end
save('SelectedVector.mat', 'MSE');

4. SelectedFeaturefromCoeff.m: feature selection using
correlation coefficient

function SelectedFeaturefromCoeff
%
% Filename:

SelectedFeaturefromCoeff.m
% Date: Dec. 11th, 2011
% Name: Mengfei Cao
% Descriptions:
% Feature selection using
% correlation coefficient
%
% Code written in MATLAB 7.11.0(R2010b)
%
load('coeffi.mat');
% 'R'

R = -abs(R);

M = [10 100 100];
pnExampleCount = [100 100 1000];
pnFeatureCount = [10 100 100];
MSE = zeros(100, 3);
initvalue = [1000 10 500];
for i=1:3
 sTrainDataFile = sprintf('train-%d-

%d.csv', pnExampleCount(i),...
 pnFeatureCount(i));
 sTestDataFile = sprintf('test-%d-

%d.csv', pnExampleCount(i),...
 pnFeatureCount(i));
 sTrainLabelFile = sprintf('trainR-%d-

%d.csv', pnExampleCount(i),...
 pnFeatureCount(i));

 sTestLabelFile = sprintf('testR-%d-

%d.csv', pnExampleCount(i),...
 pnFeatureCount(i));
 X = csvread(sTrainDataFile); phi =

X; clear X;
 t = csvread(sTrainLabelFile);
 test_data = csvread(sTestDataFile);
 test_label = csvread(sTestLabelFile);

 [Ri order] = sort(R(1:M(i),i)');
 Ri = Ri';

 N = length(phi(:,1));
 phij = phi(:,order(1));
 test_dataj = test_data(:,order(1));
 for j=1:M(i)
 if j~=1
 phij = [phij phi(:,order(j))];
 test_dataj = [test_dataj

test_data(:,order(j))];
 end

 alpha1 = ones(j, 1);
 alphaI1 = diag(alpha1);
 beta1 = initvalue(i);

 alpha2 = 50000*ones(j, 1);
 alphaI2 = diag(alpha2);
 beta2 = 50000;

 MSE_test1 = 1; MSE_test2 = 0;
 mn2 = zeros(j,1);mn = mn2;
 while((abs(beta1-

beta2)>0.00000001 ...
 || norm(alpha1-alpha2) >

0.00000001) ...
 && sum(isnan(alpha1))<1 &&

isnan(beta1)~=1 ...
 && max(alpha1)~=Inf &&

abs(MSE_test2-MSE_test1)>1e-5)

 Sn_i = diag(alpha1)*eye(j) +

beta1*phij'*phij;
 if(sum(sum(isnan(Sn_i)))>0)
 ;
 else
 mn2 = mn;
 mn = beta1*(Sn_i\phij'*t);

 Sn_i = pinv(Sn_i);

 gama = 1 -

diag(diag(alpha1).*Sn_i);

 err = test_dataj*mn -

test_label;
 MSE_test1 = MSE_test2;
 MSE_test2 = mean(err.*err);

Final Report for COMP-136, 2011 Fall

 alpha2 = alpha1;
 beta2 = beta1;

 alpha1 =

abs(gama./(mn.*mn));
 beta1 = (N-sum(gama))/((t-

phij*mn)'*(t-phij*mn));

 end
 end

 MSE(j,i) = MSE_test1;

 end
end
save('FinalCorre3.mat', 'MSE');

5. CoefficientVector.m: calculate correlation coefficient

for each feature
function CoefficientVector
%
% Filename: CoefficientVector.m
% Date: Dec. 11th, 2011
% Name: Mengfei Cao
% Descriptions:
% Calculate Coefficient
%
% Code written in MATLAB 7.11.0(R2010b)
%
pnExampleCount = [100 100 1000];
pnFeatureCount = [10 100 100];

R = zeros(100,3);

for i=1:3
 tic;
 sTrainDataFile = sprintf('train-%d-

%d.csv', pnExampleCount(i),...
 pnFeatureCount(i));
 sTestDataFile = sprintf('test-%d-

%d.csv', pnExampleCount(i),...
 pnFeatureCount(i));
 sTrainLabelFile = sprintf('trainR-%d-

%d.csv', pnExampleCount(i),...
 pnFeatureCount(i));
 sTestLabelFile = sprintf('testR-%d-

%d.csv', pnExampleCount(i),...
 pnFeatureCount(i));
 X = csvread(sTrainDataFile); phi =

X; clear X;
 t = csvread(sTrainLabelFile);
 test_data = csvread(sTestDataFile);
 test_label = csvread(sTestLabelFile);

 M = length(phi(1,:));
 N = length(phi(:,1));

 for j=1:M

 temp = corrcoef(t,phi(:,j));
 R(j,i) = temp(1,2);
 end

 tt(i) = toc;
end
save('coeffi.mat', 'R');

6. GetOrderDiff.m: look into the difference between two
feature selection methods’ result

function GetOrderDiff
%
% Filename: GetOrderDiff.m
% Date: Dec. 11th, 2011
% Name: Mengfei Cao
% Descriptions:
% Look into the difference
% between two feature

selection
% methods
%
% Code written in MATLAB 7.11.0(R2010b)
%
load('coeffi.mat');%R
load('projectres.mat');%alpha
alphaa = alpha(:,:);
clear alpha;

M = [10 100 100];
for i=1:3
 temp = R(1:M(i),i);
 [c d] = sort(temp);
 order_corre = d;

 temp = alphaa(1:M(i),i);
 [c d] = sort(temp);
 order_EV = d;
 diff = order_corre-order_EV;
 save(sprintf('order%d.mat',i),...
 'order_corre','order_EV','diff');
end

