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Abstract 

This project centers on the evaluation for the 
time complexity of Knuth-Morris-Pratt(KMP) 
string matching algorithm. String matching 
problem is to locate a pattern string within a 
larger string. The best performance in terms of 
asymptotic time complexity is currently linear, 
given by the KMP algorithm. In this algorithm, 
firstly a prefix for the pattern string is computed 
and then based on this prefix, only linear time is 
needed to find the pattern string in the larger 
string. In details of both steps, the prefix 
computation and matcher, two loops are needed, 
where one goes over the whole string and the 
other loop travels back to some point of the 
prefix array. I test these two steps with a large 
number of random input strings, of which the 
lengths are different, and for evaluation, ranges 
of the strings are also under control to simulate 
the various cases. As much as possible, I expect 
to get the tight analysis of the KMP algorithm’s 
time complexity. During these tests, the numbers 
of basic operations are recorded and then linear 
analysis is conducted, giving the coefficients of 
linear regression and the correlation coefficient. 
Finally, together with the analysis, it is 
concluded that the linear time complexity is 
validated based on the experiments. 

1.  Introduction 

The time complexity of a given algorithm can be obtained 
from theoretical analysis and computational analysis 
according to the algorithm’s running process. Both 
methods estimate the time complexity by counting the 
number of basic operations, which cost some basic unit of 
time. In terms of the theoretical analysis, the task 
sometimes is quite simple by just counting the maximum 
number of operations; however, when some conditional 
evaluations are added, the strategy of theoretically 
counting maximum number of operations may be 
confusing, or far too pessimistic because due to the 
conditional evaluations, many seemingly possible 
operations will never co-occur, thus resulting in great 
decrease in the number of total operations. Yet still, if all 
of the cases are known, it is obvious for the theoretical 

counting to obtain the tight analysis of the time 
complexity. Thus, the computational approximation is 
useful to help understand the tight analysis of time 
complexity. In this project, the estimation of KMP 
algorithm’s time complexity is confusing because in both 
of its two steps, there are two seemingly-going-over-all 
loops but the time complexity is still linear to the input 
size. Thus, I generate different random inputs and 
computationally count the number of basic operations. 
After gaining all these operations’ numbers respect to the 
input size, I plot the results and do the linear regression. It 
is so notable of the linear relationship in the experiment 
part that no polynomial approximation is necessary. 

The intuition of testing the time complexity 
computationally is to count every basic operation respect 
to different inputs. As for the generation of inputs, two 
demands should be satisfied: 

 The input strings with a given length should cover 
all possible cases; 

 The input strings’ lengths should range from the 
minimum 1 to infinite. 

These two demands are the intuitively complete rules for 
testing an algorithm’s asymptotic time complexity. 
However, the infinite inputs with infinite lengths are 
impossible; thus, computationally, I replace the first 
infinite cases rule with sampling randomly, and the 
second rule with some very large length. It is true that 
singly based on my experiments it is impossible to reach 
any conclusion of the algorithm’s performance, but the 
random sampling and some large number of experiments 
can still provide the estimation of the ground truth 
performance. Namely, the finite experiments provide the 
clues of analysis and directions to work on. In this project, 
after the experiments are presented the discussion with 
concrete theoretical analysis is given to validate the 
conclusion that the KMP algorithm’s asymptotic time 
complexity is O(n). 

The rest of the report will give the formulation of the 
KMP algorithm, the details of my strategy to test the two 
key steps of KMP algorithm, and the experiments 
together with the discussion. 

2.  Knuth-Morris-Pratt Algorithm 



 

 

KMP algorithm was conceived in 1977 by three eminent 
computer scientists: Dr. James H. Morris, Dr. Vaughan 
Pratt, and Dr. Donald Ervin Knuth. Instead of directly 
match the pattern string to the larger string, KMP 
algorithm firstly compute a prefix for the pattern string 
and then match the string on the larger string based on the 
prefix array. Only by one travel of the two strings will it 
achieve the goal of computing prefix and finding the 
match, resulting in the best linear time complexity.  

Given a pattern string P and a text string T. Then sizes of 
the two strings are respectively m and n. The KMP 
algorithm firstly compute a prefix array Pi for P, with size 
of m. Each element in Pi records the index from which if 
a mismatch occurs the next match should begin. Thus, it 
is not necessary to test the whole pattern string over and 
over whenever there is a mismatch. This is the intuition of 
the algorithm’s matching strategy. As for how to compute 
the prefix, in the preprocessing of the pattern string, one 
travel of this string is needed so as to find out the partial 
match itself, but what is important that the partial match 
information is reusable for the following travel. Thus no 
matter for the matcher or the computing prefix, the time 
complexity is always linear to the size of the input. The 
time complexity of computing prefix is linear to the size 
of the pattern string, and that of matcher is linear to the 
size of the text string.   

The following is the pseudocode of KMP algorithm.  

ComputePrefix(P[0...m-1], m) 

1.    Pi[0] = -1; 

2.    k = -1; 

3.    for q=1:m-1 { 

4.        while(k>=0 && P[k+1]!=P[q]){ 

5.            k = Pi[k];} 

6.        if(P[k+1]==P[q]) then k++; 

7.        P[q] = k; 

8.    }return Pi; 

 

KMPMatcher(T, n, P, m) 

1.    Pi = ComputePrefix(P,m); 

2.    q = -1; 

3.    for i = 0:n-1 { 

4.        while(q>=0 && P[q+1]!=T[i]){ 

5.            q = Pi[q];} 

6.        if(P[q+1]==T[i])    then q++; 

7.        if(q == m-1)    then report index i-m+1; q = Pi[q]; 

8.    }return; 

In the following section, I will test these two components 
separately and obtain the estimation of the time 
complexity. 

3.  Strategy to Test the Performance 

As mentioned before, the time complexity is usually 
estimated by counting the number of basic operations. In 
addition, the two infinite rules should be approximately 
obeyed so as to obtain the tight performance of the 
algorithm. Thus, I use the randomness to tackle the 
problem derived from the first infinite rule and use 
iterations and large number of input strings to tackle the 
problem out of the second rule. 

3.1  Test ComputePrefix() 

For the first component, ComputePrefix(), there are two 
loops for and while. Also, both two loops go over the 
array P, of which the length is m. Naively, the time 
complexity may be m times m, resulting in m square. 
However, the while loop doesn’t always go over all the 
array P due to the condition k>=0 and P[k+1]!=P[q]. In 
fact, inside the loop, every time the k is updated with the 
space, that goes across a partial matched sequence instead 
of single step. In order to test the number of basic 
operations, I set a count variable inside the while 
evaluation so that whenever the expression inside the 
while bracket is evaluated, the count variable will add one. 

After the analysis of the function as well as the measure 
of the time complexity, here what is given is the strategy 
to estimate the asymptotic time complexity. As elaborated 
above, two rules should be obeyed so as to obtain the time 
complexity. Here I generate many strings randomly, of 
which each character appears in the range a-z randomly. 
Moreover, for a given length, I repeatedly generate 100 
different random strings , 1, ...,100j

m
P j   to serve as the 

input strings. Afterwards, I calculate the average number 

m
Number of the basic operations according to the 100 
iterations. In addition, what's also important is that I 
generate the strings with different lengths. For example, I 
set the maximum size of the strings as 1000, and thus for 
each length in 1-1000, I generate 100 random strings to 
compute the prefix, at the same time recording the 
number of basic operations. Finally according to the 
following formula, I compute the coefficients 1 0,c c  and 
the correlation coefficient r : 
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*Number c m c                        (1) 
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where ,N m  represent the average number of operations 
and average length. 



 

 

The correlation coefficient r is used to measure the linear 
correlation. If r is equal to 1, the two variables are 
positively linear correlated; if r is equal to -1, the two 
variables are negatively linear correlated. In order to 
evaluate the linearity, two statistics are computed, namely, 

2R statistics and F statistics , where the more first 
statistic is close to 1 and the bigger the second statistic is, 
the more obvious the linearity is. More precisely for the 
second statistic, F statistics , it corresponds a p-value 
that represents the probability how much significantly that 
the linear regression model can not describe the data. 

Moreover, the partial match will affect the while loop. 
Thus, the cases where the number of partial matches 
differs are also considered by setting the range of the 
characters in the string. For example, when I set each 
character in the string falls in a~z, namely 26 letters, the 
random string with length less than 50 is rare to have 
partial match sequence with length over 3; yet, if the 
characters are in a~c, namely 3 letters in total, it is quite 
probable that the longer partial match will take place. 
Therefore, by setting different ranges of the characters in 
the string, I observe the correlation between numbers of 
basic operations and the size of the strings. 

3.2  Test KMPMatcher() 

As for the KMPMatcher() function, there are two input 
strings and in my detailed implementation there is the 
evaluation that the size of string P should always be 
smaller than that of T. Thus, here what needs to be 
validated is the linear relationship between basic 
operations’ number and the sum of n, size of T, and m, 
size of P (m≤n). In addition, the basic operation here is 
defined as the evaluation expression inside the while loop 
bracket. Similar to above, the naive analysis will lead to 
the time complexity of n multiplying m. Thus, the more 
precise analysis is necessary. 

Firstly, I consider string P as constant and then again I 
generate many strings randomly to serve as input, 
counting the basic operations. Given the length of string T, 
I generate a certain number of strings with the same 
length randomly and then average all the iterations. Also, 
the maximum number of length is set as large so as to 
approximate the infinite cases(although never enough, yet 
what matters is the tendency). Then I release the length of 
P, namely let m vary, and get the average number for the 
given length of P and the given length of T. For example, 
I set the length of P, m varying from 1 to 100, and set the 
length of T, n varying from m to m+1000; for each m and 
n, I generate a random string P, and generate 100 random 
strings T to run KMP string matching; after I get the 100 
numbers of basic operations, I average them and keep the 
average as the number of operations given m and n; after 
all these, I analyze the relationship between the number of 
operations and m and n using following formula: 

1 02 * *Number c n c m c                    (3) 

In order to compare the linearity results, I also conduct 
the approximation: 

1 0
* ( )Number c m n c                         (4) 

And calculate the 2R statistics . 

Based on the input type of this function, I conduct another 
comparison group experiments with different types of 
input. Since the partial match will matter, the range of the 
strings’ character is set different so that I could observe 
the different results under different configurations. For 
example, when every character in the string falls in the 
range a-z, thus 26 different kinds of characters in total, it 
is less likely to have partial match during the matching 
step, thus less back track during the while loop; when 
each character is in the range a-c, namely the range is 
much smaller, it is more likely to have partial match and 
during the while loop, the step length of each back 
tracking is also small, thus may resulting in more basic 
operations. This setting derives from the intuition that in 
the while loop of the function, if the partial match is more 
or the repetitive characters are more, it is more seemingly 
that the index q will track back more slowly. Then I will 
also compare the results with different settings of ranges. 

4.  Experiments & Discussion 

In this section, first I will give the results and analysis 
respect to the ComputePrefix() and KMPMatcher(), and 
then I will give the discussion based on these two 
experiments and conclude that the linear complexity is 
solid according to the experimental inspiration and 
theoretical analysis. 

4.1  Performance and Analysis of ComputePrefix() 

In this part, the linear approximation (1) is computed 
together with the correlation coefficient (2); as well, the 

2 statisticsR  and F statistics are computed to evaluate 
the linearity. For the input pattern string, I set the length 
from 1 to 1000, and for each length, I generate 100 
random strings to iterate, averaging them. Also,  the 
ranges of the characters are separately 
{a},{a,b},{a,b,c},{a,b,c,d,e},{a~z}. 

 

 

 

 

 

 

 

 

 



 

 

Table 1. Linear Regression Results and Evaluation for Compute 
Prefix 

   range 

pars. 
{a} {a,b} {a,b,c} {a,b~e} {a,b~z} 

c0 0.0000 -0.9724 -0.7866 -0.4199 -0.0732 

c1 1.0000 1.4177 1.3195 1.1983 1.0385 

r  1.0000 1.0000 1.0000 1.0000 1.0000 

2

R
statistics

  1.0000 1.0000 1.0000 1.0000 1.0000 

F
statistics


 

5.6750e
+33 

2.5078e
+07 

1.0387e
+08 

1.7146e
+08 

4.6896e
+08 

p-value 0.0000 0.0000 0.0000 0.0000 0.0000 

 

In Table 1, the line corresponds to different range and the 
row corresponds to different parameters. As seen above, 
there are two phenomena concluded: 

 For all ranges, the coefficient c1 is positive makes 
sense that with the increase of the string’s size, the 
number of basic operations increase proportionally. 
Moreover, the linearity is solid based on the three 
different evaluation standards: correlation coefficient, 

2R statistics and F statistics . As seen from the 
chart, both of the correlation coefficients and 

2R statistics are 1.0000;  the F statistics is also 
high that the corresponding p-value is 0.0000. This 
reveals that the linearity is significantly solid based 
on the experiments. 

 For different ranges, the coefficient differs. 
Especially the ranges with 2 characters {a,b} and 
that with 3 characters {a,b,c} have the largest 
coefficient c1 which indicates that the number of 
basic operations increases the fastest in these two 
cases. It is reasonable that since there are fewer 
types of characters, thus the partial match inside the 
string is more likely to happen, resulting in more 
possibility of backtrack in the while loop. As for the 
case where range is 1, in fact the string is certain, 
with the format “a...a”, and the while loop will never 
track back but continue to add 1 to k, resulting in the 
coefficient 1 with 0 standard deviation (Figure 1). 

 

Figure 1. Numbers of Basic Operations and Std with Different 
Ranges 

4.2  Performance and Analysis of KMPMatcher() 

As comparison, both linear regression of (3) and (4) are 
conducted. Due to the limit of the computer’s capacity, I 
downsize the iterations to 50. In details, the maximum 
length of the pattern string is 50, while the maximum 
additional length of the text string is 500. Namely, for 
each length m from 1 to 50, I randomly generate the 
pattern string P with length m, then given the pattern 
string m, for each length n from m to m+500, I generate 
50 random text strings T with length n. Afterwards, input 
these strings and count the basic operations, averaging the 
50 iterations, and use the 50*500 groups of data to linear 
approximate. 

 

Figure 2. 3D Plot of Linear Regression Model(3) (this is the 
case where range = 26, namely each character falls in {a~z}) 



 

 

 

Figure 3. Numbers of Basic Operations with Different Ranges 
Using Model(4) (the x-axis is the product of m and n) 

From the figures above, it seems that obviously the time 
complexity, namely the number of basic operations, is 
linear to both m and n, thus resulting in the 3D plane. 
However, if we plot the time complexity with the product 
of m and n, the figure above indicates that no solid 
principle between these two variables are obvious. Then 
let’s look at the numerical results as following: 

Table 2. Linear Regression Results and Evaluation for KMP 
Matcher Using (3) 

   range 

pars. 
{a} {a,b} {a,b,c} {a,b~e} {a,b~z} 

c0 1.0000 -8.0394 -8.6998 -4.4128 -1.6885 

c1 1.0000 1.6502 1.5915 1.3129 1.0623 

c2 1.0000 1.4010 1.3010 1.1927 1.0377 
2

R
statistics

  
1.0000 0.9867 0.9948 0.9979 0.9999 

F
statistics


 
2.2386e
+33 

9.2494e
+07 

2.4082e
+08 

5.8351e
+08 

1.1400e
+08 

p-value 0.0000 0.0000 0.0000 0.0000 0.0000 

 

 

 

 

 

 

 

 

 

Table 3. Linear Regression Results and Evaluation for KMP 
Matcher Using (4) 

   range 

pars. 
{a} {a,b} {a,b,c} {a,b~e} {a,b~z} 

c0 154.60
14 

214.00
45 

198.31
11 

182.51
14 

160.04
93 

c1 0.0188 0.0271 0.0253 0.0227 0.0196 
2

R
statistics

  
0.5226 0.5350 0.5440 0.5329 0.5252 

F
statistics


 
2.7365e
+04 

2.8761e
+04 

2.9829e
+04 

2.8525e
+04 

2.7656e
+04 

p-value 0.0000 0.0000 0.0000 0.0000 0.0000 

 

Table 2 gives the results of 2-agents linear regression 
model. The linear coefficient for m and n is around 1 or 2, 
which still makes sense that with m or n’s increasing, the 
number of basic operations increases proportional to these 
two variables. Also, the 2R statistics is nearly 1 and the 
F statistics is high enough that the p-value falls 0, 
which reveals that this linear model can describe the data 
significantly. As for the Table 3, which consists of the 
results for model (4), it can be seen that the linearity is not 
significantly obvious according to 2R statistics because 
the value is only slightly over 0.5; alghouth it is also true 
that the F statistics is high but it can only tell that 
overall the model can describe the data better than that 
with high orders of m*n. In conclusion, the model (3): 

1 02 * *Number c n c m c                    (5) 

is statistically significant descriptive based on the 
experiments. Moreover, the time complexity of the KMP 
matcher is linear to the size m of the pattern string and to 
the size n of the text string according to our expeirments. 

4.3  Theoretical Analysis and Conclusion 

Consider the case if we had no idea what exactly the time 
complexity of KMP algorithm was, we could be led now 
towards the linear results by the experiments. However, 
there are still two loops, one embedded into the other, so 
how to understand the linear complexity? Since we’ve got 
the possibly correct intuitive that the time complexity is 
linear, we may try to go over the algorithm and think of it 
again, from another perspective. 

For ComputePrefix(), when we go over the pattern string, 
the index of the while loop in fact at most but never 
would travel the string twice. Whenever there is a partial 
mismatch, the while loop would travel back to find one 
that is the partial match for current subsequence, with the 
step recorded in the pattern array Pi. Each time it will 
cross the impossible match subsequence, with the step 
bigger or equal to 1. In fact, sum up all of these steps, and 



 

 

it is clear that the length of the sum is no bigger than m. 
This makes sense that each time when we come across a 
mismatch we try to track back to find out the correct 
partial match but at most we can find as long as the 
current length and once we’ve track back we can never 
reach the current length, namely q. From this opinion, it is 
concluded that the while loop would run at most 2*m. It is 
also indicated in the experiments that each linear 
coefficient is no more than 2(the highest in the first 
experiment is 1.4177). Or think it in another way, each 
time there is a partial match, the variable k would add one, 
and thus at most the k could be m; yet each time there is a 
mismatch, k will in large scale track back until find one 
partial match (P[k+1]=P[q]) or to the start point (k=0). 
Thus, the k would at most changes 2*m times. Again, we 
get the 2*m upper bound for ComputePrefix(). As for the 
constant coefficients for different cases, it can be seen 
from the experiments as well as the analysis above. 

For KMPMatcher(), similar to above, although there are 
two loops, the time complexity is still no worse that linear 
to m and n due to the fast backtrack and slow increment 
respect to q. When there is a mismatch, q will jump 
forward several numbers of positions, which depends on 
the occurrence of current subsequence in the pattern 
sequence. If we stretch the pattern string to as long as the 
text string, it is obvious that the scan of text string will at 
most be the sum of this two strings, namely 2*n. From 
another perspective similar to the last paragraph, for each 
i from 1 to n, the index q at most add one at one time but 
will always decrease much, namely backtracking a lot 
especially after the q has been added continuously. Thus, 
the time of q’s changing will always be less than 2*n. 
Therefore, it can also be concluded that the time 
complexity is bounded by 2*n. This may also be inspired 
from the experiments, where the linear coefficients are 
never over 2(the largest pair appears when range = 2, and 
the values are 1.6502 and 1.4010). As for the constant 
coefficient and the linear coefficient, it can be referred to 
the former parts where experiments and analysis are given. 

In all, the linear complexity for both component of the 
KMP algorithm is validated. It also follows the common 
clues of solving problems: theoretical analysis, put 
forward a possible model, experiment this model, and 
finally analyze the solutions solidly based on the 
supportive experimental results.  
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