Topic 3: Operations on a random variable

e [unction of a random variable
e Transform methods

e Generation of random variables
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Function of a random variable

Let g(z) be a real-value function of the real line, g : R — R. Let X be a
random variable and let
Y =g(X)

then Y is also a random variable.
e The distribution of Y can be derived from the distribution of X.

e Derived cdf:
Fy(y) = P[Y <y| = Plz|g(z) <y

e If X is a discrete r.v., then Y is also discrete with pmf

py(ye) = Y, px(z;)

zj:g(Tj)=yk
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Derived density — Specific functions

Let us consider two specific functions g(x) first, then study the general

principle.

e Linear function:

Yoaxtr = fel= i (U50)

|al a
— Example: A linear function of a Gaussian r.v. is again a Gaussian
random variable.

X ~N(u,o?) = Y ~N(au+b,a%c?)

e Quadratic function:

Y=X* = fry = fx (v3) fX( V) , ¥y=>0
2,/y 2\/y
— Example: Square of a Gaussian r.v. is a Chi-square r.v.
e—Y/2

V2ry

X~ N(O1) = Y&, fy(y) = y>0
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Derived density — The general case

If the equation g(x) = y has n solutions {x1,...,x,}, then

= fx(2) de
k=1

where ¢'(z1) is the derivative of g(x) evaluated at xy. Note that each xy is

a function of y.

e Example: Y = cos(X), where X ~ U[—7, 7).
For —1 <y <1, the equation y = cos(x) has two solutions in [—m, 7]

r1 =cos *(y) and xp =2 — 1.

Calculate the derivatives of y at these points as

—|g=z;, = —sin(z1) = —sin (cos ) \/7
—|pzn, = —sin(2mr —x1) =sin(z;) = /1
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Since fx(x) = o

5, we have

fy(y)zé for —1<y<1

/1 — y?

Y is said to have arcsine distribution.
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Transform methods

e The characteristic function is defined as

+ oo
Py (w) =E [/“] = / fx(z)e’**dx  for real w, —oo <w < o0

It is the Fourier transform of fx(z) (with the sign of w reversed).

Similarly for discrete random variables

o0

Ox(@) = E [N = Y px(an)ei

k=—oc0
— Properties

o The characteristic function always exists.
o Its maximum magnitude is 1 at w =0

[@x(w)] < 2x(0) =1

— Inverse transform

+oo
fx() 1/ B (w)e—7% duy

:% o

— Examples: Find ®x(w) for exponential, Gaussian RVs.
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e The moment theorem: All the moments of X, if exist, can be calculated
from ¢ x (w) as

E[X™] = 1 d

= ——0>
J" dw™ x()

w=0

— To show this, expand e/“? in a power series and write

(jw)* E[X?] (Jw)"E[X"]
2! n!

Then differentiate this expression wrt w and evaluate at w = 0.

Oy (w) =1+ jwE[X]+ 4.

e The moment generating function is defined as
Mx(s)=F [esx} = / fx(x)e®* dz  forreal s, —o0 < s < 00

This is the Laplace transform of fx(z) with the sign of s reversed.

— The moments can be obtained from Mx (x) as

Bx" = Loare(s)

n
ds s=0

— A drawback is that Mx (s) may not exist for all distributions and all

values of s (but it needs to exist only around s = 0).
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e The probability generating function for a discrete r.v. N with integer
values is defined as

+o0
Gn(z)=F [zN} = Zp]\/(k)zl€
k=0

This is the z transform of px (k) (again with the sign of the exponent

reversed).

— The pmf of N can be calculated as

1 dF
pn (k) = Ll @GN(Z) -
— The mean and variance of N are
E[N] = Gy(1)
var(N) = GR(1)+ Gy(1) = (Gy(1))”

— Examples: Find Gn(z) for Bernoulli, binomial, and Poisson RVs.

e Why so many transforms?
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Generation of random variables

e We can generate a U0, 1] r.v. from any continuous r.v.
e Vice-versa, we can generate any distribution from a UJ0, 1] r.v.

e Generating the uniform U|0, 1] r.v. from a distribution F'x (z)

— Given X with distribution F'x(z), we want to find a function g(.)
such that U = ¢(X) is uniform in [0, 1].
— It turns out that g(X) is given precisely by F(X)

U=F(X) has Fy(u)=u for 0 <u <1
— Assuming Fx (z) has an inverse F !, then
Fy(u) = P[U <u]=P[F(X)<u]l=P[X <F 'u)]=FFu)=u
Note: F'x(z) does not need to be invertible for the result to apply.
e Generating a random variable Y with cdf Fy (y) from a U|0,1] r.v. U.
— Let Y = F~1(U), then
Fy(y) = P[Y <y]=PIF~'(U) <y] = P[U < F(y)] = F(y)

— Examples: Generate the Gaussian and exponential RVs from U0, 1].
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Random number generators in computers
How to generate a U[0,1] r.v. in the computer?

e There are uncountably infinite number of points in [0, 1], but
computers only have finite precision.
= Need to generate equiprobable numbers from a finite set
{0,1,...,M — 1}.

e A naive method: Perform random experiments, such as flipping a coin
log, (M) times or drawing a ball from those numbered 1 to M. This
method requires a large storage space as the sequence grows.

e The power residue method:
Zy = a1 mod M
where M is a large prime number (or an integer power of prime), and «

is an integer carefully chosen between 1 and M.

— The sequence generated is called pseudo-random since it is periodic
with maximum period M. Hence we want a large M.

— The starting point Z; of a sequence is called the seed.

Example: a = 7° and M = 23! — 1.
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Computer generation of random variables

Suppose we want to generate a r.v. X with cdf Fx(x) (or pdf fx(x)).

e The transformation method:
— Generate U uniform in [0, 1].
— Set X = F'(U).
e The rejection method (general): Generating r.v. X ~ fx(z)

1. Generate X; with an easy pdf fy (z). Define

B(z) = K fw(z) > fx(z)
for some constant K > 1.

2. Generate Y uniform in [0, B(X1)].

3. If Y < fx(X1), then output X = X7y;
else reject X7 and return to step 1.
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