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Abstract 

This project centers on the investigation of appl- 
-ying Gaussian Mixture Model (GMM) to 
supervised learning based on the Maximum Lik- 
-elihood (ML) estimation using Expectation  
Maximization (EM). As learnt, the statistical  
modeling methods manipulate probabilities dire- 
-ctly, thus giving more sophisticated description 
over the actual world with its disadvantage of the 
expensive computational complexity. Yet, it is 
still potential for its hardly use in the field of 
supervised learning. Based on the model, some 
modifications are conducted from the classical 
GMM, thus applying the models to the 
supervised learning. Two strategies out of the 
analysis of GMM’s characteristics are put 
forward and experimented based on some of the 
weka file from UCI dataset. In this project, it is 
demanded to implement the basic computations 
of Gaussian mixture and EM; thus, apart from 
the understanding of these algorithms, the 
implementation details offered much potential 
improvement to deal with, thus leaving a lot to 
explore further. 

1.  Introduction 

Classification, as a big part of supervised learning 
problem, has always attracted lots of attention for its 
various applications. Also, many methods are brought 
forward to tackle this problem. One of the categorization 
of these methods is based on the model’s essence: 
deterministic and statistic. Deterministic methods such as 
k-Nearest Neighbors, Perceptron, are always intuitionistic 
and computationally simple(relatively);they usually look 
at the local data behavior and thus the results of the model 
are sometimes not descriptive enough for understanding 
the whole data space. Statistical methods manipulate 
probabilities and try to model the entire hypothesis space 
and data distribution using probabilities distribution 
density, thus providing more complete description of the 
actual problems; however, it also asks for huge 
complexity to achieve the goal. In fact, also these two 
type of methods are internally correlated: most 
deterministic methods turn out to be learners satisfying 
the statistical demands, such as Maximum a Priori, and 

some probabilistic methods can also be modified to apply 
for deterministic problems, such as the algorithms in this 
project. 

GMM is a distribution, which consists of finite number of 
Gaussian distributions in the linear way. The Gaussian 
distribution is common used for its high level of realistic 
applicability: on one hand, it allows for a mathematically 
straightforward analysis, due to series of good computati- 
-onal properties; on the other hand, according to the 
Central Limit Theorem, it is also well qualified to 
approximate many types of noise in physical systems, 
especially when there are large numbers of examples and 
unknown factors. Based on these facts, the GMM further 
expands the application of Gaussian distributions, using 
the mixture model to describe the realistic problems. 
Within the problems of machine learning, GMM is 
common used for unsupervised learning because it can 
dig out the data patterns and cluster those sharing similar 
data behaviors together. Taking advantage of this together 
with the intuition that examples of the same class are 
more likely to be generated by the same Gaussian 
components, inspires me to convert it into some learners 
under Maximum Likelihood. Together with the assumpti-
-ons using Gaussian distribution to describe the objective 
unknown factors, the Bayesian probabilistic theory is the 
foundation of my project. 

EM algorithm, although is a method to estimate the 
parameters under MAP or ML, here it is extremely 
important for its focus on the hidden variables. The 
hidden variables used in this case represent the indicator 
variables that some example is generated by a certain 
component of Gaussian or not. This is quite attractive 
because: firstly we can train the parameters of the 
Gaussian mixture, so the GMM is known; then we can 
compute the hidden variables given any new instances, so 
the estimation of which component generates the new 
instance is also known; finally, as long as we can bridge 
the labels and the Gaussian components, we will get the 
instances’ labels indirectly from what we’ve known. The 
details of my strategy as well as the principles of EM will 
be   formulated in the next section. 



 

 

 Figure 1. the overall graph of learning in this report. 

The rest of the report will give the mathematical 
formulation of the GMM, as well as the incorporation of 
EM the Section 2, and my two strategies to conducting 
classification in Section 3. Then followed is the 
experiments and discussion in Section 4. 

2.  Gaussian Mixture Models and the Expectation 
Maximization Algorithm 

2.1  Gaussian Mixture Models 

The Gaussian Mixture Model I used in this report is the 
finite parametric mixture model, which tries to estimate 
the data to be distributed according to a finite number of 
Gaussian mixture densities. Still, the GMM is a 
distribution and the general form of pdf is: 
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where k is the number of the Gaussian components, iw is 
the weight of each Gaussian component, such that: 
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( ; , )i iN x   is the pdf of normal distribution, that: 
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where , , 1, 2,...,i i i k   are the parameters of the 
Gaussian distributions. 

What differs GMM from the other modeling methods is 
that it looks at the data as the results of linear combination 
of several generative Gaussian models while the others: 
either use a single probabilistic distribution to describe the 
whole data or just ignore the complete data structure but 
to singly dig out the relationship between the given data. 
As explained before, the normal distribution is highly 
descriptive in many physical experiments, and the linear 

mixture contributes to the capability of the models 
because it allows for more complicated data sources. In a 
word, GMM is the universal approximation of the data 
instead of the concept function. 

In fact, this modeling can also be considered as an 
assumption of description towards the actual world. 
Similar to the cases where Central Limit Theorem applies, 
when data is complicated enough and the unknown 
factors are many enough, we can try to explore the data 
space using the GMM, simply because so far the Gaussian 
Mixture Models have strong capability of description. 

2.2  The Expectation Maximization Algorithm 

Before I use the GMM to analyze the problem of machine 
learning, the new type of variables, hidden variables 
should be introduced first. 
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Thus, for each given example, there is the hidden 
parameter that describes which Gaussian generates the 
example.  

After accepting notions, the next problem to use GMM is 
how to obtain all the parameters in the model given all the 
observed data, especially to estimate the hidden variables. 
The method I use is the Expectation Maximization (EM) 
algorithm. The EM algorithm can be used even for 
variables whose value is never directly observed, 
provided the general form of the probability distribution 
governing variables is known. Thus, it can be used in 
many unsupervised clustering situations. Here for GMM, 
it is also useful to estimate the parameters of each 
Gaussian as well as their weights, and what’s the most 
important is that EM will give the convergent solution of 
the hidden variables under the condition of maximum 
likelihood (ML). 

The intuition of the EM algorithm is that based on the 
assumption of the aimed data, it is obtainable of the 
closed-forms of the probability distribution, but in the 
formula there are many unknown parameters. Then, in the 
first step of the EM algorithm, we calculate the 
expectation of the hidden variables using the formerly 
estimated values, but if it is the initialization phase, the 
formerly estimated values should be some initialized 
values (the initialization is not trivial as seen during the 
experiments); after gaining the current estimation of the 
hidden variables’ expectations, the next step is to use the 
hidden variables to complete the closed-form of 
likelihood or posteriori, and then update the parameters 
according to the ML or MAP conditions. The reason to 
use introduce the hidden variables is that the close form of 
the likelihood or posteriori is hardly computed but turns 
out easy with the hidden variable; while the hidden 
variables are unknown, we instead use the expectation of 
the hidden variables. This is also an iterative process and 



 

 

ideally the solution of the parameters and the likelihood 
will be convergent to some point under certain 
environment settings. 

A general form of the EM algorithm can be formulated as 
follows: note that the notation X and Y is the unobserved 
data and the observed data corresponding to X 
respectively,  is the parameters needed to calculate the 
likelihood f(Y), thus the goal is to calculate the maximum 
likelihood ML that maximizes ( ) log ( | )L f Y  ; usually 
the log( ( , | ))f X Y  has well defined form and thus easy to 
compute the maximum but it asks the unobserved data X; 
then what the EM algorithm does is to figure out a 
sequence of  and  such that L(  )>L(  ). Two steps 
as mentioned are conducted: 

 The Estimation Step: calculate the expectation of the 
unobserved data ( | , )[log ( , | )]f X YE f X Y   ; 

 The Maximization Step: find  such that: 

( | , )( [log ( , | )])f X Yargmax E f X Y   . 

There is also the theorem that: 

If it holds that: 

( | , ) ( | , )[log ( , | )] [log ( , | )]f X Y f X YE f X Y E f X Y      

(5) 

then it is also valid that L(  )>L(  ) to achieve the goal 
of ML. The proof of the convergence under different 
circumstances is overviewed in [2]. 

3.  Supervised Learning based on GMM  

Given N instances  1

N

i i
x


as training data, where each ix is 

a d-dimensional attributes vector; and for each instance 
the label is {0,1}io  .  A GMM is put as follows: 
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where x is an example from the data space, k is the 
number of the Gaussian components, iw is the weight of 
each Gaussian component, such that: 
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( ; , )i iN x   is the pdf of normal distribution, that: 
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where , , 1, 2,...,i i i k   are the parameters of the 
Gaussian distributions. 

Making use of the EM algorithm and the GMM, two 
strategies used to conduct classification are put forward 
here. 

3.1  Classification According to Likelihood 

Observing the properties and the basic principles of the 
EM algorithm, a strategy of supervised learning is given 
here. The intuition is that since GMM is good at 
describing the actual complicated data, we can model the 
data using the GMM within one class. Then use the pdf of 
the GMM to calculate the likelihood of any new coming 
instances within every class and find the class of which 
the pdf generates the maximum likelihood. The details of 
the first strategy to deal with the classification are given. 

Firstly, some notations should be made clear: 

Given training data   1

N

i i
x


, for each instance ix ,the 

correspondent label is {0,1,..., }io C ; for each class 
, {1, 2,... }c c C (this strategy can deal with the cases of 

multi-class) we use k Gaussian component to model the 
data distribution, resulting 3*k groups of parameters to be 
estimated, 
namely { , , , 1, 2,..., };i i iw i k    where 1iw  ; the 
hidden variable is the indicator variable: 
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Thus the likelihood function given instances and the 
hidden variables is: 
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where ( ; , )i i if x   is referred to the equation (6). Since 

the hidden variable is a 2-valued indicator variable, so the 
log likelihood can be rewritten as: 

1 1

( ) log log[ ( ; )];
n k

j
o i j i

i j

L L z w f x 
 

          (11) 

In the first step, compute the expectation: 
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The likelihood function to be maximized now by 
replacing the j

iz using ( | , )j
i iE z x   is now: 
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In the second step, maximize the likelihood function by 
taking the derivatives of the parameters and compute 
the point   which generate the 0 derivatives, namely: 

( ( , ))argmax L


                       (14) 

In details: 
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Run iterations until the likelihood is convergent, the 
parameters can be output as the classifier to work in the 
test stage. 

In fact, for each class c, there is a set of parameters c and 
thus for any new instances x̂ , compute the likelihood 
according to the equation (10). Afterwards, choose the 
class c, such that: 

 ( ( , ))c
c

c argmax L x                    (16) 

Then determine the class c


as the label of the new 
instances. 

The pseudo code is represented here: 

 Input: Given examples  1

N

i i
x


as well as the label for 

each example {0,1,..., }io C , and the example x̂ , 
without label; 

 Output: the label o of the example *x ; 

 Algorithm: 

--Split the training data into c subsets according to 
the labels; 

--For each subset of a certain class c, 

Do: 

--Initialize: { , , , 1,2,..., };c i i iw i k     

--Repeat until convergence: 

--Expectation: compute the expectations 
( | , )j

i i cE z x   using (12); 

--Maximization: update the parameters    
( ( , ))c cargmax L


     using (14); 

 --Store the parameters c ; 

--Compute the expectation of *( )jE z for *x , and then 
calculate the likelihood using (13) for each class; 

--Find out ( ( , ))c
c

c argmax L x  ; 

--Output c


as the label of *x ; 

 End. 

3.2  Classification According to Expectation 

The former algorithm trains a classifier that described the 
whole data space within each class, and by comparing the 
certain value of likelihood function find the label with 
maximum likelihood. Yet, what’s not concerned is that 
the relationship between different classes is ignored so 
that this distinguishable information is not used. For 
example, consider the case where we use a threshold 5 to 
classify the real numbers to two group; after knowing two 
positive examples 6 and 7, we can further make sure of 
this threshold because it is consistent with the two 
examples, but when we have another two negative 
examples -1000 and -2000, is it reasonable that we should 
move the threshold 5 backward, namely subtracting 5 by 
some numbers so that it is closer to the average of the 
current examples with the condition that it is still a 
consistent classifier. The answer is obviously yes, but of 
course not application to every case. 

Thus, I try to make use of the difference of the examples 
within different classes to further expand the probability 
gap of GMM. Formerly, all of our training calculation is 
within a certain class, but now I will deal with the data 
from all of the classes. 

First, compute the GMM model given the number of 
components k and the model covers all of the training 
data; after all of the parameters are obtained, now each 
component in GMM will be assigned a label by this: 
compute an assignment matrix D , where each element in 
the matrix ijd denotes the number of examples that the jth 
component generates the maximum expectation of j

iz . 
Then together with the distribution of numbers of 
examples in each class, the component is assigned a label 
which the following product is the highest: 

# . _
( / )

# .
ij

i mjm

d Ex inClass i
c argmax

d Ex



        (17) 

where # . _Ex inClass i is the number of examples in the 
class i in total, and # .Ex is the total number of examples 
in the training data. 

This reveals that the jth component is most likely to 
generate the examples in the class c. 

For example in Figure2, there are two classes and two 
components, and thus a 2*2 matrix is computed. For the 
first element 49, it indicates that there are 49 examples in 
the first class that the first Gaussian component generates 
higher E( j

iz )than the second; for the rest elements, it is 
explained that there are 41 examples in the second class 
that the first Gaussian component generates higher E( j

iz ) 
than the second, there are 59 in the first class that the 
second Gaussian component generates higher E( j

iz ) than 
the first, and there  are 94 examples in the second class 
that the second Gaussian component generates higher 
E( j

iz ) than the first. Considering the distribution of the 
number of examples in each class, namely (49+59): 



 

 

(41+94)=108:135. Thus the first component will have the 
the value for (17) as 0.54/(108/243)=1.215 for the first 
class and 0.46/(135/243)=0.828; similarly for the second 
component the results are 0.875 for the first class and 
1.373 for the second class. Thus the first component will 
be assigned the label of 0 in the first class, while the 
second component will be assigned the label of 1 in the 
second class. After the assignment is finished, the 
component will be used for classify the new instances. 
Once a new example is input, calculate the expectation of 
the hidden variable j

iz , and then find out the component 
that generates the maximum E( j

iz ); search the assignment 
of the jth component, and determine that the new 
example’s label is the label that the jth component is 
assigned. 

 The 1
st
 

Component  
The 2

nd
 

Component 

Class1 
(label=0)  

49  59  

Class2 
(label=1)  

41  94  

ratio  0.54:0.46 0.39:0.61

Table 1. an example of assignment matrix showing the 
assignment of labels to Gaussian components. 

The pseudo code is represented here: 

 Input: Given examples  1

N

i i
x


as well as the label for 

each example {0,1,..., }io C , and the example x̂ , 
without label; 

 Output: the label o of the example *x ; 

 Algorithm: 

--Train GMM for the entire training data, get  ; 

--Compute the assignment matrix; 

--Assign each component a label using (17); 

--For the test example *x , compute the expectation 
of *( )jE z for *x , and find the jth component that 
generates the highest value; 

--Search out the assignment c


of the jth component; 

--Output c


as the label of *x ; 

 End. 

 

In fact, this algorithm is still quite coarse for its hard 
assignment of each Gaussian component, but it also 
reveals that more advancement remains so as to improve 
this learner. 

4.  Experiments and Discussion 

In this section, some experimental results are given 
together with the comparison analysis. The experiments 
are based on the three weka file used in the past 
assignments, namely the sonar.arff, heart-statlog.arff, and 
the sonar-withmanyfeatures.arff. The strategy used to 
evaluate the algorithms is the 10-fold stratified cross 
evaluation. In order to avoid the trivial repeating, not all 
of the results are given in this section, but they are readily 
available through the author. 

4.1  Comparisons Between the 1st Strategy and  Some 
other Classical Algorithms 

In this part three algorithms are compared including the 
K-nearest neighbors, perceptron and the first strategy in 
this report. In the KNN algorithm, I chose the best 
accuracy and std among the different choice of parameter 
k; as for the two perceptron, I chose the best performance 
after 2000 iterations. 

Dataset of heart‐statlog.arff  

Accuracy  Std 

The 1
st
 strategy, with 2 Gaussians in total  83.95%  5.52% 

The 1
st
 strategy, with 4 Gaussians in total  79.42%  4.32% 

The 1
st
 strategy, with 6 Gaussians in total  75.31%  6.98% 

The 1
st
 strategy, with 8 Gaussians in total  75.72%  6.08% 

The 1
st
 strategy, with 10 Gaussians in total  75.93%  5.56% 

The 1
st
 strategy, with 12 Gaussians in total  59.26%  NA 

KNN with the selection of best k and 
without normalization 

70.37%  9.52% 

KNN with the selection of best k and 
normalization  

81.48%  7.03% 

Perceptron ( 2000 iterations) 80.87%  6.79%

Perceptron With Margin ( 2000 iterations)  81.22%  7.42% 

Table 2. The experiment results of the different classifiers 
on the dataset of heart-statlog.arff. 

In Table 2, the results of each algorithms are given. It is 
observed that the algorithm of the first strategy with 2 
gaussian components in this report gives the best accuracy 
and a fair standard deviation. As analyzed before, the 
other deterministic algorithms either depends on the 
compact distribution of examples within the same class, 
like KNN, thus very sensitive to the input data, or 
depends strongly on the linearity between labels and data 
distribution, like Perceptron. Also, the perceptron is time 
consuming when large numbers of iterations are 
conducted. However, the GMM based algorithm describe 



 

 

the data distribution according to the given data, thus 
providing the estimation of the whole data space, robust 
to the sample data’s distribution provided enough 
examples. 

What’s also worth noticing is the result given when the 
total number of Gaussians is more than 12, the std is 
noted as NA because in fact only one fold output the 
regular test accuracy while the others output 0 or 
meaningless value for during the computation, some near-
singular matrix is generated so that the program is not 
able to deal with the calculation of inverse or dividing the 
determinant regularly. This also reveals a problem of the 
statistical model based algorithm, that the time 
complexity and precision problem should be always taken 
care. 

In addition, the tendency of performance(Table 2) with 
the number of Gaussian components from 2 to 10 is not 
seemingly enough to reach a solid conclusion; but as far 
as it is concerned, the accuracy is quite correlated  with 
the selection of k, and with different settings, the optimal 
selection of k may be different. Although I expect that the 
more components are used, the better descriptive capacity 
of the model is, yet it also depends on how many 
examples there are used to train, not to mention the 
distribution of the sampled instances. 

4.2  The Failure Analysis of the Second Strategy as 
well as that of partial Fist Strategy 

The maximum precision using this algorithm is obtained 
on the heart-statlog database, but with the value no over 
than 60%. Also, during the running stages, the warning 
information provided by MATLAB keeps appearing that 
“the matrix is close to singular or badly scaled; Results 
may be inaccurate”. As proved, during the training stage, 
the likelihood is frequently computed  as NAN or INF, 
such meaningless value; also the calculation of 
expectation does not work well. Also, these happened in 
the experiments using the first strategy, when the 
components are over 12 on the dataset of heart-statlog, 
when the components are over 4 on the dataset of sonar, 
and that no correct classification results are given on the 
dataset of sonar-withmanyfeatures. Both are consistent in 
that on some datasets, both of the GMM based algorithms 
work abnormally very early even when k is not big; on 
some datasets, both algorithms can work further with 
relatively larger k, where the first strategy lasts longer 
than the second. Yet, in fact, although the first strategy 
can work well with a larger total number of Gaussians, 
the reason is obvious: first, the total number of Gaussians 
comes from the sum of all the classes, so in the binary 
classification, it is 2 times the individual number of 
Gaussians in each class; second, the GMM is only 
conducted in each class, thus the size of the data is half 
decreased, more likely to avoid the abnormal calculation. 
As for the dataset of sonar-withmanyfeatures, both 
algorithms fail early because the dimensional of features 
are high, aggravating the hardship for training. 

Due to the limit of the exploration time, here is my very 
limited analysis: 

(1) the size of data matters; namely when more data are 
dealt with to estimate the GMM, the likelihood will get 
extremely close to 0 thus asking high precision demands. 

(2) The calculation of the inverse of matrices and the 
division of small value needs high efficiency and high 
precision; with more complexity and bigger size of the 
data set, the demands are sharply increasing. 

(3) The initialization is not perfect; in my project, I call 
the k-means algorithm embedded in MATLAB to provide 
the initialization parameters, which yet sometimes offer 
locally optima, thus leading the calculation to some near-
singular point. 

(4) Although it is hard obtainable in terms of calculation 
to use as many components, yet still the model asks for 
enough components to describe the data space, otherwise 
if GMM is not solid. 

The implementation looks quite trivial but there remain 
many problems unsolved. In the future, I may continue to 
dig out the reasons as well as the solutions to the 
questions I came across. 
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Appendix: 

(1) the synthetic data test for my code: 

I test my EMforGMM() using artificially synthetic data; 
Namely, given three Gaussians, and we know all the 
parameters ahead; according to the weights we select the 
Gaussian to generate the data correspondent to the 
Gaussian; then use myEMforGMM() to estimate the 
parameters; here is the result curve and histograms: 

 

 
 
(2) Programming details: 
I use MATLAB 7.6.0 to develop the codes and have run 
them on the linux server of CS Department. The dataset 
of weka file, I use the text file converted from weka file 
based on the former homework assignment. 
 
(3) My source codes: 
3.1)myEMforGMM.m 
function [L,W,M,V] = myEMforGMM(instance, k) 
%% myEMforGMM(): compute the parameters of k Guassian 
mixtureusing EM algorithm; some implementation are referred 
%               from the functions in Matlab 
%  Inputs: 
%   instance -- the examples, n=# of instances, d=dimension 
of 
%                   attributes; 
%   k - # of Gaussian components; 
% 
%  Ouputs: 
%   W(1...k) - estimated weight vector of GMM 
%   M(d,k) - estimated mean matrix of GMM 
%   V(d,d,k) - estimated covariance matrices of GM 
%   L - log likelihood of estimates 
%% 
%%  EM initialization 

%% initialize the mean vectors 
% dirPath = 'heart-statlog'; 
% dataPath = sprintf('.//%s//instance',dirPath); 
load(dataPath); 
% k = 2; 
[n,d] = size(instance); 
%% use this meaningless initialization to test 
% for i=1:k 
%     M(i,:) = sum(instance); 
%     W(i) = 1/k; 
%     V(:,:,i) = cov(instance); 
% end 
% M = M'; 
[Ci,C] = kmeans(instance,k,'Start','cluster', ... 
    'Maxiter',100, ... 
    'EmptyAction','drop', ... 
    'Display','off'); % Ci(nx1) - cluster indeices; C(k,d) - 
cluster centroid (i.e. mean) 
while sum(isnan(C))>0 
    [Ci,C] = kmeans(instance,k,'Start','cluster', ... 
        'Maxiter',100, ... 
        'EmptyAction','drop', ... 
        'Display','off'); 
end 
M = C'; 
%% initialize the vcovariance matrices and weight vector 
countNum = zeros(1,k); 
for i=1:n 
    countNum(Ci(i)) = countNum(Ci(i)) + 1; 
end 
for i=1:k 
    W(i) = countNum(i)/n; 
end 
for i=1:k 
    ins = zeros(countNum(i),d); 
    m = 1; 
    for j=1:n 
        if Ci(j)==i 
            ins(m,:) = instance(j,:); 
            m = m+1; 
        end 
    end 
    V(:,:,i) = myCOV(ins); 
end 
%% initialize log likelihood 
E = 1/k*ones(n,k); 
L2 = Likelihood(instance,k,W,M,V,E); 
L1 = 2*L2; 
%% Estimate the parameters 
niter = 0;maxIteration = 50; 
while ((abs((L2-L1)/L1)>1e-3) && (niter<=maxIteration)) 
    E1 = Expectation(instance,k,W,M,V); % E-step     
    [W1,M1,V1] = Maximization(instance,k,E1);  % M-step 
    L1 = L2; 
    L2 = Likelihood(instance,k,W,M,V,E1); 
    if isnan(L2) 
        L = L1; 
        return; 
    end 
    W1=W; M1=M; V1=V; 
    niter = niter + 1; 
end  
L = L2; 
 

3.2)myGMM.m 
function myGMM(dirPath,k) 
%% myGMM(): model the total data using gaussian 
%             mixture model; after obtaining all the 
%             gaussians, use the z hidden variable to 
%             classify the new examples;(the first strategy) 
%   
%  Inputs: 
%   dirPath -- the data directory that contains the 
%              attributes file and labels file; these 
%              data files are generated using the C code 
%              in the past homework, parsing the weka 
%              data file. 
%   k - # of Gaussian components; 
% 
%  Ouputs: 
%   two files named './/dirpath//resk%d' storing the 
%   training accuracy and test accuracy. 
%% 
k=2; 
dirPath = 'heart-statlog';%'heart-statlog';%'sonar_original'; 
  
%%%% get all the data needed   %%%% 



 

 

readData(dirPath); 
dataPath = 
sprintf('.//%s//parameter',dirPath);load(dataPath); 
dataPath = sprintf('.//%s//instance',dirPath); 
load(dataPath); 
dataPath = sprintf('.//%s//labels',dirPath);   
load(dataPath); 
clear dataPath; 
%%%% all the data obtained   %%%% 
[n,d] = size(instance); 
  
%%%% 10-fold stratified CV    %%%% 
cv = CVGroup(n,10,labels); 
  
%%%% for each fold train the GMM %%%% 
% for the first fold 
kFold = 1; j = 1; m = 1; 
trainSet = zeros(9*floor(n/10),d+1); 
testSet = zeros(n-9*floor(n/10),d+1); 
for i=1:n 
    if cv(i) ~= kFold 
        trainSet(j,:)=[instance(i,:) labels(i)]; 
        j = j+1; 
    else 
        testSet(m,:)=[instance(i,:) labels(i)]; 
        m = m+1; 
    end  
end 
% train the GMM 
[L,W,M,V] = myEMforGMM(trainSet(:,1:d),k); 
while(isnan(L)) 
    [L,W,M,V] = myEMforGMM(trainSet(:,1:d),k); 
end 
count = zeros(3,k); 
% accuracy inside the train set 
for i=1:length(trainSet(:,1)) 
    z = Expectation(trainSet(i,1:d),k,W,M,V); 
    [temp, maxK] = max(z); 
    count(3,maxK) = count(3,maxK)+1; 
    count(trainSet(i,d+1)+1,maxK) = 
count(trainSet(i,d+1)+1,maxK)+1; 
end 
n0 = CountClass(trainSet(:,d+1)); 
p = n0/length(trainSet(:,1)); 
total = 0; 
for i=1:k 
    if count(1,i)/(count(2,i)+count(1,i))>p 
        gaussianClass(1,i) = 0; 
        gaussianClass(2,i) = count(1,i)/count(3,i); 
        total = total + count(1,i); 
    else 
        gaussianClass(1,i) = 1; 
        gaussianClass(2,i) = count(2,i)/count(3,i); 
        total = total + count(2,i); 
    end 
end 
trainAccuracy(1) = total/length(trainSet(:,1)); 
% accuracy for the test 
total = 0; 
for i=1:length(testSet(:,1)) 
    z = Expectation(testSet(i,1:d),k,W,M,V); 
    [temp, maxK] = max(z); 
    if gaussianClass(1,maxK)==testSet(i,d+1) 
        total = total + 1; 
    end 
end 
testAccuracy(1) = total/length(testSet(:,1)); 
% for the following folds 
for kFold = 2:10 
    j = 1; m = 1; 
    trainSet = zeros(n-floor(n/10),d+1); 
    testSet = zeros(floor(n/10),d+1); 
    for i=1:n 
        if cv(i) ~= kFold 
            trainSet(j,:)=[instance(i,:) labels(i)]; 
            j = j+1; 
        else 
            testSet(m,:)=[instance(i,:) labels(i)]; 
            m = m+1; 
        end  
    end 
% train the GMM 
    [L,W,M,V] = myEMforGMM(trainSet(:,1:d),k); 
    while(isnan(L)) 
        [L,W,M,V] = myEMforGMM(trainSet(:,1:d),k); 
    end 
    count = zeros(3,k); 

% accuracy inside the train set 
    for i=1:length(trainSet(:,1)) 
        z = Expectation(trainSet(i,1:d),k,W,M,V); 
        [temp, maxK] = max(z); 
        count(3,maxK) = count(3,maxK)+1; 
        count(trainSet(i,d+1)+1,maxK) = ... 
            count(trainSet(i,d+1)+1,maxK)+1; 
    end 
    total = 0; 
    for i=1:k 
        if count(1,i)>count(2,i) 
            gaussianClass(1,i) = 0; 
            gaussianClass(2,i) = count(1,i)/count(3,i); 
            total = total + count(1,i); 
        else 
            gaussianClass(1,i) = 1; 
            gaussianClass(2,i) = count(2,i)/count(3,i); 
            total = total + count(2,i); 
        end 
    end 
    trainAccuracy(kFold) = total/length(trainSet(:,1)); 
% accuracy for the test 
    total = 0; 
    for i=1:length(testSet(:,1)) 
        z = Expectation(testSet(i,1:d),k,W,M,V); 
        [temp, maxK] = max(z); 
        if gaussianClass(1,maxK)==testSet(i,d+1) 
            total = total + 1; 
        end 
    end 
    testAccuracy(kFold) = total/length(testSet(:,1)); 
end 
  
dataPath = sprintf('.//%s//resk%d',dirPath,k); 
save(dataPath,'trainAccuracy','testAccuracy'); 
  
 

3.3)myGMMSupervisedLearner.m 
function myGMMSupervisedLearner(dirPath,k) 
%% myGMM(): model the data in each class using 
%              gaussian mixture model; after obtaining 
%              all the parameters, use the likelihood 
%              function to test the new example by 
%              comparing the likelihood generated by 
%              the GMM of two classes;(the 2nd strategy) 
%   
%  Inputs: 
%   dirPath -- the data directory that contains the 
%              attributes file and labels file; these 
%              data files are generated using the C code 
%              in the past homework, parsing the weka 
%              data file. 
%   k - # of Gaussian components of each class; 
% 
%  Ouputs: 
%   %   two files named './/dirpath//res2k%d' storing the 
%   training accuracy and test accuracy. 
%% 
  
dirPath = 'sonar';%'heart-statlog';%'sonar_original'; 
for k=1:7 
%%%% get all the data needed   %%%% 
readData(dirPath); 
dataPath = 
sprintf('.//%s//parameter',dirPath);load(dataPath); 
dataPath = sprintf('.//%s//instance',dirPath); 
load(dataPath); 
dataPath = sprintf('.//%s//labels',dirPath);   
load(dataPath); 
clear dataPath; 
%%%% all the data obtained   %%%% 
[n,d] = size(instance); 
  
%%%% 10-fold stratified CV    %%%% 
cv = CVGroup(n,10,labels); 
  
%%%% for each fold train the GMM %%%% 
% for the first fold 
kFold = 1; j = 1; q = 1; m = 1; 
testSet = zeros(n-9*floor(n/10),d+1); 
for i=1:n 
    if cv(i) ~= kFold 
        if labels(i) == 0 
            trainSet0(j,:)=[instance(i,:) labels(i)]; 
            j = j+1; 
        else 
            trainSet1(q,:)=[instance(i,:) labels(i)]; 



 

 

            q = q+1; 
        end 
    else 
        testSet(m,:)=[instance(i,:) labels(i)]; 
        m = m+1; 
    end  
end 
% train the GMM for each class 
[L0,W0,M0,V0] = myEMforGMM(trainSet0(:,1:d),k); 
while(isnan(L0)) 
    [L0,W0,M0,V0] = myEMforGMM(trainSet0(:,1:d),k); 
end 
[L1,W1,M1,V1] = myEMforGMM(trainSet1(:,1:d),k); 
while(isnan(L1)) 
    [L1,W1,M1,V1] = myEMforGMM(trainSet1(:,1:d),k); 
end 
% accuracy inside the train set 
count = 0; 
for i=1:length(trainSet0(:,1)) 
    E0 = Expectation(trainSet0(i,1:d),k,W0,M0,V0); 
    likely0 = Likelihood(trainSet0(i,1:d),k,W0,M0,V0,E0); 
    E1 = Expectation(trainSet0(i,1:d),k,W1,M1,V1); 
    likely1 = Likelihood(trainSet0(i,1:d),k,W1,M1,V1,E1); 
    if likely0>=likely1 
        count = count + 1; 
    end 
end 
for i=1:length(trainSet1(:,1)) 
    E0 = Expectation(trainSet1(i,1:d),k,W0,M0,V0); 
    likely0 = Likelihood(trainSet1(i,1:d),k,W0,M0,V0,E0); 
    E1 = Expectation(trainSet1(i,1:d),k,W1,M1,V1); 
    likely1 = Likelihood(trainSet1(i,1:d),k,W1,M1,V1,E1); 
    if likely0<likely1 
        count = count + 1; 
    end 
end 
trainAccuracy(1) = count / (n-length(testSet(:,1))); 
% accuracy inside the test set 
count = 0; 
for i = 1:length(testSet(:,1)) 
    E0 = Expectation(testSet(i,1:d),k,W0,M0,V0); 
    likely0 = Likelihood(testSet(i,1:d),k,W0,M0,V0,E0); 
    E1 = Expectation(testSet(i,1:d),k,W1,M1,V1); 
    likely1 = Likelihood(testSet(i,1:d),k,W1,M1,V1,E1); 
    if (likely0>=likely1 && testSet(i,d+1)==0)|| ... 
            (likely0<likely1 && testSet(i,d+1)==1) 
        count = count + 1; 
    end 
end 
testAccuracy(1) = count / length(testSet(:,1)); 
% for the remaining folds 
for kFold = 2:9 
    clear testSet, trainSet0, trainSet1; 
    j = 1; q = 1; m = 1; 
    testSet = zeros(floor(n/10),d+1); 
    for i=1:n 
        if cv(i) ~= kFold 
            if labels(i) == 0 
                trainSet0(j,:)=[instance(i,:) labels(i)]; 
                j = j+1; 
            else 
                trainSet1(q,:)=[instance(i,:) labels(i)]; 
                q = q+1; 
            end 
        else 
            testSet(m,:)=[instance(i,:) labels(i)]; 
            m = m+1; 
        end  
    end 
% train the GMM for each class 
    [L0,W0,M0,V0] = myEMforGMM(trainSet0(:,1:d),k); 
    while(isnan(L0)) 
        [L0,W0,M0,V0] = myEMforGMM(trainSet0(:,1:d),k); 
    end 
    [L1,W1,M1,V1] = myEMforGMM(trainSet1(:,1:d),k); 
    while(isnan(L1)) 
        [L1,W1,M1,V1] = myEMforGMM(trainSet1(:,1:d),k); 
    end 
% accuracy inside the train set 
    count = 0; 
    for i=1:length(trainSet0(:,1)) 
        E0 = Expectation(trainSet0(i,1:d),k,W0,M0,V0); 
        likely0 = Likelihood(trainSet0(i,1:d),k,W0,M0,V0,E0); 
        E1 = Expectation(trainSet0(i,1:d),k,W1,M1,V1); 
        likely1 = Likelihood(trainSet0(i,1:d),k,W1,M1,V1,E1); 
        if likely0>=likely1 
            count = count + 1; 

        end 
    end 
    for i=1:length(trainSet1(:,1)) 
        E0 = Expectation(trainSet1(i,1:d),k,W0,M0,V0); 
        likely0 = Likelihood(trainSet1(i,1:d),k,W0,M0,V0,E0); 
        E1 = Expectation(trainSet1(i,1:d),k,W1,M1,V1); 
        likely1 = Likelihood(trainSet1(i,1:d),k,W1,M1,V1,E1); 
        if likely0<likely1 
            count = count + 1; 
        end 
    end 
    trainAccuracy(kFold) = count / (n-length(testSet(:,1))); 
% accuracy inside the test set 
    count = 0; 
    for i = 1:length(testSet(:,1)) 
        E0 = Expectation(testSet(i,1:d),k,W0,M0,V0); 
        likely0 = Likelihood(testSet(i,1:d),k,W0,M0,V0,E0); 
        E1 = Expectation(testSet(i,1:d),k,W1,M1,V1); 
        likely1 = Likelihood(testSet(i,1:d),k,W1,M1,V1,E1); 
        if (likely0>=likely1 && testSet(i,d+1)==0)|| ... 
                (likely0<likely1 && testSet(i,d+1)==1) 
            count = count + 1; 
        end 
    end 
    testAccuracy(kFold) = count / length(testSet(:,1)); 
end 
dataPath = sprintf('.//%s//res2k%d',dirPath,k); 
save(dataPath,'trainAccuracy','testAccuracy'); 
end 

 

3.4)myTestEMforGMM.m 
function myTestEMforGMM() 
%% myTestEMforGMM(): test my EMforGMM() using artificially 
%                       synthetic data; 
%  Namely, use three gaussian, and we know all the 
parameters ahead, 
%          according to the weights we select the gaussian 
to generate 
%          the data correspondent to the gaussian; then use 
myEMforGMM() 
%          to estimate the parameters; 
%% 
rand('seed',0); 
randn('seed',0); 
k = 3; 
n_samples = 500; 
% initialize 
weight = [0.4, 0.3, 0.3]'; 
mu = [0.0, 6.0, 14.0]'; 
sigma = [1,2,3]';  
%the generated samples 
x = zeros( n_samples,1); 
% CDF for weight 
sum_weight = zeros(k, 1); 
for j=2:k 
    sum_weight(j) = sum_weight(j-1) + weight(j); 
end 
     
for i=1 : n_samples 
    % select the compoent, the rand(1,1) generates 
    % the number according to uniform distribution 
    % thus by select according to weight we can 
    % proportionally select the component according 
    % to the weights. 
    index = rand(1, 1); 
    if index<weight(1) 
        j = 1; 
    else 
        if index<weight(1)+weight(2) 
            j = 2; 
        else 
            j = 3; 
        end 
    end 
    %generate a sample from the j component 
    x(i) = normrnd(mu(j), sigma(j), 1,1); 
end  
  
[likelihood, weight_hat,mu_hat,Variance_hat] = 
myEMforGMM(x,k);% 
sigma_hat = zeros(k,1); 
for j=1:k 
    sigma_hat(j,1) = sqrt(diag(Variance_hat(:,:,j))); 
end 
mu_hat = (mu_hat)'; 
  



 

 

%plot  
figure (1) 
%the true density 
R1 = zeros(1,k); 
R2 = zeros(1,k); 
for i=1:k,  % Determine plot range as 4 x standard 
deviations 
    R1(:,i) = mu(i)-4*sigma(i); 
    R2(:,i) = mu(i)+4*sigma(i); 
end 
Rmin = min(min(R1)); 
Rmax = max(max(R2)); 
xgrid = [Rmin:0.001*(Rmax-Rmin):Rmax]; 
density = GMMpdf(xgrid, k, weight, mu, sigma); 
plot (xgrid,density, 'b' ); 
  
%the esimated density 
hold on 
density_hat = GMMpdf(xgrid,k, weight_hat, mu_hat, sigma_hat); 
plot (xgrid,density_hat, 'r'); 
  
%the samples 
  
y =  GMMpdf(x, k, weight, mu, sigma); 
plot(x, y, 'xg'); 
legend('true pdf', 'estimated pdf', 'samples'); 
  
figure(2) 
hist(x, 55,'g') 
 %display 
% weight_hat 
% mu_hat 
% sigma_hat 

 

3.5)Likelihood.m 
function L = Likelihood(instance,k,W,M,V,E) 
%% Likelihood(instance,k,W,M,V): Compute L based on the 
current 
%                                     parameters setting; 
%  Input:    instance -- the examples' attributes; 
%            k -- the number of Gaussians; 
%            E -- the expectation of the hidden variables; 
%            W -- the weights vector; 
%            M -- the mean and covariance of gaussians; 
%  Output:   L -- the likelihood of given instances; 
  
[n,d] = size(instance); 
L = 0; 
for i=1:n 
    for j=1:k 
        iV = inv(V(:,:,j)); 
        L = L+E(i,j)*( ... 
            log(W(j))... 
            - 0.5*log(det(V(:,:,j)))... 
            - 0.5*(instance(i,:)-M(:,j)')*iV*(instance(i,:)-
M(:,j)')' ... 
            - n/2*log(2*pi)); 
    end 
end 

 

3.6)Expectation.m 
function E = Expectation(instance,k,W,M,V) 
%% Expectation(): compute the expectation of zij, for each 
instance 
%                i and gaussian j; 
% input:    k -- the number of gaussians; 
%           instance -- the attributes of instance; 
%           W -- the weights of gaussians; 
%           M,V -- the median and covariance of gaussians; 
% output:   E -- the expectation of zij; 
[n,d] = size(instance); 
a = (2*pi)^(0.5*d); 
S = zeros(1,k); 
iV = zeros(d,d,k); 
for j=1:k 
    if V(:,:,j)==zeros(d,d) 
        V(:,:,j)=ones(d,d)*eps; 
    end 
    S(j) = sqrt(det(V(:,:,j))); 
    iV(:,:,j) = inv(V(:,:,j));     
end 
E = zeros(n,k); 
for i=1:n     
    for j=1:k 

        x_mu = instance(i,:)'-M(:,j); 
        pl = exp(-0.5*x_mu'*iV(:,:,j)*x_mu)/(a*S(j)); 
        E(i,j) = W(j)*pl; 
    end 
    E(i,:) = E(i,:)/sum(E(i,:)); 
end 
 

3.7)Maximization.m 
function [W,M,V] = Maximization(instance,k,E) 
%% Maximization(): compute the parameters using the 
%                     expectation according to ML; 
% input:    k -- the number of gaussians; 
%           instance -- the attributes of instance; 
%           E -- the current expectation; 
% output:   W -- the weights of gaussians; 
%           M,V -- the median and covariance of gaussians; 
[n,d] = size(instance); 
W = zeros(1,k); 
M = zeros(d,k); 
V = zeros(d,d,k); 
for i=1:k  % Compute weights 
    for j=1:n 
        W(i) = W(i) + E(j,i); 
        M(:,i) = M(:,i) + E(j,i)*instance(j,:)'; 
    end 
    M(:,i) = M(:,i)/W(i); 
end 
for i=1:k, 
    for j=1:n 
        x_mu = instance(j,:)'-M(:,i); 
        V(:,:,i) = V(:,:,i) + E(j,i)*x_mu*x_mu'; 
    end 
    V(:,:,i) = V(:,:,i)/W(i); 
end 
W = W/n; 

 
3.8) myEMforGMMInitialization.m 
function [L,W,M,V] = myEMforGMMInitialization(instance, k) 
%% myEMforGMMInitialization(): this is the version  
%             with some meaningless initialization  
%             instead of k-means of myEMforGMM; 
% 
%  Inputs: 
%   instance -- the examples, n=# of instances, d=dimension 
of 
%                   attributes; 
%   k - # of Gaussian components; 
% 
%  Ouputs: 
%   W(1...k) - estimated weight vector of GMM 
%   M(d,k) - estimated mean matrix of GMM 
%   V(d,d,k) - estimated covariance matrices of GM 
%   L - log likelihood of estimates 
%% 
%%  EM initialization 
%% initialize the mean vectors 
% dirPath = 'heart-statlog'; 
% dataPath = sprintf('.//%s//instance',dirPath); 
load(dataPath); 
% k = 2; 
[n,d] = size(instance); 
for i=1:k 
    M(i,:) = sum(instance); 
    W(i) = 1/k; 
    V(:,:,i) = cov(instance); 
end 
M = M'; 
%% initialize log likelihood 
L2 = Likelihood(instance,k,W,M,V); 
L1 = 2*L2; 
%% Estimate the parameters 
niter = 0;maxIteration = 50; 
while (abs((L2-L1)/L1)>1e-3) && (niter<=maxIteration) 
    E1 = Expectation(instance,k,W,M,V); % E-step     
    [W1,M1,V1] = Maximization(instance,k,E1);  % M-step 
    L1 = L2; 
    L2 = Likelihood(instance,k,W,M,V); 
    if isnan(L2) 
        L = L1; 
        return; 
    end 
    W1=W; M1=M; V1=V; 
    niter = niter + 1; 
end  
L = L2; 


