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Background 
 Perhaps the most pressing issue hindering progress in the field of protein biology is functionally 
annotating the large volume of data generated by high throughput sequencing methods. Multiple factors 
contribute to the difficulty in making these function predictions. First, while in theory the primary 
structure of a protein contains all the information necessary to fold into the functionally significant 
secondary and tertiary forms, it has so far proven computationally intractable to model this. The only 
reliable way to deduce a proteins structure is to crystallize it and then examine the structure with x-ray 
crystallography or NMR. This procedure is laborious and expensive, and consequently only a fraction 
of known proteins have had their structures solved. The lack of reliable structural information for 
unknown proteins makes is difficult to then predict the proteins function.  Second, protein structures 
do not have a one-to-one mapping to function. Each individual protein has a unique combination of 
secondary structures and rearranging the structural units in a given protein would likely result in a 
complete change in function.  Therefore, even when a protein is structurally defined, it may not be 
trivial to predict function. 
 Nevertheless, researchers have developed programs that attempt to functionally annotate 
proteins based on their sequence. These programs generally attempt to match new proteins against large 
databases of protein sequences with known function in order to find homologous proteins, i.e. proteins 
with a common ancestor. The theory is that evolutionarily related proteins will share aspects of 
functionality. Other programs attempt to match on specific protein domains, while still others attempt 
to harness the power of distributed computing to find energetically favorable protein folds. 
Unfortunately the widespread use of automated methods has raised new concerns about the quality of 
annotations. Researchers fear that automated methods will use these incorrect annotations and thus 
introduce pervasive errors throughout the databases.  
 The Critical Assessment of Function Annotations (CAFA) Challenge provides is an annual 
competition designed to verify the accuracy of automated prediction methods. The CAFA group 
negotiates with select researchers to keep their newly solved protein structures and functions 
confidential. Then the CAFA group releases a substantial list of these protein sequences, almost 50,000 
this year, as targets for functional prediction. At the end of the challenge, participants are evaluated 
based on how well their methods predicted the solved protein functions kept confidential by CAFA.  
 CAFA is able to objectively assess prediction accuracy because the language for assigning 
protein function has been standardized by the Gene Ontology (GO) Consortium.  Ontology terms fall 
into one of three categories – cellular component, biological process, and molecular function.  Each of 
these categories contains a hierarchical tree of increasingly specific ontology terms.  For the purpose 
of the CAFA Challenge, only biological process and molecular function GO terms are evaluated. 
 

 Our second method of function prediction was based on identifying known structural domains 
in the target sequences.  To do this, we employed the SMURF (Structural Motifs Using Random 
Fields) application, developed at Tufts, as a first step.  SMURF allowed us to identify beta-propeller 
motifs in the unknown proteins.  Beta-propellers are well known to facilitate protein-protein 
interaction, which result in their involvement in a wide variety of functions from signal transduction, to 
transcription, to apoptosis.  Despite the lack of functional specificity that can be achieved by 
identifying beta-propellers in the unknown targets, the approach was still useful in verifying protein-

Our Approach 
 We approached the CAFA Challenge in a two-pronged fashion.  First, we used two different 
sequence alignment techniques (BLAST [Basic Local Alignment Search Tool] and Pfam) in order to 
transfer GO terms from known protein structures and functional domains that match the sequences of 
the unknown targets.  We believe that this sequence alignment approach allows us to reliably annotate 
the “low hanging fruit” in the unknown protein targets, and is likely a common first method employed 
by most groups participating in the challenge. 
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protein interaction GO terms identified by other methods.  In addition, the use of SMURF establishes 
a framework for the incorporation of other structural motif prediction algorithms into our methodology.  
 
Technical Details 
 The main component of our function prediction system was a MySQL database, as shown in 
Figure 1.  The database allowed us to run each of our prediction methods in parallel, storing the 
results independently and then aggregating them for the final output.  The flow of data for each of our 
prediction methods is detailed below. 

 
Figure 1: Database Schema 

BLAST 
 We first installed a local version of the BLAST sequence alignment tool.  Due to both data and 
run-time constraints, we were limited to using BLAST to compare our unknown sequences to only the 
proteins in the Protein Databank (PDB) database, rather than the non-redundant (nr) database, which 
contains many more sequences.  The upside to this is that GO terms transferred from matches in the 
PDB are likely to be much more high-quality and reliable since they are coming from proteins with 
solved structures. 
 Unknown FASTA sequences were fed to the BLAST program in batches of 100, and the results 
were then parsed and uploaded to the blast_results table in the database.  Sequence hits were defined 
as having an e-value <= 10-5 and a maximum of 6 of these hits were added to the table.  To produce 
the final GO term predictions, the BLAST results were joined with a mapping table that was pre-
populated with data matching PDB IDs to GO terms.  We also included a mapping table for 
RefSeqIDs to GO terms, which would allow for the use of the nr database with BLAST in the future. 
 
Pfam 
 We also installed a local version of Pfam.  Pfam relies on the HMMER3 to generate hidden 
Markov models of protein domain families that are then used to find these family domains in unknown 
sequences.  Similar to BLAST, the Pfam results were parsed and uploaded to the pfam_results table, 
and then joined with a pre-populated mapping table to assign final GO predictions. 
 
SMURF 
 Finally, we obtained and ran a local copy of the SMURF application to identify beta-propeller 
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structures.  We compared our unknown sequences to 12 different propeller templates (6-bladed, 7-
bladed, 8-bladed, and all permutation of double-bladed propellers (i.e. 6-6 bladed, 6-7 bladed, etc)).  
We defined a positive hit on a template when p <= 10-4.  As with the other methods, the results were 
parsed and uploaded to smurf_results. 
 Unfortunately, due to the wide range of functions for proteins containing beta-propellers, we 
were not able to reliably populate the mapping table linking beta-propellers to specific GO functional 
terms.  At a high level, we know that these proteins are involved in protein-protein interaction, but a 
detailed literature search did not provide a consensus for more specific propeller function.  If time had 
allowed, we may have run a training set of propellers proteins with known functions through SMURF 
in order to build a probabilistic model for likely functions of a given beta-propeller fold. 
 
Results 

 
Figure 2: Summary of results 

 The results for one eukaryotic target file and one prokaryotic target file are detailed in Figure 2.  
In many cases, the BLAST and Pfam prediction techniques produced redundant GO terms, reinforcing 
the likelihood that these are correct functional predictions.  In total, 5,694 unique sequences had a hit 
in at least one of our methods, giving a 63.9% success rate of transferring at least one ontology term. 
 The complementarity of our approach can be demonstrated by examining specific target 
proteins.  For example, the eukaryotic target sequence, T38114, matched 6 PDB structures in BLAST 
resulting in the transfer of GO terms specific for transcription, mitosis, methylation and protein binding.  
The same sequence matched a Pfam family that was associated with GO terms for zinc ion binding, and 
nucleic acid binding.  The zinc binding term was a new addition to BLAST, while the nucleic acid 
binding provided a more specific term for the transcription and mitosis terms identified with BLAST.  
Finally, the protein was also identified as containing a 7-bladed propeller in SMURF, potentially 
leading to further functional annotation. 
 

 It is manifestly clear that our results so far, while significant, would not be a competitive entry 
into the CAFA challenge. To move beyond the realm of “easy” predictions we would need to employ 
several more tools, including those that searched for more functionally specific structural domains or 
motifs. Several programs immediately present themselves. Beta wrap pro, which was developed at MIT, 

Conclusion 
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searches for beta barrels which have been linked to infectious disease. Raptor, which is one of the few 
proprietary tools, uses protein threading and performs very well when no homologous models are 
available. Finally, Rosetta is an ab initio program which uses distributed computing to attempt to find 
the minimum energy fold state of a protein. Using these programs in addition to our prior work would 
help fill annotations of more “novel” or “harder” protein sequences, which is key to performing well in 
the challenge. 
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