
Topic 3: Operations on a random variable

• Function of a random variable

• Transform methods

• Generation of random variables
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Function of a random variable

Let g(x) be a real-value function of the real line, g : R → R. Let X be a

random variable and let

Y = g(X)

then Y is also a random variable.

• The distribution of Y can be derived from the distribution of X.

• Derived cdf:

FY (y) = P [Y ≤ y] = P [x | g(x) ≤ y]

• If X is a discrete r.v., then Y is also discrete with pmf

pY (yk) =
∑

xj :g(xj)=yk

pX(xj)

ES150 – Harvard SEAS 2



Derived density – Specific functions

Let us consider two specific functions g(x) first, then study the general

principle.

• Linear function:

Y = aX + b ⇒ fY (y) =
1

|a|fX
(

y − b

a

)

– Example: A linear function of a Gaussian r.v. is again a Gaussian

random variable.

X ∼ N (µ, σ2) ⇒ Y ∼ N (aµ+ b, a2σ2)

• Quadratic function:

Y = X2 ⇒ fY (y) =
fX
(√

y
)

2
√
y

+
fX
(

−√y
)

2
√
y

, y ≥ 0

– Example: Square of a Gaussian r.v. is a Chi-square r.v.

X ∼ N (0, 1) ⇒ Y ∼ X 2
2 , fY (y) =

e−y/2√
2πy

, y ≥ 0
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Derived density – The general case

If the equation g(x) = y has n solutions {x1, . . . , xn}, then

fY (y) =

n
∑

k=1

fX(x)

∣

∣

∣

∣

dx

dy

∣

∣

∣

∣

∣

∣

∣

∣

∣

x=xk

=

n
∑

k=1

fX(xk)

|g′(xk)|

where g′(xk) is the derivative of g(x) evaluated at xk. Note that each xk is

a function of y.

• Example: Y = cos(X), where X ∼ U [−π, π].
For −1 ≤ y ≤ 1, the equation y = cos(x) has two solutions in [−π, π]

x1 = cos−1(y) and x2 = 2π − x1.

Calculate the derivatives of y at these points as

dy

dx
|x=x1

= − sin(x1) = − sin
(

cos−1(y)
)

= −
√

1− y2

dy

dx
|x=x2

= − sin(2π − x1) = sin(x1) =
√

1− y2
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Since fX(x) =
1
2π , we have

fY (y) =
1

π
√

1− y2
for − 1 ≤ y ≤ 1

Y is said to have arcsine distribution.
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Transform methods

• The characteristic function is defined as

ΦX(ω) = E
[

ejωX
]

=

∫ +∞

−∞

fX(x)e
jωxdx for real ω, −∞ < ω <∞

It is the Fourier transform of fX(x) (with the sign of ω reversed).

Similarly for discrete random variables

ΦX(ω) = E
[

ejωX
]

=

∞
∑

k=−∞

pX(xk)e
jωxk

– Properties

o The characteristic function always exists.

o Its maximum magnitude is 1 at ω = 0

|ΦX(ω)| ≤ ΦX(0) = 1

– Inverse transform

fX(x) =
1

2π

∫ +∞

−∞

ΦX(ω)e
−jωxdω

– Examples: Find ΦX(ω) for exponential, Gaussian RVs.
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• The moment theorem: All the moments of X, if exist, can be calculated

from ΦX(ω) as

E[Xn] =
1

jn
dn

dωn
ΦX(ω)

∣

∣

∣

∣

ω=0

– To show this, expand ejωx in a power series and write

ΦX(ω) = 1 + jωE[X] +
(jω)2E[X2]

2!
+ · · · (jω)

nE[Xn]

n!
+ · · ·

Then differentiate this expression wrt ω and evaluate at ω = 0.

• The moment generating function is defined as

MX(s) = E
[

esX
]

=

∫

∞

−∞

fX(x)e
sx dx for real s, −∞ < s <∞

This is the Laplace transform of fX(x) with the sign of s reversed.

– The moments can be obtained from MX(x) as

E[Xn] =
dn

dsn
MX(s)

∣

∣

∣

∣

s=0

– A drawback is that MX(s) may not exist for all distributions and all

values of s (but it needs to exist only around s = 0).
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• The probability generating function for a discrete r.v. N with integer

values is defined as

GN (z) = E
[

zN
]

=
+∞
∑

k=0

pN (k)z
k

This is the z transform of pN (k) (again with the sign of the exponent

reversed).

– The pmf of N can be calculated as

pN (k) =
1

k!

dk

dzk
GN (z)

∣

∣

∣

∣

z=0

– The mean and variance of N are

E[N ] = G′N (1)

var(N) = G′′N (1) +G′N (1)− (G′N (1))
2

– Examples: Find GN (z) for Bernoulli, binomial, and Poisson RVs.

• Why so many transforms?
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Generation of random variables

• We can generate a U [0, 1] r.v. from any continuous r.v.

• Vice-versa, we can generate any distribution from a U [0, 1] r.v.

• Generating the uniform U [0, 1] r.v. from a distribution FX(x)

– Given X with distribution FX(x), we want to find a function g(.)

such that U = g(X) is uniform in [0, 1].

– It turns out that g(X) is given precisely by F (X)

U = F (X) has FU (u) = u for 0 ≤ u ≤ 1

– Assuming FX(x) has an inverse F−1, then

FU (u) = P [U ≤ u] = P [F (X) ≤ u] = P [X ≤ F−1(u)] = F (F−1(u)) = u

Note: FX(x) does not need to be invertible for the result to apply.

• Generating a random variable Y with cdf FY (y) from a U [0, 1] r.v. U .

– Let Y = F−1(U), then

FY (y) = P [Y ≤ y] = P [F−1(U) ≤ y] = P [U ≤ F (y)] = F (y)

– Examples: Generate the Gaussian and exponential RVs from U [0, 1].
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Random number generators in computers

How to generate a U [0, 1] r.v. in the computer?

• There are uncountably infinite number of points in [0, 1], but

computers only have finite precision.

⇒ Need to generate equiprobable numbers from a finite set

{0, 1, . . . ,M − 1}.
• A naive method: Perform random experiments, such as flipping a coin

log2(M) times or drawing a ball from those numbered 1 to M . This

method requires a large storage space as the sequence grows.

• The power residue method:

Zk = αZk−1 mod M

where M is a large prime number (or an integer power of prime), and α

is an integer carefully chosen between 1 and M .

– The sequence generated is called pseudo-random since it is periodic

with maximum period M . Hence we want a large M .

– The starting point Z0 of a sequence is called the seed.

Example: α = 75 and M = 231 − 1.
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Computer generation of random variables

Suppose we want to generate a r.v. X with cdf FX(x) (or pdf fX(x)).

• The transformation method:

– Generate U uniform in [0, 1].

– Set X = F−1
X (U).

• The rejection method (general): Generating r.v. X ∼ fX(x)

1. Generate X1 with an easy pdf fW (x). Define

B(x) = KfW (x) ≥ fX(x)

for some constant K > 1.

2. Generate Y uniform in [0, B(X1)].

3. If Y ≤ fX(X1), then output X = X1;

else reject X1 and return to step 1.
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