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1 The Model

In this supplement paper, we show the detailed derivation of LSB-CMM.

The generative process of the whole model is as below and the plate representation is shown in (1).

wk ∼ Normal(0,Σ), 1 ≤ k ≤ K − 1, wK = (+∞, 0, · · · , 0) (1)

zn ∼ Mult(φn), φnk = expit(wT
k xn)

k−1∏
i=1

(1− expit(wT
i xn)) (2)

θk ∼ Dirichlet(α) (3)
yn ∼ Mult(θzn) (4)
Yn ∼ Dist1(yn) (Dist1 is some distribution satisfying the assumption in the paper (5)

Figure 1: The LSB-CMM. Square nodes are discrete, circle nodes are continuous, and double-circle
nodes are deterministic.

The model needs to maximize the likelihood that each yn is in Yn. After incorporating the priors,
we can write the penalized maximum likelihood objective as

maxLL =

N∑
n=1

log

 ∑
yn∈Yn

p(yn|xn,w, α)

+ log(p(w|0,Σ)). (6)

This cannot be solved directly, so we apply variational EM.

1.1 Variational EM

The hidden variables in the model are y, z, and θ. For these hidden variables, we introduce the
variational distribution q(y, z, θ|φ̂, α̂), where φ̂ = {φ̂n}Nn=1 and α̂ = {α̂k}Kk=1 are the parameters.
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Then we factorize q as

q(z, y, θ|φ̂, α̂) =

N∏
n=1

q(zn, yn|φ̂n)

K∏
k=1

q(θk|α̂k), (7)

where φ̂n is aK×Lmatrix and q(zn, yn|φ̂n) is a multinomial distribution in which p(zn = k, yn =

l) = φ̂nkl. This distribution is constrained by the candidate label set: if a label l /∈ Yn, then φ̂nkl = 0
for any value of k. The distribution q(θk|α̂k) is a Dirichlet distribution with parameter α̂k.

With Jensen’s inequality, the lower bound of the log likelihood is

LL ≥ E[log p(z, y, θ|x,w, α)]− E[log q(z, y, θ|φ̂, α̂)] + log(p(w|0,Σ))

=

N∑
n=1

E[log p(zn|xn,w)] +

K∑
k=1

E[log p(θk|α)] +

N∑
n=1

E[log p(yn|zn, θ)]

−
N∑
n=1

E[log q(yn, zn|φ̂n)]−
K∑
k=1

E[log q(θk|α̂k)] + log(p(w|0,Σ)), (8)

where E[·] is the expectation under the variational distribution q(z, y, θ|φ̂, α̂).

Expand the expectation in the first, second and third term.

E[log p(zn|xn,w)] =

K∑
k=1

L∑
l=1

φ̂nkl log(φnk), (9)

E[log p(yn|zn, θ)] =

K∑
k=1

L∑
l=1

φ̂nkl

∫
θk

Dir(θk; α̂k) log θkldθk, (10)

E[log p(θk|α)] ∝
∫
θk

Dir(θk; α̂k)

L∑
l=1

(α− 1) log θkldθk, (11)

where Dir(θk; α̂k) is the density at θk of the Dirichlet distribution with α̂k.

In the E step, this lower bound is maximized with respect to φ̂ and α̂. Each φ̂n can be optimized
separately. Adding all terms involving φ̂n (i.e. the first, third and the fourth terms), we obtain

K∑
k=1

L∑
l=1

φ̂nkl log
(
φnk exp(Eq(θk|α̂k)[log(θkl)])

)
− φ̂nkl log(φ̂nkl), (12)

Maximizing the term (12) is equivalent to minimizing the KL divergence between φ̂n and the term
in the first logarithm function. With the constraint imposed by the candidate label set, the updating
formula for φ̂n is (13). The update of α̂k for each k follows the standard procedure for variational
inference in the exponential family and is shown in (14).

φ̂nkl ∝
{
φnk exp

(
Eq(θk|α̂k) [log(θkl)]

)
, if l ∈ Yn

0, if l /∈ Yn
(13)

α̂k = α+

N∑
n=1

φ̂nkl, (14)

We calculate the expectation of log(θkl) via Monte Carlo sampling.

In the M step, the lower bound is maximized with respect to w. Only the first and the last terms in
the lower bound are related to w, and each wk, 1 ≤ k ≤ K− 1, can be maximized separately. After
some derivation, we obtain the optimization problem in Eq. (15), which is similar to the problem of
logistic regression. It is a concave maximization problem, so any gradient based method, such as
BFGS, can find the global optimum.

max
wk

− 1

2
wT
k Σ−1wk +

N∑
n=1

[
φ̂nk log(expit(wT

k xn)) + ψ̂nk log(1− expit(wT
k xn))

]
, (15)

where φ̂nk =
∑L
l=1 φ̂nkl and ψ̂nk =

∑K
j=k+1 φ̂nj .
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1.2 Prediction

For a test instance xt, we predict the label with maximum posterior probability. The test instance can
be mapped to a topic, but there is no coding matrix θ from the EM solution. We use the variational
distribution p(θk|α̂k) as the prior of each θk and integrate out all θks. Given a test sample xt, the
prediction l that maximizes the probability p(yt = l|xt,w, α̂) can be calculated as

p(yt = l|xt,w, α̂) =

K∑
k=1

∫
θk

p(yt = l, zt = k, θk|xt,w, α̂)dθk

=

K∑
k=1

p(zt = k|xt,w)

∫
θk

p(θk|α̂k)p(yt = l|θk)dθk

=

K∑
k=1

φtk
α̂kl∑
l α̂kl

, (16)

where φtk =
(

expit(wT
k xt)

∏k−1
i=1 (1− expit(wT

i xt))
)

.
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