
11/30/09	

1	

Kathleen Fisher�

cs242�

Reading: A Tutorial on Parallel and Concurrent Programming in Haskell�
 Skip Section 5 on STM�

Thanks to Simon Peyton Jones, Satnam Singh, and Don Stewart for these slides. �

  Submit course evaluations in Axess �
- Open: Nov. 30 to Dec. 14 at 8am.�
-  Registrar: Students who submit evaluations will see

grades when submitted by faculty; others will see
grades on Jan. 4.�

-  Your feedback is crucial to improving the course! �
-  Please participate.�

  Final exam: �
- Monday, December 7, 12:15-3:15pm in Gates B01.�
-  Local SCPD students should come to campus for

exam.�

  Making effective use of multi-core hardware is
the challenge for programming languages now.�

  Hardware is getting increasingly complicated: �
-  Nested memory hierarchies�
-  Hybrid processors: GPU + CPU, Cell, FPGA...�
- Massive compute power sitting mostly idle.�

  We need new programming models to program
new commodity machines effectively.�

  Explicit threads�
  Non-deterministic by design �
  Monadic: forkIO and STM	

  Semi-implicit parallelism�
  Deterministic�
  Pure: par and pseq	

  Data parallelism�
  Deterministic�
  Pure: parallel arrays�
  Shared memory initially; distributed memory eventually;

possibly even GPUs…�

main :: IO () 	

 = do { ch <- newChan	

	
; forkIO (ioManager ch)	

	
; forkIO 	
(worker 1 ch)	

	
... etc ... }	

  A parallel program exploits real parallel
computing resources to run faster while
computing the same answer.�
-  Expectation of genuinely simultaneous execution �
-  Deterministic�

  A concurrent program models independent
agents that can communicate and synchronize.�
- Meaningful on a machine with one processor�
-  Non-deterministic�

fib 0 = 0	

fib 1 = 1	

fib n = fib (n-1) + fib (n-2)	

10	

9	

8	

3	

5	

8	
6	

5	

8	

1	
 1	

 “Thunk”
for
fib 10 �

Pointer to the
implementation �

Storage slot
for the result �

Values for free
variables�

11/30/09	

2	

  No side effects makes parallelism easy, right?�
-  It is always safe to speculate on pure code.�
-  Execute each sub-expression in its own thread?�

  Alas, the 80s dream does not work. �
-  Far too many parallel tasks, many of which are too

small to be worth the overhead of forking them.�
-  Difficult/impossible for compiler to guess which are

worth forking.�

Idea: Give the user control over which
expressions might run in parallel.�

  Value (ie, thunk) bound to x is sparked for
speculative evaluation.�

  Runtime may instantiate a spark on a thread
running in parallel with the parent thread.�

  Operationally, x `par` y = y	

  Typically, x is used inside y: �

  All parallelism built up from the par combinator.	

par :: a -> b -> b	

x `par` y	

blurRows `par` (mix blurCols blurRows)	

  par does not guarantee a new Haskell thread.�

  It hints that it would be good to evaluate the
first argument in parallel.�

  The runtime decides whether to convert spark �
-  Depending on current workload.�

  This allows par to be very cheap.�
-  Programmers can use it almost anywhere.�
-  Safely over-approximate program parallelism.�

x�

y�y is evaluated�

x�x is evaluated�

x is sparked�
x fizzles �

x `par` (y + x)	

x�

y�y is evaluated on P1 �

x�x is taken up for evaluation on P2 �

x is sparked on P1 �

P1 � P2 �

x `par` (y + x)	

11/30/09	

3	

  No extra resources, so spark for f fizzles.�

  Main thread demands f, so spark fizzles.�

  pseq: Evaluate x in the current thread,
then return y. �

  Operationally, �

  With pseq, we can control evaluation order. �

pseq :: a -> b -> b	

x `pseq` y	

x `pseq` y = bottom if x -> bottom	

 = y otherwise. 	

e `par` f `pseq` (f + e)	

11/30/09	

4	

  ThreadScope (in Beta) displays event logs
generated by GHC to track spark behavior: �

Thread 1 �

Thread 2 �
(Idle) �

Thread 1 �

Thread 2 �
(Busy) �

f `par` (f + e)	

f `par` (e + f)	

  The fib and sumEuler functions are unchanged.�

fib :: Int -> Int	

fib 0 = 0	

fib 1 = 1	

fib n = fib (n-1) + fib(n-2)	

sumEuler :: Int -> Int	

sumEuler n = … in ConcTutorial.hs …	

parSumFibEulerGood :: Int -> Int -> Int	

parSumFibEulerGood a b = f `par` (e `pseq` (f + e))	

 where	

 f = fib a	

 e = sumEuler b	

Performance Numbers�

  Deterministic: �
-  Same results with parallel and sequential programs.�
-  No races, no errors.�
-  Good for reasoning: Erase the par combinator and get

the original program.�

  Relies on purity.�
  Cheap: Sprinkle par as you like, then measure

with ThreadScope and refine.�
  Takes practice to learn where to put par and

pseq.�
  Often good speed-ups with little effort.�

  Explicit threads�
  Non-deterministic by design �
  Monadic: forkIO and STM	

  Semi-implicit �
  Deterministic�
  Pure: par and pseq	

  Data parallelism�
  Deterministic�
  Pure: parallel arrays�
  Shared memory initially; distributed memory eventually;

possibly even GPUs…�

main :: IO () 	

 = do { ch <- newChan	

	
; forkIO (ioManager ch)	

	
; forkIO 	
(worker 1 ch)	

	
... etc ... }	

f :: Int -> Int	

f x = a `par` b `pseq` a + b	

	
where	

	
 	
a = f1 (x-1)	

	
 	
b = f2 (x-2)	

Multicore �
Parallel

programming
essential�

Task parallelism�
Each thread does
something different.�
-  Explicit: threads, MVars, STM�
-  Implicit: par & pseq	

Data parallelism�
Operate simultaneously on
bulk data �

Modest parallelism�
Hard to program�

Massive parallelism�
Easy to program�
-  Single flow of control�
-  Implicit synchronisation �

11/30/09	

5	

Data parallelism�

Flat data parallel�
Apply sequential

operation to bulk data �

- The brand leader
(Fortran, *C MPI,
map/reduce)�

-  Limited applicability
(dense matrix, map/reduce)�

- Well developed�
-  Limited new opportunities�

Nested data parallel�
Apply parallel�

operation to bulk data �

- Developed in 90’s�
- Much wider applicability

(sparse matrix, graph
algorithms, games etc)�

- Practically un-developed�
- Huge opportunity�

  Widely used, well understood, well supported�

  BUT: something is sequential.�
  Single point of concurrency�
  Easy to implement: �

use “chunking”�
  Good cost model�

foreach i in 1..N {	

	
...do something to A[i]...	

}	

1,000,000’s of (small) work items�
P1 � P2 � P3 �

  Main idea: Allow “something” to be parallel.�

  Now the parallelism �
structure is recursive, �
and un-balanced.�

  Still good cost model.�
  Hard to implement! �

foreach i in 1..N {	

	
...do something to A[i]...	

}	

Still 1,000,000’s of (small) work items�

programmers�

  Fundamentally more modular.�
  Opens up a much wider range of applications: �
-  Divide and conquer algorithms (e.g. sort)�
-  Graph algorithms

(e.g. shortest path, spanning trees)�
-  Sparse arrays, variable grid adaptive methods

(e.g. Barnes-Hut)�
-  Physics engines for games, computational graphics

(e.g. Delauny triangulation) �
- Machine learning, optimization, constraint solving �

compilers�

  ...because the concurrency tree is both
irregular and fine-grained.�

  But it can be done!
NESL (Blelloch 1995) is an existence proof.�

  Key idea: “Flattening” transformation: "�

Compiler�
Nested data parallel

program�
(the one we want to write)�

Flat data parallel
program�

(the one we want to run)�

Substantial improvement in �
- Expressiveness�
- Performance�

-  Shared memory initially�
- Distributed memory �

"eventually�
- GPUs anyone?�

Not a special purpose data-
parallel compiler! Most support is
either useful for other things, or

is in the form of library code. �

NESL (Blelloch)�
A mega-breakthrough but: �
-  specialized, prototype�
-  first order�
-  few data types�
-  no fusion �
-  interpreted�

 Haskell�
–  broad-spectrum, widely used�
–  higher order�
–  very rich data types�
–  aggressive fusion �
–  compiled�

11/30/09	

6	

vecMul :: [:Float:] -> [:Float:] -> Float	

vecMul v1 v2 = sumP [: f1*f2 | f1 <- v1 | f2 <- v2 :]	

[:Float:] is the type of
parallel arrays of Float	

An array comprehension: �
“the array of all f1*f2

where f1 is drawn from v1
and f2 from v2 in lockstep.”�

sumP :: [:Float:] -> Float	

Operations over parallel array
are computed in parallel; that is
the only way the programmer
says “do parallel stuff.”�

NB: no locks! �

sDotP :: [:(Int,Float):] -> [:Float:] -> Float	

sDotP sv v = sumP [: f * (v!i) | (i,f) <- sv :]	

A sparse vector is represented as a vector of
(index, value) pairs: �
[:(0,3),(2,10):] instead of [:3,0,10,0:].	

v!i gets the ith element of v	

Parallelism is proportional to length of sparse vector.�

sDotP [:(0,3),(2,10):][:2,1,1,4:]	

 = sumP [: 3 * 2, 10 * 1 :]	

 = 16 	

smMul :: [:[:(Int,Float):]:] -> [:Float:] -> Float	

smMul sm v = sumP [: sDotP sv v | sv <- sm :]	

A sparse matrix is a vector of sparse vectors: �
[:[:(1,3),(4,10):],	

 (0,2),(1,12),(4,6):]:]	

Nested data parallelism here! �
We are calling a parallel operation, sDotP, on

every element of a parallel array, sm.�

sort :: [:Float:] -> [:Float:]	

sort a = if (lengthP a <= 1) then a	

	
 	
 	
else sa!0 +:+ eq +:+ sa!1	

 	
where 	

	
 	
p = a!0	

	
 	
lt = [: f | f<-a, f<p :]	

	
 	
eq = [: f | f<-a, f==p :]	

	
 	
gr = [: f | f<-a, f>p :]	

	
 	
sa = [: sort a | a <- [:lt,gr:] :]	

2-way nested data
parallelism here. �

Parallel
filters �

�
type Doc = [: String :] — Sequence of words	

type Corpus = [: Document :]	

search :: Corpus -> String -> [: (Doc,[:Int:]):]	

Find all Docs that mention
the string, along with the
places where it is mentioned �
(e.g. word 45 and 99) �

Find all the places where a string is mentioned
in a document (e.g. word 45 and 99) .�

type Doc = [: String :]	

type Corpus = [: Doc :]	

search :: Corpus -> String -> [: (Doc,[:Int:]):]	

wordOccs :: Doc -> String -> [: Int :]	

11/30/09	

7	

type Doc = [: String :]	

type Corpus = [: Doc :]	

search :: Corpus -> String -> [: (Doc,[:Int:]):]	

search ds s = [: (d,is) | d <- ds	

	
 	
 	
 	
 	
 	
, let is = wordOccs d s	

	
 	
 	
 	
 	
 	
, not (nullP is) :]	

wordOccs :: Doc -> String -> [: Int :]	

nullP :: [:a:] -> Bool	

type Doc = [: String :]	

type Corpus = [: Doc :]	

search :: Corpus -> String -> [: (Doc,[:Int:]):]	

wordOccs :: Doc -> String -> [: Int :]	

wordOccs d s = [: i | (i,s2) <- zipP positions d	

 , s == s2 :]	

 where	

 positions :: [: Int :]	

 positions = [: 1..lengthP d :]	

zipP :: [:a:] -> [:b:] -> [:(a,b):]	

lengthP :: [:a:] -> Int	

•  Evenly chunking at top level might be ill-balanced. �
•  Top level alone might not be very parallel.�

etc…�

- Concatenate sub-arrays into one big, flat array.�
- Operate in parallel on the big array.�
- Segment vector tracks extent of sub-arrays.�

- Lots of tricksy book-keeping! �
- Possible to do by hand (and done in practice),

but very hard to get right.�
- Blelloch showed it could be done systematically.�

Flattening enables load balancing, but it is not
enough to ensure good performance. Consider: �

  Bad idea: �
1.  Generate [: f1*f2 | f1 <- v1 | f2 <-v2 :] �
2.  Add the elements of this big intermediate vector.�

  Good idea: Multiply and add in the same loop.�
-  That is, fuse the multiply loop with the add loop.�
-  Very general, aggressive fusion is required.�

vecMul :: [:Float:] -> [:Float:] -> Float	

vecMul v1 v2 = sumP [: f1*f2 | f1 <- v1 | f2 <- v2 :]	

Four key pieces of technology: �
1.  Vectorization �

-  Specific to parallel arrays�

2.  Non-parametric data representations�
-  A generically useful new feature in GHC�

3.  Distribution �
-  Divide up the work evenly between processors�

4.  Aggressive fusion �
-  Uses “rewrite rules,” an old feature of GHC�

Main advance: an optimizing data-parallel compiler
implemented by modest enhancements to a full-scale

functional language implementation.�

} �
Flattening

11/30/09	

8	

  Rewrite Haskell source into simpler core, e.g,
removing array comprehensions: �

sDotP :: [:(Int,Float):] -> [:Float:] -> Float	

sDotP sv v = sumP [: f * (v!i) | (i,f) <- sv :]	

sDotP sv v = sumP (mapP (\(i,f) -> f * (v!i)) sv)	

sumP :: Num a => [:a:] -> a	

mapP :: (a -> b) -> [:a:] -> [:b:]	

svMul sv v = sumP (snd^ sv *^ bpermuteP v (fst^ sv))	

  Replace scalar function f by the lifted
(vectorized) version, written f^.�

svMul :: [:(Int,Float):] -> [:Float:] -> Float	

svMul sv v = sumP (mapP (\(i,f) -> f * (v!i)) sv)	

sumP 	
:: Num a => [:a:] -> a	

*^ 	
:: Num a => [:a:] -> [:a:] -> [:a:]	

fst^ 	
:: [:(a,b):] -> [:a:]	

snd^ 	
:: [:(a,b):] -> [:b:]	

bpermuteP	
:: [:a:] -> [:Int:] -> [:a:]	

mapP f v	

  For every function f, generate its �
lifted version, named f^.�

  Result: A functional program, operating over
flat arrays, with a fixed set of primitive
operations *^, sumP, fst^, etc.�

  Lots of intermediate arrays! �

f^ v	

f :: T1 -> T2	

f^ :: [:T1:] -> [:T2:] — f^ = mapP f	

f :: Int -> Int	

f x = x + 1	

f^ :: [:Int:] -> [:Int:]	

f^ x = x +^ (replicateP (lengthP x) 1)	

replicateP :: Int -> a -> [:a:]	

lengthP :: [:a:] -> Int	

Source� Transformed to…�

Locals, x � x�
Globals, g � g^ �
Constants, k � replicateP (lengthP x) k �

  How do we lift functions that have already
been lifted?�

f :: [:Int:] -> [:Int:]	

f a = mapP g a = g^ a	

f^ :: [:[:Int:]:] -> [:[:Int:]:]	

f^ a = g^^ a 	
—???	

Yet another version of g???�

f :: [:Int:] -> [:Int:]	

f a = mapP g a = g^ a	

f^ :: [:[:Int:]:] -> [:[:Int:]:]	

f^ a = segmentP a (g^ (concatP a))	

concatP :: [:[:a:]:] -> [:a:]	

segmentP :: [:[:a:]:] -> [:b:] -> [:[:b:]:]	

First concatenate, �
then map, �

then re-split �

Shape � Flat data � Nested
data�

Payoff: f and f^ are enough. No f^^.	

11/30/09	

9	

[:Double:] 	
Arrays of pointers to boxed
numbers are Much Too Slow.�

[:(a,b):] "Arrays of pointers to pairs are
also Much Too Slow.�

Idea! �
Select representation
of array based on its

element type…�

...�

�
  Extend Haskell with construct to specify

families of data structures each with a
different implementation. �

data family [:a:]	

data instance [:Double:] = AD Int ByteArray	

data instance [:(a, b):] = AP [:a:] [:b:]	

[POPL05], [ICFP05], [TLDI07] �

AP	

�
data family [:a:]	

data instance [:Double:] = AD Int ByteArray	

data instance [:(a, b):] = AP [:a:] [:b:]	

AP�

fst^ :: [:(a,b):] -> [:a:]	

fst^ (AP as bs) = as	

-  Now *^ can be a fast loop because array
elements are not boxed.�

-  And fst^ is constant time! �

  Represent nested array as a pair of a shape
descriptor and a flat array:�

Shape �

data instance [:[:a:]:] = AN [:Int:] [:a:]	

Flat data �

etc…�

  Representation supports operations needed
for lifting efficiently: �

Surprise: concatP, segmentP are constant time! �

Shape �

data instance [:[:a:]:] = AN [:Int:] [:a:]	

concatP :: [:[:a:]:] -> [:a:]	

concatP (AN shape data) = data	

segmentP :: [:[:a:]:] -> [:b:] -> [:[:b:]:]	

segmentP (AN shape _) data = AN shape data	

Flat data � 1.   Distribution: Divide is, fs into chunks, one
chunk per processor.�

2.  Fusion: Execute
sumP (fs *^ bpermute v is)
in a tight, sequential loop on each processor.�

3.   Combining: Add the results of each chunk.�

sDotP :: [:(Int,Float):] -> [:Float:] -> Float	

sDotP (AP is fs) v = sumP (fs *^ bpermuteP v is)	

Step 2 alone is not good on a parallel machine! �

11/30/09	

10	

  Introduce new type to mark distribution.�
  Type Dist a denotes collection of distributed a values.�

  (Selected) Operations: �
  splitD: Distribute data among processors.�
  joinD: Collect result data.�
  mapD: Run sequential function on each processor.�
  sumD: Sum numbers returned from each processor.�

splitD 	
:: [:a:] -> Dist [:a:]	

joinD 	
:: Dist [:a:] -> [:a:]	

mapD 	
:: (a->b) -> Dist a -> Dist b	

sumD 	
:: Dist Float -> Float	

sumP is the composition of more primitive functions: �

sumP :: [:Float:] -> Float	

sumP xs = sumD (mapD sumS (splitD xs)	

xs = [: 2,1,4,9,5 :]	

xs1 = [: 2,1,4 :]	

t1 = mapD sumS xs1	

 = 7	

xs2 = [: 9,5 :]	

t2 = mapD sumS xs2	

 = 14	

result = 21	

splitD	

mapD	

sumD	

Processor 1	
 Processor 2	

*^ :: [:Float:] -> [:Float:] -> [:Float:]	

*^ xs ys = joinD (mapD mulS	

	
 	
 	
(zipD (splitD xs) (splitD ys))	

xs = [: 2,1,4,9,5 :]	

ys = [: 3,2,2,1,1 :]	

xs1 = [: 2,1,4 :]	

ys1 = [: 3,2,2 :]	

zs1 = zipD …	

t1 = mapD mulS zs1	

 = [: 6,2,8 :]	

xs2 = [: 9,5 :]	

ys2 = [: 1,1 :]	

zs2 = zipD …	

t2 = mapD sumS zs2	

 = [: 9,5 :]	

result = [: 6,2,8,9,5 :]	

splitD	

joinD	

Processor 1	
 Processor 2	

mapD	

Idea: Rewriting rules eliminate synchronizations.�
sDotP :: [:(Int,Float):] -> [:Float:] -> Float	

sDotP (AP is fs) v 	

 = sumP (fs *^ bpermuteP v is)	

 = sumD . mapD sumS . splitD . joinD . mapD mulS $	

	
 zipD (splitD fs) (splitD (bpermuteP v is))	

joinD	

splitD	
 {-# RULE	

	
splitD (joinD x) = x

#-}	

A joinD followed by a splitD �
can be replaced by doing nothing.�

Idea: Rewriting rules eliminate synchronizations.�
sDotP :: [:(Int,Float):] -> [:Float:] -> Float	

sDotP (AP is fs) v 	

 = sumP (fs *^ bpermuteP v is)	

 = sumD . mapD sumS . mapD mulS $	

	
 zipD (splitD fs) (splitD (bpermuteP v is))	

joinD	

splitD	
 {-# RULE	

	
splitD (joinD x) = x

#-}	

A joinD followed by a splitD �
can be replaced by doing nothing.�

Idea: Rewriting rules eliminate synchronizations.�
sDotP :: [:(Int,Float):] -> [:Float:] -> Float	

sDotP (AP is fs) v 	

 = sumP (fs *^ bpermuteP v is)	

 = sumD . mapD sumS . mapD mulS $	

	
 zipD (splitD fs) (splitD (bpermuteP v is))	

{-# RULE	

	
mapD f (mapD g x)	
	

 = mapD (f.g) x 	

#-}	

Successive uses of mapD can �
be coalesced, which removes a�
synchronization point.�

11/30/09	

11	

Idea: Rewriting rules eliminate synchronizations.�

{-# RULE	

	
mapD f (mapD g x)	
	

 = mapD (f.g) x 	

#-}	

Successive uses of mapD can �
be coalesced, which removes a�
synchronization point.�

sDotP :: [:(Int,Float):] -> [:Float:] -> Float	

sDotP (AP is fs) v 	

 = sumP (fs *^ bpermuteP v is)	

 = sumD . mapD (sumS . mulS) $	

	
 	
 zipD (splitD fs) (splitD (bpermuteP v is))	

  Now we have a sequential fusion problem.�
  Problem: �

-  Lots and lots of functions over arrays�
-  Can’t have fusion rules for every pair�

  New idea: stream fusion.�

sDotP :: [:(Int,Float):] -> [:Float:] -> Float	

sDotP (AP is fs) v = sumP (fs *^ bpermuteP v is)	

 = sumD . mapD (sumS . mulS) $	

	
 	
zipD (splitD fs) (splitD (bpermuteP v is))	

Four key pieces of technology: �
1.  Vectorization �

-  Specific to parallel arrays�

2.  Non-parametric data representations�
-  A generically useful new feature in GHC�

3.  Distribution �
-  Divide up the work evenly between processors�

4.  Aggressive fusion �
-  Uses “rewrite rules,” an old feature of GHC�

Main advance: an optimizing data-parallel compiler
implemented by modest enhancements to a full-scale

functional language implementation.�

} �
Flattening

  Two key transformations: �
-  Flattening �
-  Fusion �

  Both rely on purely-functional semantics: �
-  No assignments.�
-  Every operation is pure.�

Prediction: The data-parallel
languages of the future will be

functional languages�

1-processor
version goes
only 30%
slower than C�

Perf win with 2
processors�

Pinch
of
salt �

  Data parallelism is the most promising way to
harness 100’s of cores.�

  Nested DP is great for programmers: far, far
more flexible than flat DP.�

  Nested DP is tough to implement, but we (think
we) know how to do it.�

  Functional programming is a massive win in this
space.�

  Work in progress: starting to be available in GHC
6.10 and 6.12. �

http://haskell.org/haskellwiki/GHC/Data_Parallel_Haskell�

11/30/09	

12	

  Explicit threads�
  Non-deterministic by design �
  Monadic: forkIO and STM	

  Semi-implicit parallelism�
  Deterministic�
  Pure: par and pseq	

  Data parallelism�
  Deterministic�
  Pure: parallel arrays�
  Shared memory initially; distributed memory eventually;

possibly even GPUs…�

main :: IO () 	

 = do { ch <- newChan	

	
; forkIO (ioManager ch)	

	
; forkIO 	
(worker 1 ch)	

	
... etc ... }	

f :: Int -> Int	

f x = a `par` b `pseq` a + b	

	
where	

	
 	
a = f1 (x-1)	

	
 	
b = f2 (x-2)	

  Making effective use of multicore hardware is
the challenge for programming languages now.�

  Hardware is getting increasingly complicated: �
-  Nested memory hierarchies�
-  Hybrid processors: GPU + CPU, Cell, FPGA...�
- Massive compute power sitting mostly idle.�

  We need new programming models to program
new commodity machines effectively.�

  Language researchers are working hard to
answer this challenge…�

