

Practice on Classification using Gaussian Mixture Model
Course Project Report for COMP-135, Fall 2010

Mengfei Cao MCAO01@CS.TUFTS.EDU
Dept. Computer Science, Tufts University, Medford, USA

Abstract

This project centers on the investigation of appl-
-ying Gaussian Mixture Model (GMM) to
supervised learning based on the Maximum Lik-
-elihood (ML) estimation using Expectation
Maximization (EM). As learnt, the statistical
modeling methods manipulate probabilities dire-
-ctly, thus giving more sophisticated description
over the actual world with its disadvantage of the
expensive computational complexity. Yet, it is
still potential for its hardly use in the field of
supervised learning. Based on the model, some
modifications are conducted from the classical
GMM, thus applying the models to the
supervised learning. Two strategies out of the
analysis of GMM’s characteristics are put
forward and experimented based on some of the
weka file from UCI dataset. In this project, it is
demanded to implement the basic computations
of Gaussian mixture and EM; thus, apart from
the understanding of these algorithms, the
implementation details offered much potential
improvement to deal with, thus leaving a lot to
explore further.

1. Introduction

Classification, as a big part of supervised learning
problem, has always attracted lots of attention for its
various applications. Also, many methods are brought
forward to tackle this problem. One of the categorization
of these methods is based on the model’s essence:
deterministic and statistic. Deterministic methods such as
k-Nearest Neighbors, Perceptron, are always intuitionistic
and computationally simple(relatively);they usually look
at the local data behavior and thus the results of the model
are sometimes not descriptive enough for understanding
the whole data space. Statistical methods manipulate
probabilities and try to model the entire hypothesis space
and data distribution using probabilities distribution
density, thus providing more complete description of the
actual problems; however, it also asks for huge
complexity to achieve the goal. In fact, also these two
type of methods are internally correlated: most
deterministic methods turn out to be learners satisfying
the statistical demands, such as Maximum a Priori, and

some probabilistic methods can also be modified to apply
for deterministic problems, such as the algorithms in this
project.

GMM is a distribution, which consists of finite number of
Gaussian distributions in the linear way. The Gaussian
distribution is common used for its high level of realistic
applicability: on one hand, it allows for a mathematically
straightforward analysis, due to series of good computati-
-onal properties; on the other hand, according to the
Central Limit Theorem, it is also well qualified to
approximate many types of noise in physical systems,
especially when there are large numbers of examples and
unknown factors. Based on these facts, the GMM further
expands the application of Gaussian distributions, using
the mixture model to describe the realistic problems.
Within the problems of machine learning, GMM is
common used for unsupervised learning because it can
dig out the data patterns and cluster those sharing similar
data behaviors together. Taking advantage of this together
with the intuition that examples of the same class are
more likely to be generated by the same Gaussian
components, inspires me to convert it into some learners
under Maximum Likelihood. Together with the assumpti-
-ons using Gaussian distribution to describe the objective
unknown factors, the Bayesian probabilistic theory is the
foundation of my project.

EM algorithm, although is a method to estimate the
parameters under MAP or ML, here it is extremely
important for its focus on the hidden variables. The
hidden variables used in this case represent the indicator
variables that some example is generated by a certain
component of Gaussian or not. This is quite attractive
because: firstly we can train the parameters of the
Gaussian mixture, so the GMM is known; then we can
compute the hidden variables given any new instances, so
the estimation of which component generates the new
instance is also known; finally, as long as we can bridge
the labels and the Gaussian components, we will get the
instances’ labels indirectly from what we’ve known. The
details of my strategy as well as the principles of EM will
be formulated in the next section.

 Figure 1. the overall graph of learning in this report.

The rest of the report will give the mathematical
formulation of the GMM, as well as the incorporation of
EM the Section 2, and my two strategies to conducting
classification in Section 3. Then followed is the
experiments and discussion in Section 4.

2. Gaussian Mixture Models and the Expectation
Maximization Algorithm

2.1 Gaussian Mixture Models

The Gaussian Mixture Model I used in this report is the
finite parametric mixture model, which tries to estimate
the data to be distributed according to a finite number of
Gaussian mixture densities. Still, the GMM is a
distribution and the general form of pdf is:

1

() (; ,)
k

i i i
i

f x w N x

 (1)

where k is the number of the Gaussian components, iw is
the weight of each Gaussian component, such that:

1
1, : 0

k

i ii
w and i w

 (2)

(; ,)i iN x is the pdf of normal distribution, that:

1

| |/2

1 1
(; ,) exp(() ())

2(2) | |
i i i i ix

i

N x x x

(3)

where , , 1, 2,...,i i i k are the parameters of the
Gaussian distributions.

What differs GMM from the other modeling methods is
that it looks at the data as the results of linear combination
of several generative Gaussian models while the others:
either use a single probabilistic distribution to describe the
whole data or just ignore the complete data structure but
to singly dig out the relationship between the given data.
As explained before, the normal distribution is highly
descriptive in many physical experiments, and the linear

mixture contributes to the capability of the models
because it allows for more complicated data sources. In a
word, GMM is the universal approximation of the data
instead of the concept function.

In fact, this modeling can also be considered as an
assumption of description towards the actual world.
Similar to the cases where Central Limit Theorem applies,
when data is complicated enough and the unknown
factors are many enough, we can try to explore the data
space using the GMM, simply because so far the Gaussian
Mixture Models have strong capability of description.

2.2 The Expectation Maximization Algorithm

Before I use the GMM to analyze the problem of machine
learning, the new type of variables, hidden variables
should be introduced first.

1, ;

0, ;
ij

i

the jth Gaussian component generates x
z

otherwise

(4)

Thus, for each given example, there is the hidden
parameter that describes which Gaussian generates the
example.

After accepting notions, the next problem to use GMM is
how to obtain all the parameters in the model given all the
observed data, especially to estimate the hidden variables.
The method I use is the Expectation Maximization (EM)
algorithm. The EM algorithm can be used even for
variables whose value is never directly observed,
provided the general form of the probability distribution
governing variables is known. Thus, it can be used in
many unsupervised clustering situations. Here for GMM,
it is also useful to estimate the parameters of each
Gaussian as well as their weights, and what’s the most
important is that EM will give the convergent solution of
the hidden variables under the condition of maximum
likelihood (ML).

The intuition of the EM algorithm is that based on the
assumption of the aimed data, it is obtainable of the
closed-forms of the probability distribution, but in the
formula there are many unknown parameters. Then, in the
first step of the EM algorithm, we calculate the
expectation of the hidden variables using the formerly
estimated values, but if it is the initialization phase, the
formerly estimated values should be some initialized
values (the initialization is not trivial as seen during the
experiments); after gaining the current estimation of the
hidden variables’ expectations, the next step is to use the
hidden variables to complete the closed-form of
likelihood or posteriori, and then update the parameters
according to the ML or MAP conditions. The reason to
use introduce the hidden variables is that the close form of
the likelihood or posteriori is hardly computed but turns
out easy with the hidden variable; while the hidden
variables are unknown, we instead use the expectation of
the hidden variables. This is also an iterative process and

ideally the solution of the parameters and the likelihood
will be convergent to some point under certain
environment settings.

A general form of the EM algorithm can be formulated as
follows: note that the notation X and Y is the unobserved
data and the observed data corresponding to X
respectively, is the parameters needed to calculate the
likelihood f(Y), thus the goal is to calculate the maximum
likelihood ML that maximizes () log (|)L f Y ; usually
the log((, |))f X Y has well defined form and thus easy to
compute the maximum but it asks the unobserved data X;
then what the EM algorithm does is to figure out a
sequence of and such that L()>L(). Two steps
as mentioned are conducted:

 The Estimation Step: calculate the expectation of the
unobserved data (| ,)[log (, |)]f X YE f X Y ;

 The Maximization Step: find such that:

(| ,)([log (, |)])f X Yargmax E f X Y .

There is also the theorem that:

If it holds that:

(| ,) (| ,)[log (, |)] [log (, |)]f X Y f X YE f X Y E f X Y

(5)

then it is also valid that L()>L() to achieve the goal
of ML. The proof of the convergence under different
circumstances is overviewed in [2].

3. Supervised Learning based on GMM

Given N instances 1

N

i i
x

as training data, where each ix is

a d-dimensional attributes vector; and for each instance
the label is {0,1}io . A GMM is put as follows:

1

(; ,) (; ,)
k

i i i
i

f x w N x

 (6)

where x is an example from the data space, k is the
number of the Gaussian components, iw is the weight of
each Gaussian component, such that:

1
1,

k

ii
w

 and : 0ii w (7)

(; ,)i iN x is the pdf of normal distribution, that:

1

| |/2

1 1
(; ,) exp(() ())

2(2) | |
i i i i ix

i

N x x x

(8)

where , , 1, 2,...,i i i k are the parameters of the
Gaussian distributions.

Making use of the EM algorithm and the GMM, two
strategies used to conduct classification are put forward
here.

3.1 Classification According to Likelihood

Observing the properties and the basic principles of the
EM algorithm, a strategy of supervised learning is given
here. The intuition is that since GMM is good at
describing the actual complicated data, we can model the
data using the GMM within one class. Then use the pdf of
the GMM to calculate the likelihood of any new coming
instances within every class and find the class of which
the pdf generates the maximum likelihood. The details of
the first strategy to deal with the classification are given.

Firstly, some notations should be made clear:

Given training data 1

N

i i
x

, for each instance ix ,the

correspondent label is {0,1,..., }io C ; for each class
, {1, 2,... }c c C (this strategy can deal with the cases of

multi-class) we use k Gaussian component to model the
data distribution, resulting 3*k groups of parameters to be
estimated,
namely { , , , 1, 2,..., };i i iw i k where 1iw ; the
hidden variable is the indicator variable:

1, ;

0, ;
ij

i

the jth Gaussian component generates x
z

otherwise

(9)

Thus the likelihood function given instances and the
hidden variables is:

0
11

() Pr(, |) (; ,);
n k

j
i j i i i

ji

L x z z w f x

 (10)

where (; ,)i i if x is referred to the equation (6). Since

the hidden variable is a 2-valued indicator variable, so the
log likelihood can be rewritten as:

1 1

() log log[(;)];
n k

j
o i j i

i j

L L z w f x

 (11)

In the first step, compute the expectation:

(| ,) 1*Pr(1 | ,) 0*Pr(0 | ,)

Pr(| ,)

Pr(, |) / Pr(|)

(| ,)

(| ,)
(12)

j j j
i i i i i i

j
i i

j
i i i

j i j j

l i l ll

E z x z x z x

z x

z x x

w f x

w f x

The likelihood function to be maximized now by
replacing the j

iz using (| ,)j
i iE z x is now:

1 1

(,) (| ,) log[(;)];
n k

j
i i j i

i j

L E z x w f x

 (13)

In the second step, maximize the likelihood function by
taking the derivatives of the parameters and compute
the point which generate the 0 derivatives, namely:

((,))argmax L

 (14)

In details:

1

1

1

1

1

1
(| ,)

((| ,))
;

(| ,)

((| ,) () ()

(| ,)

n j
j i ii

n j
i i ii

j n j
i ii

n j T
i i i j i ji

j n j
i ii

w E z x
n

E z x x

E z x

E z x x x

E z x

(15)

Run iterations until the likelihood is convergent, the
parameters can be output as the classifier to work in the
test stage.

In fact, for each class c, there is a set of parameters c and
thus for any new instances x̂ , compute the likelihood
according to the equation (10). Afterwards, choose the
class c, such that:

 ((,))c
c

c argmax L x (16)

Then determine the class c

as the label of the new
instances.

The pseudo code is represented here:

 Input: Given examples 1

N

i i
x

as well as the label for

each example {0,1,..., }io C , and the example x̂ ,
without label;

 Output: the label o of the example *x ;

 Algorithm:

--Split the training data into c subsets according to
the labels;

--For each subset of a certain class c,

Do:

--Initialize: { , , , 1,2,..., };c i i iw i k

--Repeat until convergence:

--Expectation: compute the expectations
(| ,)j

i i cE z x using (12);

--Maximization: update the parameters
((,))c cargmax L

 using (14);

 --Store the parameters c ;

--Compute the expectation of *()jE z for *x , and then
calculate the likelihood using (13) for each class;

--Find out ((,))c
c

c argmax L x ;

--Output c

as the label of *x ;

 End.

3.2 Classification According to Expectation

The former algorithm trains a classifier that described the
whole data space within each class, and by comparing the
certain value of likelihood function find the label with
maximum likelihood. Yet, what’s not concerned is that
the relationship between different classes is ignored so
that this distinguishable information is not used. For
example, consider the case where we use a threshold 5 to
classify the real numbers to two group; after knowing two
positive examples 6 and 7, we can further make sure of
this threshold because it is consistent with the two
examples, but when we have another two negative
examples -1000 and -2000, is it reasonable that we should
move the threshold 5 backward, namely subtracting 5 by
some numbers so that it is closer to the average of the
current examples with the condition that it is still a
consistent classifier. The answer is obviously yes, but of
course not application to every case.

Thus, I try to make use of the difference of the examples
within different classes to further expand the probability
gap of GMM. Formerly, all of our training calculation is
within a certain class, but now I will deal with the data
from all of the classes.

First, compute the GMM model given the number of
components k and the model covers all of the training
data; after all of the parameters are obtained, now each
component in GMM will be assigned a label by this:
compute an assignment matrix D , where each element in
the matrix ijd denotes the number of examples that the jth
component generates the maximum expectation of j

iz .
Then together with the distribution of numbers of
examples in each class, the component is assigned a label
which the following product is the highest:

. _
(/)

.
ij

i mjm

d Ex inClass i
c argmax

d Ex

 (17)

where # . _Ex inClass i is the number of examples in the
class i in total, and # .Ex is the total number of examples
in the training data.

This reveals that the jth component is most likely to
generate the examples in the class c.

For example in Figure2, there are two classes and two
components, and thus a 2*2 matrix is computed. For the
first element 49, it indicates that there are 49 examples in
the first class that the first Gaussian component generates
higher E(j

iz)than the second; for the rest elements, it is
explained that there are 41 examples in the second class
that the first Gaussian component generates higher E(j

iz)
than the second, there are 59 in the first class that the
second Gaussian component generates higher E(j

iz) than
the first, and there are 94 examples in the second class
that the second Gaussian component generates higher
E(j

iz) than the first. Considering the distribution of the
number of examples in each class, namely (49+59):

(41+94)=108:135. Thus the first component will have the
the value for (17) as 0.54/(108/243)=1.215 for the first
class and 0.46/(135/243)=0.828; similarly for the second
component the results are 0.875 for the first class and
1.373 for the second class. Thus the first component will
be assigned the label of 0 in the first class, while the
second component will be assigned the label of 1 in the
second class. After the assignment is finished, the
component will be used for classify the new instances.
Once a new example is input, calculate the expectation of
the hidden variable j

iz , and then find out the component
that generates the maximum E(j

iz); search the assignment
of the jth component, and determine that the new
example’s label is the label that the jth component is
assigned.

 The 1
st

Component
The 2

nd

Component

Class1
(label=0)

49 59

Class2
(label=1)

41 94

ratio 0.54:0.46 0.39:0.61

Table 1. an example of assignment matrix showing the
assignment of labels to Gaussian components.

The pseudo code is represented here:

 Input: Given examples 1

N

i i
x

as well as the label for

each example {0,1,..., }io C , and the example x̂ ,
without label;

 Output: the label o of the example *x ;

 Algorithm:

--Train GMM for the entire training data, get ;

--Compute the assignment matrix;

--Assign each component a label using (17);

--For the test example *x , compute the expectation
of *()jE z for *x , and find the jth component that
generates the highest value;

--Search out the assignment c

of the jth component;

--Output c

as the label of *x ;

 End.

In fact, this algorithm is still quite coarse for its hard
assignment of each Gaussian component, but it also
reveals that more advancement remains so as to improve
this learner.

4. Experiments and Discussion

In this section, some experimental results are given
together with the comparison analysis. The experiments
are based on the three weka file used in the past
assignments, namely the sonar.arff, heart-statlog.arff, and
the sonar-withmanyfeatures.arff. The strategy used to
evaluate the algorithms is the 10-fold stratified cross
evaluation. In order to avoid the trivial repeating, not all
of the results are given in this section, but they are readily
available through the author.

4.1 Comparisons Between the 1st Strategy and Some
other Classical Algorithms

In this part three algorithms are compared including the
K-nearest neighbors, perceptron and the first strategy in
this report. In the KNN algorithm, I chose the best
accuracy and std among the different choice of parameter
k; as for the two perceptron, I chose the best performance
after 2000 iterations.

Dataset of heart‐statlog.arff

Accuracy Std

The 1
st
 strategy, with 2 Gaussians in total 83.95% 5.52%

The 1
st
 strategy, with 4 Gaussians in total 79.42% 4.32%

The 1
st
 strategy, with 6 Gaussians in total 75.31% 6.98%

The 1
st
 strategy, with 8 Gaussians in total 75.72% 6.08%

The 1
st
 strategy, with 10 Gaussians in total 75.93% 5.56%

The 1
st
 strategy, with 12 Gaussians in total 59.26% NA

KNN with the selection of best k and
without normalization

70.37% 9.52%

KNN with the selection of best k and
normalization

81.48% 7.03%

Perceptron (2000 iterations) 80.87% 6.79%

Perceptron With Margin (2000 iterations) 81.22% 7.42%

Table 2. The experiment results of the different classifiers
on the dataset of heart-statlog.arff.

In Table 2, the results of each algorithms are given. It is
observed that the algorithm of the first strategy with 2
gaussian components in this report gives the best accuracy
and a fair standard deviation. As analyzed before, the
other deterministic algorithms either depends on the
compact distribution of examples within the same class,
like KNN, thus very sensitive to the input data, or
depends strongly on the linearity between labels and data
distribution, like Perceptron. Also, the perceptron is time
consuming when large numbers of iterations are
conducted. However, the GMM based algorithm describe

the data distribution according to the given data, thus
providing the estimation of the whole data space, robust
to the sample data’s distribution provided enough
examples.

What’s also worth noticing is the result given when the
total number of Gaussians is more than 12, the std is
noted as NA because in fact only one fold output the
regular test accuracy while the others output 0 or
meaningless value for during the computation, some near-
singular matrix is generated so that the program is not
able to deal with the calculation of inverse or dividing the
determinant regularly. This also reveals a problem of the
statistical model based algorithm, that the time
complexity and precision problem should be always taken
care.

In addition, the tendency of performance(Table 2) with
the number of Gaussian components from 2 to 10 is not
seemingly enough to reach a solid conclusion; but as far
as it is concerned, the accuracy is quite correlated with
the selection of k, and with different settings, the optimal
selection of k may be different. Although I expect that the
more components are used, the better descriptive capacity
of the model is, yet it also depends on how many
examples there are used to train, not to mention the
distribution of the sampled instances.

4.2 The Failure Analysis of the Second Strategy as
well as that of partial Fist Strategy

The maximum precision using this algorithm is obtained
on the heart-statlog database, but with the value no over
than 60%. Also, during the running stages, the warning
information provided by MATLAB keeps appearing that
“the matrix is close to singular or badly scaled; Results
may be inaccurate”. As proved, during the training stage,
the likelihood is frequently computed as NAN or INF,
such meaningless value; also the calculation of
expectation does not work well. Also, these happened in
the experiments using the first strategy, when the
components are over 12 on the dataset of heart-statlog,
when the components are over 4 on the dataset of sonar,
and that no correct classification results are given on the
dataset of sonar-withmanyfeatures. Both are consistent in
that on some datasets, both of the GMM based algorithms
work abnormally very early even when k is not big; on
some datasets, both algorithms can work further with
relatively larger k, where the first strategy lasts longer
than the second. Yet, in fact, although the first strategy
can work well with a larger total number of Gaussians,
the reason is obvious: first, the total number of Gaussians
comes from the sum of all the classes, so in the binary
classification, it is 2 times the individual number of
Gaussians in each class; second, the GMM is only
conducted in each class, thus the size of the data is half
decreased, more likely to avoid the abnormal calculation.
As for the dataset of sonar-withmanyfeatures, both
algorithms fail early because the dimensional of features
are high, aggravating the hardship for training.

Due to the limit of the exploration time, here is my very
limited analysis:

(1) the size of data matters; namely when more data are
dealt with to estimate the GMM, the likelihood will get
extremely close to 0 thus asking high precision demands.

(2) The calculation of the inverse of matrices and the
division of small value needs high efficiency and high
precision; with more complexity and bigger size of the
data set, the demands are sharply increasing.

(3) The initialization is not perfect; in my project, I call
the k-means algorithm embedded in MATLAB to provide
the initialization parameters, which yet sometimes offer
locally optima, thus leading the calculation to some near-
singular point.

(4) Although it is hard obtainable in terms of calculation
to use as many components, yet still the model asks for
enough components to describe the data space, otherwise
if GMM is not solid.

The implementation looks quite trivial but there remain
many problems unsolved. In the future, I may continue to
dig out the reasons as well as the solutions to the
questions I came across.

Acknowledgements

Thanks for Prof. Khardon’s course, which helped me
solve many confusions I always had. Also many thanks to
Prof. Khardon for offering the chance of project. I am
grateful for the teaching assistant Yuyang, who helped
and encouraged me a lot.

References

[1]Tom M. Mitchell. (1997). Machine Learning. McGra-
-wHill.

[2]Michael Collins. (1997). The EM Algorithm. Review
Report for MIT.

[3]http://www.mathworks.com/matlabcentral/fileexchang
e/8636 EM codes by Patrick P. C. Tsui, Univ. of
Waterloo, 2006

Appendix:

(1) the synthetic data test for my code:

I test my EMforGMM() using artificially synthetic data;
Namely, given three Gaussians, and we know all the
parameters ahead; according to the weights we select the
Gaussian to generate the data correspondent to the
Gaussian; then use myEMforGMM() to estimate the
parameters; here is the result curve and histograms:

(2) Programming details:
I use MATLAB 7.6.0 to develop the codes and have run
them on the linux server of CS Department. The dataset
of weka file, I use the text file converted from weka file
based on the former homework assignment.

(3) My source codes:
3.1)myEMforGMM.m
function [L,W,M,V] = myEMforGMM(instance, k)
%% myEMforGMM(): compute the parameters of k Guassian
mixtureusing EM algorithm; some implementation are referred
% from the functions in Matlab
% Inputs:
% instance -- the examples, n=# of instances, d=dimension
of
% attributes;
% k - # of Gaussian components;
%
% Ouputs:
% W(1...k) - estimated weight vector of GMM
% M(d,k) - estimated mean matrix of GMM
% V(d,d,k) - estimated covariance matrices of GM
% L - log likelihood of estimates
%%
%% EM initialization

%% initialize the mean vectors
% dirPath = 'heart-statlog';
% dataPath = sprintf('.//%s//instance',dirPath);
load(dataPath);
% k = 2;
[n,d] = size(instance);
%% use this meaningless initialization to test
% for i=1:k
% M(i,:) = sum(instance);
% W(i) = 1/k;
% V(:,:,i) = cov(instance);
% end
% M = M';
[Ci,C] = kmeans(instance,k,'Start','cluster', ...
 'Maxiter',100, ...
 'EmptyAction','drop', ...
 'Display','off'); % Ci(nx1) - cluster indeices; C(k,d) -
cluster centroid (i.e. mean)
while sum(isnan(C))>0
 [Ci,C] = kmeans(instance,k,'Start','cluster', ...
 'Maxiter',100, ...
 'EmptyAction','drop', ...
 'Display','off');
end
M = C';
%% initialize the vcovariance matrices and weight vector
countNum = zeros(1,k);
for i=1:n
 countNum(Ci(i)) = countNum(Ci(i)) + 1;
end
for i=1:k
 W(i) = countNum(i)/n;
end
for i=1:k
 ins = zeros(countNum(i),d);
 m = 1;
 for j=1:n
 if Ci(j)==i
 ins(m,:) = instance(j,:);
 m = m+1;
 end
 end
 V(:,:,i) = myCOV(ins);
end
%% initialize log likelihood
E = 1/k*ones(n,k);
L2 = Likelihood(instance,k,W,M,V,E);
L1 = 2*L2;
%% Estimate the parameters
niter = 0;maxIteration = 50;
while ((abs((L2-L1)/L1)>1e-3) && (niter<=maxIteration))
 E1 = Expectation(instance,k,W,M,V); % E-step
 [W1,M1,V1] = Maximization(instance,k,E1); % M-step
 L1 = L2;
 L2 = Likelihood(instance,k,W,M,V,E1);
 if isnan(L2)
 L = L1;
 return;
 end
 W1=W; M1=M; V1=V;
 niter = niter + 1;
end
L = L2;

3.2)myGMM.m
function myGMM(dirPath,k)
%% myGMM(): model the total data using gaussian
% mixture model; after obtaining all the
% gaussians, use the z hidden variable to
% classify the new examples;(the first strategy)
%
% Inputs:
% dirPath -- the data directory that contains the
% attributes file and labels file; these
% data files are generated using the C code
% in the past homework, parsing the weka
% data file.
% k - # of Gaussian components;
%
% Ouputs:
% two files named './/dirpath//resk%d' storing the
% training accuracy and test accuracy.
%%
k=2;
dirPath = 'heart-statlog';%'heart-statlog';%'sonar_original';

%%%% get all the data needed %%%%

readData(dirPath);
dataPath =
sprintf('.//%s//parameter',dirPath);load(dataPath);
dataPath = sprintf('.//%s//instance',dirPath);
load(dataPath);
dataPath = sprintf('.//%s//labels',dirPath);
load(dataPath);
clear dataPath;
%%%% all the data obtained %%%%
[n,d] = size(instance);

%%%% 10-fold stratified CV %%%%
cv = CVGroup(n,10,labels);

%%%% for each fold train the GMM %%%%
% for the first fold
kFold = 1; j = 1; m = 1;
trainSet = zeros(9*floor(n/10),d+1);
testSet = zeros(n-9*floor(n/10),d+1);
for i=1:n
 if cv(i) ~= kFold
 trainSet(j,:)=[instance(i,:) labels(i)];
 j = j+1;
 else
 testSet(m,:)=[instance(i,:) labels(i)];
 m = m+1;
 end
end
% train the GMM
[L,W,M,V] = myEMforGMM(trainSet(:,1:d),k);
while(isnan(L))
 [L,W,M,V] = myEMforGMM(trainSet(:,1:d),k);
end
count = zeros(3,k);
% accuracy inside the train set
for i=1:length(trainSet(:,1))
 z = Expectation(trainSet(i,1:d),k,W,M,V);
 [temp, maxK] = max(z);
 count(3,maxK) = count(3,maxK)+1;
 count(trainSet(i,d+1)+1,maxK) =
count(trainSet(i,d+1)+1,maxK)+1;
end
n0 = CountClass(trainSet(:,d+1));
p = n0/length(trainSet(:,1));
total = 0;
for i=1:k
 if count(1,i)/(count(2,i)+count(1,i))>p
 gaussianClass(1,i) = 0;
 gaussianClass(2,i) = count(1,i)/count(3,i);
 total = total + count(1,i);
 else
 gaussianClass(1,i) = 1;
 gaussianClass(2,i) = count(2,i)/count(3,i);
 total = total + count(2,i);
 end
end
trainAccuracy(1) = total/length(trainSet(:,1));
% accuracy for the test
total = 0;
for i=1:length(testSet(:,1))
 z = Expectation(testSet(i,1:d),k,W,M,V);
 [temp, maxK] = max(z);
 if gaussianClass(1,maxK)==testSet(i,d+1)
 total = total + 1;
 end
end
testAccuracy(1) = total/length(testSet(:,1));
% for the following folds
for kFold = 2:10
 j = 1; m = 1;
 trainSet = zeros(n-floor(n/10),d+1);
 testSet = zeros(floor(n/10),d+1);
 for i=1:n
 if cv(i) ~= kFold
 trainSet(j,:)=[instance(i,:) labels(i)];
 j = j+1;
 else
 testSet(m,:)=[instance(i,:) labels(i)];
 m = m+1;
 end
 end
% train the GMM
 [L,W,M,V] = myEMforGMM(trainSet(:,1:d),k);
 while(isnan(L))
 [L,W,M,V] = myEMforGMM(trainSet(:,1:d),k);
 end
 count = zeros(3,k);

% accuracy inside the train set
 for i=1:length(trainSet(:,1))
 z = Expectation(trainSet(i,1:d),k,W,M,V);
 [temp, maxK] = max(z);
 count(3,maxK) = count(3,maxK)+1;
 count(trainSet(i,d+1)+1,maxK) = ...
 count(trainSet(i,d+1)+1,maxK)+1;
 end
 total = 0;
 for i=1:k
 if count(1,i)>count(2,i)
 gaussianClass(1,i) = 0;
 gaussianClass(2,i) = count(1,i)/count(3,i);
 total = total + count(1,i);
 else
 gaussianClass(1,i) = 1;
 gaussianClass(2,i) = count(2,i)/count(3,i);
 total = total + count(2,i);
 end
 end
 trainAccuracy(kFold) = total/length(trainSet(:,1));
% accuracy for the test
 total = 0;
 for i=1:length(testSet(:,1))
 z = Expectation(testSet(i,1:d),k,W,M,V);
 [temp, maxK] = max(z);
 if gaussianClass(1,maxK)==testSet(i,d+1)
 total = total + 1;
 end
 end
 testAccuracy(kFold) = total/length(testSet(:,1));
end

dataPath = sprintf('.//%s//resk%d',dirPath,k);
save(dataPath,'trainAccuracy','testAccuracy');

3.3)myGMMSupervisedLearner.m
function myGMMSupervisedLearner(dirPath,k)
%% myGMM(): model the data in each class using
% gaussian mixture model; after obtaining
% all the parameters, use the likelihood
% function to test the new example by
% comparing the likelihood generated by
% the GMM of two classes;(the 2nd strategy)
%
% Inputs:
% dirPath -- the data directory that contains the
% attributes file and labels file; these
% data files are generated using the C code
% in the past homework, parsing the weka
% data file.
% k - # of Gaussian components of each class;
%
% Ouputs:
% % two files named './/dirpath//res2k%d' storing the
% training accuracy and test accuracy.
%%

dirPath = 'sonar';%'heart-statlog';%'sonar_original';
for k=1:7
%%%% get all the data needed %%%%
readData(dirPath);
dataPath =
sprintf('.//%s//parameter',dirPath);load(dataPath);
dataPath = sprintf('.//%s//instance',dirPath);
load(dataPath);
dataPath = sprintf('.//%s//labels',dirPath);
load(dataPath);
clear dataPath;
%%%% all the data obtained %%%%
[n,d] = size(instance);

%%%% 10-fold stratified CV %%%%
cv = CVGroup(n,10,labels);

%%%% for each fold train the GMM %%%%
% for the first fold
kFold = 1; j = 1; q = 1; m = 1;
testSet = zeros(n-9*floor(n/10),d+1);
for i=1:n
 if cv(i) ~= kFold
 if labels(i) == 0
 trainSet0(j,:)=[instance(i,:) labels(i)];
 j = j+1;
 else
 trainSet1(q,:)=[instance(i,:) labels(i)];

 q = q+1;
 end
 else
 testSet(m,:)=[instance(i,:) labels(i)];
 m = m+1;
 end
end
% train the GMM for each class
[L0,W0,M0,V0] = myEMforGMM(trainSet0(:,1:d),k);
while(isnan(L0))
 [L0,W0,M0,V0] = myEMforGMM(trainSet0(:,1:d),k);
end
[L1,W1,M1,V1] = myEMforGMM(trainSet1(:,1:d),k);
while(isnan(L1))
 [L1,W1,M1,V1] = myEMforGMM(trainSet1(:,1:d),k);
end
% accuracy inside the train set
count = 0;
for i=1:length(trainSet0(:,1))
 E0 = Expectation(trainSet0(i,1:d),k,W0,M0,V0);
 likely0 = Likelihood(trainSet0(i,1:d),k,W0,M0,V0,E0);
 E1 = Expectation(trainSet0(i,1:d),k,W1,M1,V1);
 likely1 = Likelihood(trainSet0(i,1:d),k,W1,M1,V1,E1);
 if likely0>=likely1
 count = count + 1;
 end
end
for i=1:length(trainSet1(:,1))
 E0 = Expectation(trainSet1(i,1:d),k,W0,M0,V0);
 likely0 = Likelihood(trainSet1(i,1:d),k,W0,M0,V0,E0);
 E1 = Expectation(trainSet1(i,1:d),k,W1,M1,V1);
 likely1 = Likelihood(trainSet1(i,1:d),k,W1,M1,V1,E1);
 if likely0<likely1
 count = count + 1;
 end
end
trainAccuracy(1) = count / (n-length(testSet(:,1)));
% accuracy inside the test set
count = 0;
for i = 1:length(testSet(:,1))
 E0 = Expectation(testSet(i,1:d),k,W0,M0,V0);
 likely0 = Likelihood(testSet(i,1:d),k,W0,M0,V0,E0);
 E1 = Expectation(testSet(i,1:d),k,W1,M1,V1);
 likely1 = Likelihood(testSet(i,1:d),k,W1,M1,V1,E1);
 if (likely0>=likely1 && testSet(i,d+1)==0)|| ...
 (likely0<likely1 && testSet(i,d+1)==1)
 count = count + 1;
 end
end
testAccuracy(1) = count / length(testSet(:,1));
% for the remaining folds
for kFold = 2:9
 clear testSet, trainSet0, trainSet1;
 j = 1; q = 1; m = 1;
 testSet = zeros(floor(n/10),d+1);
 for i=1:n
 if cv(i) ~= kFold
 if labels(i) == 0
 trainSet0(j,:)=[instance(i,:) labels(i)];
 j = j+1;
 else
 trainSet1(q,:)=[instance(i,:) labels(i)];
 q = q+1;
 end
 else
 testSet(m,:)=[instance(i,:) labels(i)];
 m = m+1;
 end
 end
% train the GMM for each class
 [L0,W0,M0,V0] = myEMforGMM(trainSet0(:,1:d),k);
 while(isnan(L0))
 [L0,W0,M0,V0] = myEMforGMM(trainSet0(:,1:d),k);
 end
 [L1,W1,M1,V1] = myEMforGMM(trainSet1(:,1:d),k);
 while(isnan(L1))
 [L1,W1,M1,V1] = myEMforGMM(trainSet1(:,1:d),k);
 end
% accuracy inside the train set
 count = 0;
 for i=1:length(trainSet0(:,1))
 E0 = Expectation(trainSet0(i,1:d),k,W0,M0,V0);
 likely0 = Likelihood(trainSet0(i,1:d),k,W0,M0,V0,E0);
 E1 = Expectation(trainSet0(i,1:d),k,W1,M1,V1);
 likely1 = Likelihood(trainSet0(i,1:d),k,W1,M1,V1,E1);
 if likely0>=likely1
 count = count + 1;

 end
 end
 for i=1:length(trainSet1(:,1))
 E0 = Expectation(trainSet1(i,1:d),k,W0,M0,V0);
 likely0 = Likelihood(trainSet1(i,1:d),k,W0,M0,V0,E0);
 E1 = Expectation(trainSet1(i,1:d),k,W1,M1,V1);
 likely1 = Likelihood(trainSet1(i,1:d),k,W1,M1,V1,E1);
 if likely0<likely1
 count = count + 1;
 end
 end
 trainAccuracy(kFold) = count / (n-length(testSet(:,1)));
% accuracy inside the test set
 count = 0;
 for i = 1:length(testSet(:,1))
 E0 = Expectation(testSet(i,1:d),k,W0,M0,V0);
 likely0 = Likelihood(testSet(i,1:d),k,W0,M0,V0,E0);
 E1 = Expectation(testSet(i,1:d),k,W1,M1,V1);
 likely1 = Likelihood(testSet(i,1:d),k,W1,M1,V1,E1);
 if (likely0>=likely1 && testSet(i,d+1)==0)|| ...
 (likely0<likely1 && testSet(i,d+1)==1)
 count = count + 1;
 end
 end
 testAccuracy(kFold) = count / length(testSet(:,1));
end
dataPath = sprintf('.//%s//res2k%d',dirPath,k);
save(dataPath,'trainAccuracy','testAccuracy');
end

3.4)myTestEMforGMM.m
function myTestEMforGMM()
%% myTestEMforGMM(): test my EMforGMM() using artificially
% synthetic data;
% Namely, use three gaussian, and we know all the
parameters ahead,
% according to the weights we select the gaussian
to generate
% the data correspondent to the gaussian; then use
myEMforGMM()
% to estimate the parameters;
%%
rand('seed',0);
randn('seed',0);
k = 3;
n_samples = 500;
% initialize
weight = [0.4, 0.3, 0.3]';
mu = [0.0, 6.0, 14.0]';
sigma = [1,2,3]';
%the generated samples
x = zeros(n_samples,1);
% CDF for weight
sum_weight = zeros(k, 1);
for j=2:k
 sum_weight(j) = sum_weight(j-1) + weight(j);
end

for i=1 : n_samples
 % select the compoent, the rand(1,1) generates
 % the number according to uniform distribution
 % thus by select according to weight we can
 % proportionally select the component according
 % to the weights.
 index = rand(1, 1);
 if index<weight(1)
 j = 1;
 else
 if index<weight(1)+weight(2)
 j = 2;
 else
 j = 3;
 end
 end
 %generate a sample from the j component
 x(i) = normrnd(mu(j), sigma(j), 1,1);
end

[likelihood, weight_hat,mu_hat,Variance_hat] =
myEMforGMM(x,k);%
sigma_hat = zeros(k,1);
for j=1:k
 sigma_hat(j,1) = sqrt(diag(Variance_hat(:,:,j)));
end
mu_hat = (mu_hat)';

%plot
figure (1)
%the true density
R1 = zeros(1,k);
R2 = zeros(1,k);
for i=1:k, % Determine plot range as 4 x standard
deviations
 R1(:,i) = mu(i)-4*sigma(i);
 R2(:,i) = mu(i)+4*sigma(i);
end
Rmin = min(min(R1));
Rmax = max(max(R2));
xgrid = [Rmin:0.001*(Rmax-Rmin):Rmax];
density = GMMpdf(xgrid, k, weight, mu, sigma);
plot (xgrid,density, 'b');

%the esimated density
hold on
density_hat = GMMpdf(xgrid,k, weight_hat, mu_hat, sigma_hat);
plot (xgrid,density_hat, 'r');

%the samples

y = GMMpdf(x, k, weight, mu, sigma);
plot(x, y, 'xg');
legend('true pdf', 'estimated pdf', 'samples');

figure(2)
hist(x, 55,'g')
 %display
% weight_hat
% mu_hat
% sigma_hat

3.5)Likelihood.m
function L = Likelihood(instance,k,W,M,V,E)
%% Likelihood(instance,k,W,M,V): Compute L based on the
current
% parameters setting;
% Input: instance -- the examples' attributes;
% k -- the number of Gaussians;
% E -- the expectation of the hidden variables;
% W -- the weights vector;
% M -- the mean and covariance of gaussians;
% Output: L -- the likelihood of given instances;

[n,d] = size(instance);
L = 0;
for i=1:n
 for j=1:k
 iV = inv(V(:,:,j));
 L = L+E(i,j)*(...
 log(W(j))...
 - 0.5*log(det(V(:,:,j)))...
 - 0.5*(instance(i,:)-M(:,j)')*iV*(instance(i,:)-
M(:,j)')' ...
 - n/2*log(2*pi));
 end
end

3.6)Expectation.m
function E = Expectation(instance,k,W,M,V)
%% Expectation(): compute the expectation of zij, for each
instance
% i and gaussian j;
% input: k -- the number of gaussians;
% instance -- the attributes of instance;
% W -- the weights of gaussians;
% M,V -- the median and covariance of gaussians;
% output: E -- the expectation of zij;
[n,d] = size(instance);
a = (2*pi)^(0.5*d);
S = zeros(1,k);
iV = zeros(d,d,k);
for j=1:k
 if V(:,:,j)==zeros(d,d)
 V(:,:,j)=ones(d,d)*eps;
 end
 S(j) = sqrt(det(V(:,:,j)));
 iV(:,:,j) = inv(V(:,:,j));
end
E = zeros(n,k);
for i=1:n
 for j=1:k

 x_mu = instance(i,:)'-M(:,j);
 pl = exp(-0.5*x_mu'*iV(:,:,j)*x_mu)/(a*S(j));
 E(i,j) = W(j)*pl;
 end
 E(i,:) = E(i,:)/sum(E(i,:));
end

3.7)Maximization.m
function [W,M,V] = Maximization(instance,k,E)
%% Maximization(): compute the parameters using the
% expectation according to ML;
% input: k -- the number of gaussians;
% instance -- the attributes of instance;
% E -- the current expectation;
% output: W -- the weights of gaussians;
% M,V -- the median and covariance of gaussians;
[n,d] = size(instance);
W = zeros(1,k);
M = zeros(d,k);
V = zeros(d,d,k);
for i=1:k % Compute weights
 for j=1:n
 W(i) = W(i) + E(j,i);
 M(:,i) = M(:,i) + E(j,i)*instance(j,:)';
 end
 M(:,i) = M(:,i)/W(i);
end
for i=1:k,
 for j=1:n
 x_mu = instance(j,:)'-M(:,i);
 V(:,:,i) = V(:,:,i) + E(j,i)*x_mu*x_mu';
 end
 V(:,:,i) = V(:,:,i)/W(i);
end
W = W/n;

3.8) myEMforGMMInitialization.m
function [L,W,M,V] = myEMforGMMInitialization(instance, k)
%% myEMforGMMInitialization(): this is the version
% with some meaningless initialization
% instead of k-means of myEMforGMM;
%
% Inputs:
% instance -- the examples, n=# of instances, d=dimension
of
% attributes;
% k - # of Gaussian components;
%
% Ouputs:
% W(1...k) - estimated weight vector of GMM
% M(d,k) - estimated mean matrix of GMM
% V(d,d,k) - estimated covariance matrices of GM
% L - log likelihood of estimates
%%
%% EM initialization
%% initialize the mean vectors
% dirPath = 'heart-statlog';
% dataPath = sprintf('.//%s//instance',dirPath);
load(dataPath);
% k = 2;
[n,d] = size(instance);
for i=1:k
 M(i,:) = sum(instance);
 W(i) = 1/k;
 V(:,:,i) = cov(instance);
end
M = M';
%% initialize log likelihood
L2 = Likelihood(instance,k,W,M,V);
L1 = 2*L2;
%% Estimate the parameters
niter = 0;maxIteration = 50;
while (abs((L2-L1)/L1)>1e-3) && (niter<=maxIteration)
 E1 = Expectation(instance,k,W,M,V); % E-step
 [W1,M1,V1] = Maximization(instance,k,E1); % M-step
 L1 = L2;
 L2 = Likelihood(instance,k,W,M,V);
 if isnan(L2)
 L = L1;
 return;
 end
 W1=W; M1=M; V1=V;
 niter = niter + 1;
end
L = L2;

