

Time Complexity of Knuth-Morris-Pratt String Matching Algorithm
Course Project Report for COMP-160, Fall 2010

Mengfei Cao MCAO01@CS.TUFTS.EDU
Dept. Computer Science, Tufts University, Medford, USA

Abstract

This project centers on the evaluation for the
time complexity of Knuth-Morris-Pratt(KMP)
string matching algorithm. String matching
problem is to locate a pattern string within a
larger string. The best performance in terms of
asymptotic time complexity is currently linear,
given by the KMP algorithm. In this algorithm,
firstly a prefix for the pattern string is computed
and then based on this prefix, only linear time is
needed to find the pattern string in the larger
string. In details of both steps, the prefix
computation and matcher, two loops are needed,
where one goes over the whole string and the
other loop travels back to some point of the
prefix array. I test these two steps with a large
number of random input strings, of which the
lengths are different, and for evaluation, ranges
of the strings are also under control to simulate
the various cases. As much as possible, I expect
to get the tight analysis of the KMP algorithm’s
time complexity. During these tests, the numbers
of basic operations are recorded and then linear
analysis is conducted, giving the coefficients of
linear regression and the correlation coefficient.
Finally, together with the analysis, it is
concluded that the linear time complexity is
validated based on the experiments.

1. Introduction

The time complexity of a given algorithm can be obtained
from theoretical analysis and computational analysis
according to the algorithm’s running process. Both
methods estimate the time complexity by counting the
number of basic operations, which cost some basic unit of
time. In terms of the theoretical analysis, the task
sometimes is quite simple by just counting the maximum
number of operations; however, when some conditional
evaluations are added, the strategy of theoretically
counting maximum number of operations may be
confusing, or far too pessimistic because due to the
conditional evaluations, many seemingly possible
operations will never co-occur, thus resulting in great
decrease in the number of total operations. Yet still, if all
of the cases are known, it is obvious for the theoretical

counting to obtain the tight analysis of the time
complexity. Thus, the computational approximation is
useful to help understand the tight analysis of time
complexity. In this project, the estimation of KMP
algorithm’s time complexity is confusing because in both
of its two steps, there are two seemingly-going-over-all
loops but the time complexity is still linear to the input
size. Thus, I generate different random inputs and
computationally count the number of basic operations.
After gaining all these operations’ numbers respect to the
input size, I plot the results and do the linear regression. It
is so notable of the linear relationship in the experiment
part that no polynomial approximation is necessary.

The intuition of testing the time complexity
computationally is to count every basic operation respect
to different inputs. As for the generation of inputs, two
demands should be satisfied:

 The input strings with a given length should cover
all possible cases;

 The input strings’ lengths should range from the
minimum 1 to infinite.

These two demands are the intuitively complete rules for
testing an algorithm’s asymptotic time complexity.
However, the infinite inputs with infinite lengths are
impossible; thus, computationally, I replace the first
infinite cases rule with sampling randomly, and the
second rule with some very large length. It is true that
singly based on my experiments it is impossible to reach
any conclusion of the algorithm’s performance, but the
random sampling and some large number of experiments
can still provide the estimation of the ground truth
performance. Namely, the finite experiments provide the
clues of analysis and directions to work on. In this project,
after the experiments are presented the discussion with
concrete theoretical analysis is given to validate the
conclusion that the KMP algorithm’s asymptotic time
complexity is O(n).

The rest of the report will give the formulation of the
KMP algorithm, the details of my strategy to test the two
key steps of KMP algorithm, and the experiments
together with the discussion.

2. Knuth-Morris-Pratt Algorithm

KMP algorithm was conceived in 1977 by three eminent
computer scientists: Dr. James H. Morris, Dr. Vaughan
Pratt, and Dr. Donald Ervin Knuth. Instead of directly
match the pattern string to the larger string, KMP
algorithm firstly compute a prefix for the pattern string
and then match the string on the larger string based on the
prefix array. Only by one travel of the two strings will it
achieve the goal of computing prefix and finding the
match, resulting in the best linear time complexity.

Given a pattern string P and a text string T. Then sizes of
the two strings are respectively m and n. The KMP
algorithm firstly compute a prefix array Pi for P, with size
of m. Each element in Pi records the index from which if
a mismatch occurs the next match should begin. Thus, it
is not necessary to test the whole pattern string over and
over whenever there is a mismatch. This is the intuition of
the algorithm’s matching strategy. As for how to compute
the prefix, in the preprocessing of the pattern string, one
travel of this string is needed so as to find out the partial
match itself, but what is important that the partial match
information is reusable for the following travel. Thus no
matter for the matcher or the computing prefix, the time
complexity is always linear to the size of the input. The
time complexity of computing prefix is linear to the size
of the pattern string, and that of matcher is linear to the
size of the text string.

The following is the pseudocode of KMP algorithm.

ComputePrefix(P[0...m-1], m)

1. Pi[0] = -1;

2. k = -1;

3. for q=1:m-1 {

4. while(k>=0 && P[k+1]!=P[q]){

5. k = Pi[k];}

6. if(P[k+1]==P[q]) then k++;

7. P[q] = k;

8. }return Pi;

KMPMatcher(T, n, P, m)

1. Pi = ComputePrefix(P,m);

2. q = -1;

3. for i = 0:n-1 {

4. while(q>=0 && P[q+1]!=T[i]){

5. q = Pi[q];}

6. if(P[q+1]==T[i]) then q++;

7. if(q == m-1) then report index i-m+1; q = Pi[q];

8. }return;

In the following section, I will test these two components
separately and obtain the estimation of the time
complexity.

3. Strategy to Test the Performance

As mentioned before, the time complexity is usually
estimated by counting the number of basic operations. In
addition, the two infinite rules should be approximately
obeyed so as to obtain the tight performance of the
algorithm. Thus, I use the randomness to tackle the
problem derived from the first infinite rule and use
iterations and large number of input strings to tackle the
problem out of the second rule.

3.1 Test ComputePrefix()

For the first component, ComputePrefix(), there are two
loops for and while. Also, both two loops go over the
array P, of which the length is m. Naively, the time
complexity may be m times m, resulting in m square.
However, the while loop doesn’t always go over all the
array P due to the condition k>=0 and P[k+1]!=P[q]. In
fact, inside the loop, every time the k is updated with the
space, that goes across a partial matched sequence instead
of single step. In order to test the number of basic
operations, I set a count variable inside the while
evaluation so that whenever the expression inside the
while bracket is evaluated, the count variable will add one.

After the analysis of the function as well as the measure
of the time complexity, here what is given is the strategy
to estimate the asymptotic time complexity. As elaborated
above, two rules should be obeyed so as to obtain the time
complexity. Here I generate many strings randomly, of
which each character appears in the range a-z randomly.
Moreover, for a given length, I repeatedly generate 100
different random strings , 1, ...,100j

m
P j  to serve as the

input strings. Afterwards, I calculate the average number

m
Number of the basic operations according to the 100
iterations. In addition, what's also important is that I
generate the strings with different lengths. For example, I
set the maximum size of the strings as 1000, and thus for
each length in 1-1000, I generate 100 random strings to
compute the prefix, at the same time recording the
number of basic operations. Finally according to the
following formula, I compute the coefficients 1 0,c c and
the correlation coefficient r :

1 0
*Number c m c  (1)

1

2 2

1 1

(() ())

() ()

maximumlength

mm

maximumlength maximumlength

mm m

r
Number N m m

Number N m m



 


 

 


 





(2)

where ,N m represent the average number of operations
and average length.

The correlation coefficient r is used to measure the linear
correlation. If r is equal to 1, the two variables are
positively linear correlated; if r is equal to -1, the two
variables are negatively linear correlated. In order to
evaluate the linearity, two statistics are computed, namely,

2R statistics and F statistics , where the more first
statistic is close to 1 and the bigger the second statistic is,
the more obvious the linearity is. More precisely for the
second statistic, F statistics , it corresponds a p-value
that represents the probability how much significantly that
the linear regression model can not describe the data.

Moreover, the partial match will affect the while loop.
Thus, the cases where the number of partial matches
differs are also considered by setting the range of the
characters in the string. For example, when I set each
character in the string falls in a~z, namely 26 letters, the
random string with length less than 50 is rare to have
partial match sequence with length over 3; yet, if the
characters are in a~c, namely 3 letters in total, it is quite
probable that the longer partial match will take place.
Therefore, by setting different ranges of the characters in
the string, I observe the correlation between numbers of
basic operations and the size of the strings.

3.2 Test KMPMatcher()

As for the KMPMatcher() function, there are two input
strings and in my detailed implementation there is the
evaluation that the size of string P should always be
smaller than that of T. Thus, here what needs to be
validated is the linear relationship between basic
operations’ number and the sum of n, size of T, and m,
size of P (m≤n). In addition, the basic operation here is
defined as the evaluation expression inside the while loop
bracket. Similar to above, the naive analysis will lead to
the time complexity of n multiplying m. Thus, the more
precise analysis is necessary.

Firstly, I consider string P as constant and then again I
generate many strings randomly to serve as input,
counting the basic operations. Given the length of string T,
I generate a certain number of strings with the same
length randomly and then average all the iterations. Also,
the maximum number of length is set as large so as to
approximate the infinite cases(although never enough, yet
what matters is the tendency). Then I release the length of
P, namely let m vary, and get the average number for the
given length of P and the given length of T. For example,
I set the length of P, m varying from 1 to 100, and set the
length of T, n varying from m to m+1000; for each m and
n, I generate a random string P, and generate 100 random
strings T to run KMP string matching; after I get the 100
numbers of basic operations, I average them and keep the
average as the number of operations given m and n; after
all these, I analyze the relationship between the number of
operations and m and n using following formula:

1 02 * *Number c n c m c   (3)

In order to compare the linearity results, I also conduct
the approximation:

1 0
* ()Number c m n c   (4)

And calculate the 2R statistics .

Based on the input type of this function, I conduct another
comparison group experiments with different types of
input. Since the partial match will matter, the range of the
strings’ character is set different so that I could observe
the different results under different configurations. For
example, when every character in the string falls in the
range a-z, thus 26 different kinds of characters in total, it
is less likely to have partial match during the matching
step, thus less back track during the while loop; when
each character is in the range a-c, namely the range is
much smaller, it is more likely to have partial match and
during the while loop, the step length of each back
tracking is also small, thus may resulting in more basic
operations. This setting derives from the intuition that in
the while loop of the function, if the partial match is more
or the repetitive characters are more, it is more seemingly
that the index q will track back more slowly. Then I will
also compare the results with different settings of ranges.

4. Experiments & Discussion

In this section, first I will give the results and analysis
respect to the ComputePrefix() and KMPMatcher(), and
then I will give the discussion based on these two
experiments and conclude that the linear complexity is
solid according to the experimental inspiration and
theoretical analysis.

4.1 Performance and Analysis of ComputePrefix()

In this part, the linear approximation (1) is computed
together with the correlation coefficient (2); as well, the

2 statisticsR  and F statistics are computed to evaluate
the linearity. For the input pattern string, I set the length
from 1 to 1000, and for each length, I generate 100
random strings to iterate, averaging them. Also, the
ranges of the characters are separately
{a},{a,b},{a,b,c},{a,b,c,d,e},{a~z}.

Table 1. Linear Regression Results and Evaluation for Compute
Prefix

 range

pars.
{a} {a,b} {a,b,c} {a,b~e} {a,b~z}

c0 0.0000 -0.9724 -0.7866 -0.4199 -0.0732

c1 1.0000 1.4177 1.3195 1.1983 1.0385

r 1.0000 1.0000 1.0000 1.0000 1.0000

2

R
statistics

 1.0000 1.0000 1.0000 1.0000 1.0000

F
statistics


5.6750e
+33

2.5078e
+07

1.0387e
+08

1.7146e
+08

4.6896e
+08

p-value 0.0000 0.0000 0.0000 0.0000 0.0000

In Table 1, the line corresponds to different range and the
row corresponds to different parameters. As seen above,
there are two phenomena concluded:

 For all ranges, the coefficient c1 is positive makes
sense that with the increase of the string’s size, the
number of basic operations increase proportionally.
Moreover, the linearity is solid based on the three
different evaluation standards: correlation coefficient,

2R statistics and F statistics . As seen from the
chart, both of the correlation coefficients and

2R statistics are 1.0000; the F statistics is also
high that the corresponding p-value is 0.0000. This
reveals that the linearity is significantly solid based
on the experiments.

 For different ranges, the coefficient differs.
Especially the ranges with 2 characters {a,b} and
that with 3 characters {a,b,c} have the largest
coefficient c1 which indicates that the number of
basic operations increases the fastest in these two
cases. It is reasonable that since there are fewer
types of characters, thus the partial match inside the
string is more likely to happen, resulting in more
possibility of backtrack in the while loop. As for the
case where range is 1, in fact the string is certain,
with the format “a...a”, and the while loop will never
track back but continue to add 1 to k, resulting in the
coefficient 1 with 0 standard deviation (Figure 1).

Figure 1. Numbers of Basic Operations and Std with Different
Ranges

4.2 Performance and Analysis of KMPMatcher()

As comparison, both linear regression of (3) and (4) are
conducted. Due to the limit of the computer’s capacity, I
downsize the iterations to 50. In details, the maximum
length of the pattern string is 50, while the maximum
additional length of the text string is 500. Namely, for
each length m from 1 to 50, I randomly generate the
pattern string P with length m, then given the pattern
string m, for each length n from m to m+500, I generate
50 random text strings T with length n. Afterwards, input
these strings and count the basic operations, averaging the
50 iterations, and use the 50*500 groups of data to linear
approximate.

Figure 2. 3D Plot of Linear Regression Model(3) (this is the
case where range = 26, namely each character falls in {a~z})

Figure 3. Numbers of Basic Operations with Different Ranges
Using Model(4) (the x-axis is the product of m and n)

From the figures above, it seems that obviously the time
complexity, namely the number of basic operations, is
linear to both m and n, thus resulting in the 3D plane.
However, if we plot the time complexity with the product
of m and n, the figure above indicates that no solid
principle between these two variables are obvious. Then
let’s look at the numerical results as following:

Table 2. Linear Regression Results and Evaluation for KMP
Matcher Using (3)

 range

pars.
{a} {a,b} {a,b,c} {a,b~e} {a,b~z}

c0 1.0000 -8.0394 -8.6998 -4.4128 -1.6885

c1 1.0000 1.6502 1.5915 1.3129 1.0623

c2 1.0000 1.4010 1.3010 1.1927 1.0377
2

R
statistics


1.0000 0.9867 0.9948 0.9979 0.9999

F
statistics


2.2386e
+33

9.2494e
+07

2.4082e
+08

5.8351e
+08

1.1400e
+08

p-value 0.0000 0.0000 0.0000 0.0000 0.0000

Table 3. Linear Regression Results and Evaluation for KMP
Matcher Using (4)

 range

pars.
{a} {a,b} {a,b,c} {a,b~e} {a,b~z}

c0 154.60
14

214.00
45

198.31
11

182.51
14

160.04
93

c1 0.0188 0.0271 0.0253 0.0227 0.0196
2

R
statistics


0.5226 0.5350 0.5440 0.5329 0.5252

F
statistics


2.7365e
+04

2.8761e
+04

2.9829e
+04

2.8525e
+04

2.7656e
+04

p-value 0.0000 0.0000 0.0000 0.0000 0.0000

Table 2 gives the results of 2-agents linear regression
model. The linear coefficient for m and n is around 1 or 2,
which still makes sense that with m or n’s increasing, the
number of basic operations increases proportional to these
two variables. Also, the 2R statistics is nearly 1 and the
F statistics is high enough that the p-value falls 0,
which reveals that this linear model can describe the data
significantly. As for the Table 3, which consists of the
results for model (4), it can be seen that the linearity is not
significantly obvious according to 2R statistics because
the value is only slightly over 0.5; alghouth it is also true
that the F statistics is high but it can only tell that
overall the model can describe the data better than that
with high orders of m*n. In conclusion, the model (3):

1 02 * *Number c n c m c   (5)

is statistically significant descriptive based on the
experiments. Moreover, the time complexity of the KMP
matcher is linear to the size m of the pattern string and to
the size n of the text string according to our expeirments.

4.3 Theoretical Analysis and Conclusion

Consider the case if we had no idea what exactly the time
complexity of KMP algorithm was, we could be led now
towards the linear results by the experiments. However,
there are still two loops, one embedded into the other, so
how to understand the linear complexity? Since we’ve got
the possibly correct intuitive that the time complexity is
linear, we may try to go over the algorithm and think of it
again, from another perspective.

For ComputePrefix(), when we go over the pattern string,
the index of the while loop in fact at most but never
would travel the string twice. Whenever there is a partial
mismatch, the while loop would travel back to find one
that is the partial match for current subsequence, with the
step recorded in the pattern array Pi. Each time it will
cross the impossible match subsequence, with the step
bigger or equal to 1. In fact, sum up all of these steps, and

it is clear that the length of the sum is no bigger than m.
This makes sense that each time when we come across a
mismatch we try to track back to find out the correct
partial match but at most we can find as long as the
current length and once we’ve track back we can never
reach the current length, namely q. From this opinion, it is
concluded that the while loop would run at most 2*m. It is
also indicated in the experiments that each linear
coefficient is no more than 2(the highest in the first
experiment is 1.4177). Or think it in another way, each
time there is a partial match, the variable k would add one,
and thus at most the k could be m; yet each time there is a
mismatch, k will in large scale track back until find one
partial match (P[k+1]=P[q]) or to the start point (k=0).
Thus, the k would at most changes 2*m times. Again, we
get the 2*m upper bound for ComputePrefix(). As for the
constant coefficients for different cases, it can be seen
from the experiments as well as the analysis above.

For KMPMatcher(), similar to above, although there are
two loops, the time complexity is still no worse that linear
to m and n due to the fast backtrack and slow increment
respect to q. When there is a mismatch, q will jump
forward several numbers of positions, which depends on
the occurrence of current subsequence in the pattern
sequence. If we stretch the pattern string to as long as the
text string, it is obvious that the scan of text string will at
most be the sum of this two strings, namely 2*n. From
another perspective similar to the last paragraph, for each
i from 1 to n, the index q at most add one at one time but
will always decrease much, namely backtracking a lot
especially after the q has been added continuously. Thus,
the time of q’s changing will always be less than 2*n.
Therefore, it can also be concluded that the time
complexity is bounded by 2*n. This may also be inspired
from the experiments, where the linear coefficients are
never over 2(the largest pair appears when range = 2, and
the values are 1.6502 and 1.4010). As for the constant
coefficient and the linear coefficient, it can be referred to
the former parts where experiments and analysis are given.

In all, the linear complexity for both component of the
KMP algorithm is validated. It also follows the common
clues of solving problems: theoretical analysis, put
forward a possible model, experiment this model, and
finally analyze the solutions solidly based on the
supportive experimental results.

Acknowledgements

From this project, I practiced how to computationally
estimate the time complexity of a given algorithm. This is
useful when I come across an algorithm of which the time
complexity is hard to deducted from theoretical counting.
Also, this project helps me understand the KMP algorithm.
In addition, I reviewed the linear regression analysis
through this project. Thank Prof. Souvaine for the chance,
and many thanks to her wonderful course. Thank the two
teaching assistant, Mr. Winslow and Mr. Majidi, for their
help and encouragement.

References

.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein.
Introduction to Algorithms (second edition). MIT Press,
Cambridge, MA&McGraw Hill.

http://en.wikipedia.org/wiki/Knuth_Morris_Pratt_algorith
m. The wikipedia for KMP algirthm.

