- Function of a random variable
- Transform methods
- Generation of random variables

Function of a random variable

Let $g(x)$ be a real-value function of the real line, $g: \mathbb{R} \rightarrow \mathbb{R}$. Let X be a random variable and let

$$
Y=g(X)
$$

then Y is also a random variable.

- The distribution of Y can be derived from the distribution of X.
- Derived cdf:

$$
F_{Y}(y)=P[Y \leq y]=P[x \mid g(x) \leq y]
$$

- If X is a discrete r.v., then Y is also discrete with pmf

$$
p_{Y}\left(y_{k}\right)=\sum_{x_{j}: g\left(x_{j}\right)=y_{k}} p_{X}\left(x_{j}\right)
$$

Derived density - Specific functions

Let us consider two specific functions $g(x)$ first, then study the general principle.

- Linear function:

$$
Y=a X+b \quad \Rightarrow \quad f_{Y}(y)=\frac{1}{|a|} f_{X}\left(\frac{y-b}{a}\right)
$$

- Example: A linear function of a Gaussian r.v. is again a Gaussian random variable.

$$
X \sim \mathcal{N}\left(\mu, \sigma^{2}\right) \quad \Rightarrow \quad Y \sim \mathcal{N}\left(a \mu+b, a^{2} \sigma^{2}\right)
$$

- Quadratic function:

$$
Y=X^{2} \quad \Rightarrow \quad f_{Y}(y)=\frac{f_{X}(\sqrt{y})}{2 \sqrt{y}}+\frac{f_{X}(-\sqrt{y})}{2 \sqrt{y}}, \quad y \geq 0
$$

- Example: Square of a Gaussian r.v. is a Chi-square r.v.

$$
X \sim \mathcal{N}(0,1) \quad \Rightarrow \quad Y \sim \mathcal{X}_{2}^{2}, \quad f_{Y}(y)=\frac{e^{-y / 2}}{\sqrt{2 \pi y}}, \quad y \geq 0
$$

ES150 - Harvard SEAS

Derived density - The general case

If the equation $g(x)=y$ has n solutions $\left\{x_{1}, \ldots, x_{n}\right\}$, then

$$
f_{Y}(y)=\left.\sum_{k=1}^{n} f_{X}(x)\left|\frac{d x}{d y}\right|\right|_{x=x_{k}}=\sum_{k=1}^{n} \frac{f_{X}\left(x_{k}\right)}{\left|g^{\prime}\left(x_{k}\right)\right|}
$$

where $g^{\prime}\left(x_{k}\right)$ is the derivative of $g(x)$ evaluated at x_{k}. Note that each x_{k} is a function of y.

- Example: $Y=\cos (X)$, where $X \sim \mathcal{U}[-\pi, \pi]$.

For $-1 \leq y \leq 1$, the equation $y=\cos (x)$ has two solutions in $[-\pi, \pi]$

$$
x_{1}=\cos ^{-1}(y) \quad \text { and } \quad x_{2}=2 \pi-x_{1} .
$$

Calculate the derivatives of y at these points as

$$
\begin{aligned}
& \left.\frac{d y}{d x}\right|_{x=x_{1}}=-\sin \left(x_{1}\right)=-\sin \left(\cos ^{-1}(y)\right)=-\sqrt{1-y^{2}} \\
& \left.\frac{d y}{d x}\right|_{x=x_{2}}=-\sin \left(2 \pi-x_{1}\right)=\sin \left(x_{1}\right)=\sqrt{1-y^{2}}
\end{aligned}
$$

Since $f_{X}(x)=\frac{1}{2 \pi}$, we have

$$
f_{Y}(y)=\frac{1}{\pi \sqrt{1-y^{2}}} \quad \text { for }-1 \leq y \leq 1
$$

Y is said to have arcsine distribution.

Transform methods

- The characteristic function is defined as

$$
\Phi_{X}(\omega)=E\left[e^{j \omega X}\right]=\int_{-\infty}^{+\infty} f_{X}(x) e^{j \omega x} d x \quad \text { for real } \omega,-\infty<\omega<\infty
$$

It is the Fourier transform of $f_{X}(x)$ (with the sign of ω reversed).
Similarly for discrete random variables

$$
\Phi_{X}(\omega)=E\left[e^{j \omega X}\right]=\sum_{k=-\infty}^{\infty} p_{X}\left(x_{k}\right) e^{j \omega x_{k}}
$$

- Properties
o The characteristic function always exists.
o Its maximum magnitude is 1 at $\omega=0$

$$
\left|\Phi_{X}(\omega)\right| \leq \Phi_{X}(0)=1
$$

- Inverse transform

$$
f_{X}(x)=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} \Phi_{X}(\omega) e^{-j \omega x} d \omega
$$

- Examples: Find $\Phi_{X}(\omega)$ for exponential, Gaussian RVs.
- The moment theorem: All the moments of X, if exist, can be calculated from $\Phi_{X}(\omega)$ as

$$
E\left[X^{n}\right]=\left.\frac{1}{j^{n}} \frac{d^{n}}{d \omega^{n}} \Phi_{X}(\omega)\right|_{\omega=0}
$$

- To show this, expand $e^{j \omega x}$ in a power series and write

$$
\Phi_{X}(\omega)=1+j \omega E[X]+\frac{(j \omega)^{2} E\left[X^{2}\right]}{2!}+\cdots \frac{(j \omega)^{n} E\left[X^{n}\right]}{n!}+\cdots
$$

Then differentiate this expression wrt ω and evaluate at $\omega=0$.

- The moment generating function is defined as

$$
M_{X}(s)=E\left[e^{s X}\right]=\int_{-\infty}^{\infty} f_{X}(x) e^{s x} d x \quad \text { for real } s,-\infty<s<\infty
$$

This is the Laplace transform of $f_{X}(x)$ with the sign of s reversed.

- The moments can be obtained from $M_{X}(x)$ as

$$
E\left[X^{n}\right]=\left.\frac{d^{n}}{d s^{n}} M_{X}(s)\right|_{s=0}
$$

- A drawback is that $M_{X}(s)$ may not exist for all distributions and all values of s (but it needs to exist only around $s=0$).
- The probability generating function for a discrete r.v. N with integer values is defined as

$$
G_{N}(z)=E\left[z^{N}\right]=\sum_{k=0}^{+\infty} p_{N}(k) z^{k}
$$

This is the z transform of $p_{N}(k)$ (again with the sign of the exponent reversed).

- The pmf of N can be calculated as

$$
p_{N}(k)=\left.\frac{1}{k!} \frac{d^{k}}{d z^{k}} G_{N}(z)\right|_{z=0}
$$

- The mean and variance of N are

$$
\begin{aligned}
E[N] & =G_{N}^{\prime}(1) \\
\operatorname{var}(N) & =G_{N}^{\prime \prime}(1)+G_{N}^{\prime}(1)-\left(G_{N}^{\prime}(1)\right)^{2}
\end{aligned}
$$

- Examples: Find $G_{N}(z)$ for Bernoulli, binomial, and Poisson RVs.
- Why so many transforms?

Generation of random variables

- We can generate a $U[0,1]$ r.v. from any continuous r.v.
- Vice-versa, we can generate any distribution from a $U[0,1]$ r.v.
- Generating the uniform $U[0,1]$ r.v. from a distribution $F_{X}(x)$
- Given X with distribution $F_{X}(x)$, we want to find a function $g($. such that $U=g(X)$ is uniform in $[0,1]$.
- It turns out that $g(X)$ is given precisely by $F(X)$

$$
U=F(X) \text { has } F_{U}(u)=u \text { for } 0 \leq u \leq 1
$$

- Assuming $F_{X}(x)$ has an inverse F^{-1}, then

$$
F_{U}(u)=P[U \leq u]=P[F(X) \leq u]=P\left[X \leq F^{-1}(u)\right]=F\left(F^{-1}(u)\right)=u
$$

Note: $F_{X}(x)$ does not need to be invertible for the result to apply.

- Generating a random variable Y with $\operatorname{cdf} F_{Y}(y)$ from a $U[0,1]$ r.v. U.
- Let $Y=F^{-1}(U)$, then

$$
F_{Y}(y)=P[Y \leq y]=P\left[F^{-1}(U) \leq y\right]=P[U \leq F(y)]=F(y)
$$

- Exarvard SEAS

Random number generators in computers

How to generate a $U[0,1]$ r.v. in the computer?

- There are uncountably infinite number of points in $[0,1]$, but computers only have finite precision.
\Rightarrow Need to generate equiprobable numbers from a finite set $\{0,1, \ldots, M-1\}$.
- A naive method: Perform random experiments, such as flipping a coin $\log _{2}(M)$ times or drawing a ball from those numbered 1 to M. This method requires a large storage space as the sequence grows.
- The power residue method:

$$
Z_{k}=\alpha Z_{k-1} \quad \bmod M
$$

where M is a large prime number (or an integer power of prime), and α is an integer carefully chosen between 1 and M.

- The sequence generated is called pseudo-random since it is periodic with maximum period M. Hence we want a large M.
- The starting point Z_{0} of a sequence is called the seed.

Example: $\alpha=7^{5}$ and $M=2^{31}-1$.

Computer generation of random variables

Suppose we want to generate a r.v. X with $\operatorname{cdf} F_{X}(x)$ (or pdf $f_{X}(x)$).

- The transformation method:
- Generate U uniform in $[0,1]$.
$-\operatorname{Set} X=F_{X}^{-1}(U)$.
- The rejection method (general): Generating r.v. $X \sim f_{X}(x)$

1. Generate X_{1} with an easy pdf $f_{W}(x)$. Define

$$
B(x)=K f_{W}(x) \geq f_{X}(x)
$$

for some constant $K>1$.
2. Generate Y uniform in $\left[0, B\left(X_{1}\right)\right]$.
3. If $Y \leq f_{X}\left(X_{1}\right)$, then output $X=X_{1}$; else reject X_{1} and return to step 1 .

