
Topic 8: Power spectral density and LTI systems

• The power spectral density of a WSS random process

• Response of an LTI system to random signals

• Linear MSE estimation
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The autocorrelation function and the rate of change

• Consider a WSS random process X(t) with the autocorrelation

function RX(τ).

• If RX(τ) drops quickly with τ , then process X(t) changes quickly with

time: its time samples become uncorrelated over a short period of time.

– Conversely, when RX(τ) drops slowly with τ , samples are highly

correlated over a long time.

• Thus RX(τ) is a measure of the rate of change of X(t) with time and

hence is related to the frequency response of X(t).

– For example, a sinusoidal waveform sin(2πft) will vary rapidly with

time if it is at high frequency (large f), and vary slowly at low

frequency (small f).

• In fact, the Fourier transform of RX(τ) is the average power density

over the frequency domain.
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The power spectral density of a WSS process

• The power spectral density (psd) of a WSS random process X(t) is

given by the Fourier transform (FT) of its autocorrelation function

SX(f) =

∫

∞

−∞

RX(τ)e−j2πfτdτ

• For a discrete-time process Xn, the psd is given by the discrete-time

FT (DTFT) of its autocorrelation sequence

Sx(f) =
n=∞
∑

n=−∞

Rx(n)e−j2πfn , −
1

2
≤ f ≤

1

2

Since the DTFT is periodic in f with period 1, we only need to

consider |f | ≤ 1

2
.

• RX(τ) (Rx(n)) can be recovered from Sx(f) by taking the inverse FT

RX(τ) =

∫

∞

−∞

SX(f)ej2πfτdf , RX(n) =

∫

1/2

−1/2

SX(f)ej2πfndf
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Properties of the power spectral density

• SX(f) is real and even

SX(f) = SX(−f)

• The area under SX(f) is the average power of X(t)
∫

∞

−∞

SX(f)df = RX(0) = E[X(t)2]

• SX(f) is the average power density, hence the average power of X(t) in

the frequency band [f1, f2] is

∫

−f1

−f2

SX(f) df +

∫ f2

f1

SX(f) df = 2

∫ f2

f1

SX(f) df

• SX(f) is nonnegative: SX(f) ≥ 0 for all f . (shown later)

• In general, any function S(f) that is real, even, nonnegative and has

finite area can be a psd function.
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White noise

• Band-limited white noise: A zero-mean WSS process N(t) which has

the psd as a constant N0

2
within −W ≤ f ≤ W and zero elsewhere.

– Similar to white light containing all frequencies in equal amounts.

– Its average power is

E[X(t)2] =

∫ W

−W

N0

2
df = N0W

– Its auto-correlation function is

RX(τ) =
N0 sin(2πWτ)

2πτ
= N0W sinc(2Wτ)

– For any t, the samples X(t± n
2W ) for n = 0, 1, 2, . . . are uncorrelated.

−W W

N/2 

S
x
(f) 

f 

1/(2W)

2/(2W) 

R
x
(τ)=NWsinc(2Wτ) 

τ 
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• White-noise process: Letting W → ∞, we obtain a white noise process,

which has

SX(f) =
N0

2
for all f

RX(τ) =
N0

2
δ(τ)

– For a white noise process, all samples are uncorrelated.

– The process has infinite power and hence not physically realizable.

– It is an idealization of physical noises. Physical systems usually are

band-limited and are affected by the noise within this band.

• If the white noise N(t) is a Gaussian random process, then we have
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Gaussian white noise (GWN)
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– WGN results from taking the derivative of the Brownian motion (or

the Wiener process).

– All samples of a GWN process are independent and identically

Gaussian distributed.

– Very useful in modeling broadband noise, thermal noise.
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Cross-power spectral density

Consider two jointly-WSS random processes X(t) and Y (t):

• Their cross-correlation function RXY (τ) is defined as

RXY (τ) = E[X(t + τ)Y (t)]

– Unlike the auto-correlation RX(τ), the cross-correlation RXY (τ) is

not necessarily even. However

RXY (τ) = RY,X(−τ)

• The cross-power spectral density SXY (f) is defined as

SXY (f) = F{RXY (τ)}

In general, SXY (f) is complex even if the two processes are real-valued.
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• Example: Signal plus white noise

Let the observation be

Z(t) = X(t) + N(t)

where X(t) is the wanted signal and N(t) is white noise. X(t) and

N(t) are zero-mean uncorrelated WSS processes.

– Z(t) is also a WSS process

E[Z(t)] = 0

E[Z(t)Z(t + τ)] = E [{X(t) + N(t)}{X(t + τ) + N(t + τ)}]

= RX(τ) + RN (τ)

– The psd of Z(t) is the sum of the psd of X(t) and N(t)

SZ(f) = SX(f) + SN (f)

– Z(t) and X(t) are jointly-WSS

E[X(t)Z(t + τ)] = E[X(t + τ)Z(t)] = RX(τ)

Thus SXZ(f) = SZX(f) = SX(f).
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Review of LTI systems

• Consider a system that maps y(t) = T [x(t)]

– The system is linear if

T [αx1(t) + βx2(t)] = αT [x1(t)] + βT [x2(t)]

– The system is time-invariant if

y(t) = T [x(t)] → y(t − τ) = T [x(t − τ)]

• An LTI system can be completely characterized by its impulse response

h(t) = T [δ(t)]

– The input-output relation is obtained through convolution

y(t) = h(t) ∗ x(t) =

∫

∞

−∞

h(τ)x(t − τ)dτ

• In the frequency domain: The system transfer function is the Fourier

transform of h(t)

H(f) = F [h(t)] =

∫

∞

−∞

h(t)e−j2πftdt
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Response of an LTI system to WSS random signals

Consider an LTI system h(t)

h(t)
X(t) Y(t)

• Apply an input X(t) which is a WSS random process

– The output Y (t) then is also WSS

E[Y (t)] = mX

∫

∞

−∞

h(τ)dτ = mX H(0)

E [Y (t)Y (t + τ)] =

∫

∞

−∞

∫

∞

−∞

h(r) h(s) RX(τ + s − r) dsdr

– Two processes X(t) and Y (t) are jointly WSS

RXY (τ) =

∫

∞

−∞

h(s)RX(τ + s)ds = h(−τ) ∗ RX(τ)

– From these, we also obtain

RY (τ) =

∫

∞

−∞

h(r)RXY (τ − r)dr = h(τ) ∗ RXY (τ)
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• The results are similar for discrete-time systems. Let the impulse

response be hn

– The response of the system to a random input process Xn is

Yn =
∑

k

hkXn−k

– The system transfer function is

H(f) =
∑

n

hne−j2πnf

– With a WSS input Xn, the output Yn is also WSS

mY = mXH(0)

RY [k] =
∑

j

∑

i

hjhiRX [k + j − i]

– Xn and Yn are jointly WSS

RXY [k] =
∑

n

hnRX [k + n]
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Frequency domain analysis

• Taking the Fourier transforms of the correlation functions, we have

SXY (f) = H∗(f) SX(f)

SY (f) = H(f) SXY (f)

where H∗(f) is the complex conjugate of H(f).

• The output-input psd relation

SY (f) = |H(f)|2SX(f)

• Example: White noise as the input.

Let X(t) have the psd as

SX(f) =
N0

2
for all f

then the psd of the output is

SY (f) = |H(f)|2
N0

2

Thus the transfer function completely determines the shape of the

output psd. This also shows that any psd must be nonnegative.
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Power in a WSS random process

• Some signals, such as sin(t), may not have finite energy but can have

finite average power.

• The average power of a random process X(t) is defined as

PX = E

[

lim
T→∞

1

2T

∫ T

−T

X(t)2dt

]

• For a WSS process, this becomes

PX = lim
T→∞

1

2T

∫ T

−T

E[X(t)2]dt = RX(0)

But RX(0) is related to the FT of the psd S(f).

• Thus we have three ways to express the power of a WSS process

PX = E[X(t)2] = RX(0) =

∫

∞

−∞

S(f)df

The area under the psd function is the average power of the process.
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Linear estimation

• Let X(t) be a zero-mean WSS random process, which we are interested

in estimating.

• Let Y (t) be the observation, which is also a zero-mean random process

jointly WSS with X(t)

– For example, Y (t) could be a noisy observation of X(t), or the

output of a system with X(t) as the input.

• Our goal is to design a linear, time-invariant filter h(t) that processes

Y (t) to produce an estimate of X(t), which is denoted as X̂(t)

h(t)
X(t)Y(t)
^

– Assuming that we know the auto- and cross-correlation functions

RX(τ), RY (τ), and RXY (τ).

• To estimate each sample X(t), we use an observation window on Y (α)

as t − a ≤ α ≤ t + b.

– If a = ∞ and b = 0, this is a (causal) filtering problem: estimating
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Xt from the past and present observations.

– If a = b = ∞, this is an infinite smoothing problem: recovering Xt

from the entire set of noisy observations.

• The linear estimate X̂(t) is of the form

X̂(t) =

∫ a

−b

h(τ)Y (t − τ)dτ

• Similarly for discrete-time processing, the goal is to design the filter

coefficients hi to estimate Xk as

X̂k =
a
∑

i=−b

hiYk−i

• Next we consider the optimum linear filter based on the MMSE

criterion.
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Optimum linear MMSE estimation

• The MMSE linear estimate of X(t) based on Y (t) is the signal X̂(t)

that minimizes the MSE

MSE = E

[

(

X(t) − X̂(t)
)2
]

• By the orthogonality principle, the MMSE estimate must satisfy

E [etY (t − τ)] = E
[(

X(t) − X̂(t)
)

Y (t − τ)
]

= 0 ∀ τ

The error et = X(t) − X̂(t) is orthogonal to all observations Y (t − τ).

– Thus for −b ≤ τ ≤ a

RXY (τ) = E [X(t)Y (t − τ)] = E
[

X̂(t)Y (t − τ)
]

=

∫ a

−b

h(β)RY (τ − β)dβ (1)

∗ To find h(β) we need to solve an infinite set of integral equations.

Analytical solution is usually not possible in general.

∗ But it can be solved in two important special case: infinite

smoothing (a = b = ∞), and filtering (a = ∞, b = 0).
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– Furthermore, the error is orthogonal to the estimate X̂t

E
[

etX̂t

]

=

∫ a

−b

h(τ)E [etY (t − τ)] dτ = 0

– The MSE is then given by

E
[

e2

t

]

= E
[

et

(

X(t) − X̂(t)
)]

= E [etX(t)]

= E
[(

X(t) − X̂(t)
)

X(t)
]

= RX(0) −

∫ a

−b

h(β)RXY (β)dβ (2)

• For the discrete-time case, we have

RXY (m) =

a
∑

i=−b

hiRX(m − i) (3)

E
[

e2

k

]

= RX(0) −
a
∑

i=−b

hiRXY (i) (4)

From (3), one can design the filter coefficients hi.
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Infinite smoothing

• When a, b → ∞, we have

RXY (τ) =

∫

∞

−∞

h(β)RY (τ − β)dβ = h(τ) ∗ RY (τ)

– Taking the Fourier transform gives the transfer function for the

optimum filter

SXY (f) = H(f)SY (f) ⇒ H(f) =
SXY (f)

SY (f)
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