Topic 8: Power spectral density and LTI systems

e The power spectral density of a WSS random process
e Response of an LTI system to random signals

e Linear MSE estimation

ES150 — Harvard SEAS

The autocorrelation function and the rate of change

e Consider a WSS random process X (¢) with the autocorrelation
function Ry (7).

e If Rx(7) drops quickly with 7, then process X (t) changes quickly with
time: its time samples become uncorrelated over a short period of time.
— Conversely, when Rx (7) drops slowly with 7, samples are highly
correlated over a long time.
e Thus Rx(7) is a measure of the rate of change of X (¢) with time and
hence is related to the frequency response of X (t).

— For example, a sinusoidal waveform sin(27 ft) will vary rapidly with
time if it is at high frequency (large f), and vary slowly at low
frequency (small f).

e In fact, the Fourier transform of Rx (7) is the average power density

over the frequency domain.
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The power spectral density of a WSS process

e The power spectral density (psd) of a WSS random process X (t) is
given by the Fourier transform (FT) of its autocorrelation function

Sx(f) = / " Ry(r)e-i® gy

— o0
e For a discrete-time process X,,, the psd is given by the discrete-time
FT (DTFT) of its autocorrelation sequence

n=oo

S:(f) = Z Rw(n)e_j%fna -

n=—oo

<f<

DN | =
N | =

Since the DTFT is periodic in f with period 1, we only need to
consider |f| < .

e Rx(7) (Rz(n)) can be recovered from S, (f) by taking the inverse FT

00 ‘ 1/2 ‘
Rx(1) = / Sx(f)e?*™7df ,  Rx(n) = / Sx (f)e?*Indf

PN —1/2
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Properties of the power spectral density

e Sx(f) is real and even
Sx(f) =5x(=F)

e The area under Sx(f) is the average power of X ()

/oo Sx(f)df = Rx(0) = E[X(t)]

— 00

e Sx(f) is the average power density, hence the average power of X (¢) in
the frequency band [f1, fo] is

—f1 f2 f2
[ sxnas [Cssnar=2 [ Cssna
e Sx(f) is nonnegative: Sx(f) > 0 for all f. (shown later)

e In general, any function S(f) that is real, even, nonnegative and has
finite area can be a psd function.
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White noise

e Band-limited white noise: A zero-mean WSS process N (t) which has

the psd as a constant % within —W < f < W and zero elsewhere.

— Similar to white light containing all frequencies in equal amounts.

— Its average power is

%% NO
E[X(t)?*] = —df = NoW
w2
— Its auto-correlation function is
Ny sin(27nW
Ry(r) = MosinCrWr) e 2w

27T

— For any ¢, the samples X (¢ £ 53) for n = 0,1,2,... are uncorrelated.

Sx(f) Rx(r)=NW5inc(2Wr)

N/2

}/(2%\
N

2/(2W)
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e White-noise process: Letting W — oo, we obtain a white noise process,

which has
N,
Sx(f) = 70 for all f
N,
Rx(r) = —205(7)

— For a white noise process, all samples are uncorrelated.
— The process has infinite power and hence not physically realizable.

— It is an idealization of physical noises. Physical systems usually are

band-limited and are affected by the noise within this band.

e If the white noise N (%) is a Gaussian random process, then we have
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Gaussian white noise (GWN)

Magnitude
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— WGN results from taking the derivative of the Brownian motion (or

the Wiener process).

— All samples of a GWN process are independent and identically

Gaussian distributed.

— Very useful in modeling broadband noise, thermal noise.
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Cross-power spectral density

Consider two jointly-WSS random processes X (¢) and Y (t):

e Their cross-correlation function Rxy (7) is defined as
Rxy (1) =FE[X(t+1)Y(t)]

— Unlike the auto-correlation Rx (7), the cross-correlation Rxy (7) is

not necessarily even. However
ny(T) = Ryvx(—T)
e The cross-power spectral density Sxy (f) is defined as

Sxy(f) =F{Rxy(7)}

In general, Sxy (f) is complex even if the two processes are real-valued.

ES150 — Harvard SEAS



e Example: Signal plus white noise

Let the observation be
Z(t)=X(t)+ N(t)

where X (¢) is the wanted signal and N(t) is white noise. X (¢) and
N(t) are zero-mean uncorrelated WSS processes.

— Z(t) is also a WSS process
ElZ{t)] = 0
EZt)Z(t+71) = E{X®)+NOHXEt+7)+N({Ht+71)}]
= Rx(7)+ Rn(7)
— The psd of Z(¢) is the sum of the psd of X (¢) and N (¢)
Sz(f) = Sx(f) + Sn(f)
— Z(t) and X (t) are jointly-WSS
EXt)Z(t+71)]=E[X(t+7)Z(t)] = Rx (1)

Thus Sxz(f) = Szx(f) = Sx(f).
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Review of LTI systems
e Consider a system that maps y(t) = T[z(t)]

— The system is linear if

Tlaxy(t) 4 Br2(t)] = aTlz1(t)] + BT [x2(t)]
— The system is time-invariant if

y(t) =Tlz(t)] — yl—7)=Tz(t—7)]

e An LTI system can be completely characterized by its impulse response

h(t) = T[5(t)]
— The input-output relation is obtained through convolution
y(t) = h(t) * 2(t) = / h(r)a(t — 7)dr

e In the frequency domain: The system transfer function is the Fourier
transform of h(t)

H(f) = F[h(t)] = /OO h(t)e 92/t dt

—0c0o
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Response of an LTI system to WSS random signals
Consider an LTI system h(t)

X (1) Y (1)
h(t)

e Apply an input X (¢) which is a WSS random process
— The output Y (¢) then is also WSS

BIY()] = mx [ " h(r)dr = mx H(0)

EY)Y(t+T1)] = / / s) Rx (T + s —r)dsdr
— Two processes X (t) and Y (t) are jointly WSS

ny(T) = /OO h(S)Rx(T + S)dS = h(—T) * RX(T)

— o0

— From these, we also obtain

Ry(T) = /OO h(T)ny(T — T)d?‘ = h(’]’) X ny(’f)

— o0

ES150 — Harvard SEAS 11

e The results are similar for discrete-time systems. Let the impulse
response be h,,

— The response of the system to a random input process X,, is

Yo=) haXo-i

— The system transfer function is
_ Z h, e—i2mnf
n

— With a WSS input X,,, the output Y,, is also WSS

my = mxH(O)

Rylk] = ) > hjhRxlk+j—1i]

— X, and Y,, are jointly WSS

Rxy[k] = Zh Rx [k +n]
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Frequency domain analysis
e Taking the Fourier transforms of the correlation functions, we have
Sxy(f) = H(f)Sx(f)
Sy(f) = H(f)Sxv(f)
where H*(f) is the complex conjugate of H(f).
e The output-input psd relation

Sy (f) = [H(f)I*Sx(f)

e Example: White noise as the input.
Let X (t) have the psd as

Sx(f) = % for all f

then the psd of the output is

S (f) = [H()P .

Thus the transfer function completely determines the shape of the

output psd. This also shows that any psd must be nonnegative.
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Power in a WSS random process

Some signals, such as sin(t), may not have finite energy but can have
finite average power.

The average power of a random process X (t) is defined as

lim —/ X(t dt]
T—oo 2

For a WSS process, this becomes

Py =

T
Px = lim —/_T E[X(t)*]dt = Rx(0)

But Rx(0) is related to the FT of the psd S(f).

Thus we have three ways to express the power of a WSS process

Py = E[X(t)? / S(f

The area under the psd function is the average power of the process.
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Linear estimation

e Let X (t) be a zero-mean WSS random process, which we are interested
in estimating.
e Let Y (¢) be the observation, which is also a zero-mean random process
jointly WSS with X (%)
— For example, Y (t) could be a noisy observation of X (t), or the
output of a system with X (¢) as the input.

e Our goal is to design a linear, time-invariant filter h(¢) that processes

A~

Y (t) to produce an estimate of X (), which is denoted as X (t)

Y (1) X (1)
h(t)

— Assuming that we know the auto- and cross-correlation functions
Rx(T), Ry(T), and ny(T).

e To estimate each sample X (¢), we use an observation window on Y («)
ast—a<a<t-+b.

— If a = 0o and b = 0, this is a (causal) filtering problem: estimating
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X; from the past and present observations.

— If a = b = oo, this is an infinite smoothing problem: recovering X;

from the entire set of noisy observations.

e The linear estimate X (¢) is of the form

X(t) = / W)Y (t — 7)dT

—b

e Similarly for discrete-time processing, the goal is to design the filter

coefficients h; to estimate X as
a
Xy =Y hiYi
i=—b

e Next we consider the optimum linear filter based on the MMSE

criterion.
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Optimum linear MMSE estimation

e The MMSE linear estimate of X (t) based on Y (¢) is the signal X (t)

that minimizes the MSE

MSE = E {(X(t) ~ X(t)ﬂ

e By the orthogonality principle, the MMSE estimate must satisfy

EleY(t—7)]=E [(X(t) - X(t)) Y(t— T)} —0 V71

The error e; = X (t) — X (t) is orthogonal to all observations Y (¢t — 7).

— Thus for —b<7<a

Rxy(r) = BIX@OY(t-7)=E[XOY(-7)

- / " W(B)Ry (v — B)dp

—b

(1)

* To find h() we need to solve an infinite set of integral equations.

Analytical solution is usually not possible in general.
x But it can be solved in two important special case: infinite
smoothing (a = b = 00), and filtering (a = oo, b = 0).
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— Furthermore, the error is orthogonal to the estimate X,

E {et)zt} = /_C; h(T)E[eY (t —T)]dT =0

— The MSE is then given by
E[e?] = E [et (X(t) —X(t))] — Ele: X (1)]
- E KX(t) - X(t)) X(t)]
= Bx(O) - [ n(E) Ry (913

—b

e For the discrete-time case, we have

a

RXY (m) = Z hrLRX (m — Z)
Ele;] = Rx(0)— za: hi Rxy (i)
i=—b

From (3), one can design the filter coefficients h;.
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Infinite smoothing

e When a,b — oo, we have
Rav(r) = [ OBy (r = 5)a5 = h(r) » By (7)

— Taking the Fourier transform gives the transfer function for the
optimum filter

&MbmmmdijFﬁﬁ)
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