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Kathleen Fisher�

cs242�

Reading: A Tutorial on Parallel and Concurrent Programming in Haskell�
          Skip Section 5 on STM�

Thanks to Simon Peyton Jones, Satnam Singh, and Don Stewart for these slides. �

  Submit course evaluations in Axess �
- Open: Nov. 30 to Dec. 14 at 8am.�
-  Registrar: Students who submit evaluations will see 

grades when submitted by faculty; others will see 
grades on Jan. 4.�

-  Your feedback is crucial to improving the course! �
-  Please participate.�

  Final exam: �
- Monday, December 7, 12:15-3:15pm in Gates B01.�
-  Local SCPD students should come to campus for 

exam.�

  Making effective use of multi-core hardware is 
the challenge for programming languages now.�

  Hardware is getting increasingly complicated: �
-  Nested memory hierarchies�
-  Hybrid processors: GPU + CPU, Cell, FPGA...�
- Massive compute power sitting mostly idle.�

  We need new programming models to program 
new commodity machines effectively.�

  Explicit threads�
  Non-deterministic by design �
  Monadic: forkIO and STM	


  Semi-implicit parallelism�
  Deterministic�
  Pure: par and pseq	


  Data parallelism�
  Deterministic�
  Pure: parallel arrays�
  Shared memory initially; distributed memory eventually; 

possibly even GPUs…�

main :: IO () 	

  = do { ch <- newChan	


	
; forkIO (ioManager ch)	

	
; forkIO 	
(worker 1 ch)	

	
... etc ... }	


  A parallel program exploits real parallel 
computing resources to run faster while 
computing the same answer.�
-  Expectation of genuinely simultaneous execution �
-  Deterministic�

  A concurrent program models independent 
agents that can communicate and synchronize.�
- Meaningful on a machine with one processor�
-  Non-deterministic�

fib 0 = 0	

fib 1 = 1	

fib n = fib (n-1) + fib (n-2)	


10	


9	


8	

3	


5	


8	
6	


5	

8	


1	
 1	

 “Thunk”             
for      
fib 10 �

Pointer to the 
implementation �

Storage slot 
for the result �

Values for free 
variables�
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  No side effects makes parallelism easy, right?�
-  It is always safe to speculate on pure code.�
-  Execute each sub-expression in its own thread?�

  Alas, the 80s dream does not work.  �
-  Far too many parallel tasks, many of which are too 

small to be worth the overhead of forking them.�
-  Difficult/impossible for compiler to guess which are 

worth forking.�

Idea: Give the user control over which 
expressions might run in parallel.�

  Value (ie, thunk) bound to x is sparked for 
speculative evaluation.�

  Runtime may instantiate a spark on a thread 
running in parallel with the parent thread.�

  Operationally, x `par` y = y	


  Typically, x is used inside y: �

  All parallelism built up from the par combinator.	


par :: a -> b -> b	

x `par` y	


blurRows `par` (mix blurCols blurRows)	


  par does not guarantee a new Haskell thread.�

  It hints that it would be good to evaluate the 
first argument in parallel.�

  The runtime decides whether to convert spark �
-  Depending on current workload.�

  This allows par to be very cheap.�
-  Programmers can use it almost anywhere.�
-  Safely over-approximate program parallelism.�

x�

y�y is evaluated�

x�x is evaluated�

x is sparked�
x fizzles �

x `par` (y + x)	


x�

y�y is evaluated on P1 �

x�x is taken up for evaluation on P2 �

x is sparked on P1 �

P1 � P2 �

x `par` (y + x)	
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  No extra resources, so spark for f fizzles.�

  Main thread demands f, so spark fizzles.�

  pseq: Evaluate x in the current thread,      
then return y. �

  Operationally,  �

  With pseq, we can control evaluation order. �

pseq :: a -> b -> b	

x `pseq` y	


x `pseq` y = bottom if x -> bottom	

           = y      otherwise.   	


e `par` f `pseq` (f + e)	
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  ThreadScope (in Beta) displays event logs 
generated by GHC to track spark behavior: �

Thread 1 �

Thread 2 �
(Idle) �

Thread 1 �

Thread 2 �
(Busy) �

f `par` (f + e)	


f `par` (e + f)	

  The fib and sumEuler functions are unchanged.�

fib :: Int -> Int	

fib 0 = 0	

fib 1 = 1	

fib n = fib (n-1) + fib(n-2)	


sumEuler :: Int -> Int	

sumEuler n = … in ConcTutorial.hs …	


parSumFibEulerGood :: Int -> Int -> Int	

parSumFibEulerGood a b = f `par` (e `pseq` (f + e))	

  where	

    f = fib a	

    e = sumEuler b	


Performance Numbers�

  Deterministic: �
-  Same results with parallel and sequential programs.�
-  No races, no errors.�
-  Good for reasoning: Erase the par combinator and get 

the original program.�

  Relies on purity.�
  Cheap: Sprinkle par as you like, then measure 

with ThreadScope and refine.�
  Takes practice to learn where to put par and 

pseq.�
  Often good speed-ups with little effort.�

  Explicit threads�
  Non-deterministic by design �
  Monadic: forkIO and STM	


  Semi-implicit �
  Deterministic�
  Pure: par and pseq	


  Data parallelism�
  Deterministic�
  Pure: parallel arrays�
  Shared memory initially; distributed memory eventually; 

possibly even GPUs…�

main :: IO () 	

  = do { ch <- newChan	


	
; forkIO (ioManager ch)	

	
; forkIO 	
(worker 1 ch)	

	
... etc ... }	


f :: Int -> Int	

f x = a `par` b `pseq` a + b	


	
where	

	
 	
a = f1 (x-1)	

	
 	
b = f2 (x-2)	


Multicore �
Parallel 

programming 
essential�

Task parallelism�
Each thread does 
something different.�
-  Explicit: threads, MVars, STM�
-  Implicit: par & pseq	


Data parallelism�
Operate simultaneously on 
bulk data �

Modest parallelism�
Hard to program�

Massive parallelism�
Easy to program�
-  Single flow of control�
-  Implicit synchronisation �
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Data parallelism�

Flat data parallel�
Apply sequential 

operation to bulk data �

- The brand leader     
(Fortran, *C MPI,         
map/reduce)�

-  Limited applicability     
(dense matrix, map/reduce)�

- Well developed�
-  Limited new opportunities�

Nested data parallel�
Apply parallel�

operation to bulk data �

- Developed in 90’s�
- Much wider applicability 

(sparse matrix, graph 
algorithms, games etc)�

- Practically un-developed�
- Huge opportunity�

  Widely used, well understood, well supported�

  BUT: something is sequential.�
  Single point of concurrency�
  Easy to implement: �

use “chunking”�
  Good cost model�

foreach i in 1..N {	

	
...do something to A[i]...	


}	


1,000,000’s of (small) work items�
P1 � P2 � P3 �

  Main idea: Allow “something” to be parallel.�

  Now the parallelism �
structure is recursive, �
and un-balanced.�

  Still good cost model.�
  Hard to implement! �

foreach i in 1..N {	

	
...do something to A[i]...	


}	


Still 1,000,000’s of (small) work items�

programmers�

  Fundamentally more modular.�
  Opens up a much wider range of applications: �
-  Divide and conquer algorithms (e.g. sort)�
-  Graph algorithms                                     

(e.g. shortest path, spanning trees)�
-  Sparse arrays, variable grid adaptive methods     

(e.g. Barnes-Hut)�
-  Physics engines for games, computational graphics 

(e.g. Delauny triangulation) �
- Machine learning, optimization, constraint solving �

compilers�

  ...because the concurrency tree is both 
irregular and fine-grained.�

  But it can be done!                            
NESL (Blelloch 1995) is an existence proof.�

  Key idea: “Flattening” transformation: "�

Compiler�
Nested data parallel 

program�
(the one we want to write)�

Flat data parallel 
program�

(the one we want to run)�

Substantial improvement in �
- Expressiveness�
- Performance�

-  Shared memory initially�
- Distributed memory �

"eventually�
- GPUs anyone?�

Not a special purpose data-
parallel compiler!  Most support is 
either useful for other things, or 

is in the form of library code. �

NESL (Blelloch)�
A mega-breakthrough but: �
-  specialized, prototype�
-  first order�
-  few data types�
-  no fusion �
-  interpreted�

 Haskell�
–  broad-spectrum, widely used�
–  higher order�
–  very rich data types�
–  aggressive fusion �
–  compiled�
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vecMul :: [:Float:] -> [:Float:] -> Float	

vecMul v1 v2 = sumP [: f1*f2 | f1 <- v1 | f2 <- v2 :]	


[:Float:] is the type of 
parallel arrays of Float	


An array comprehension: �
“the array of all f1*f2 

where f1 is drawn from v1 
and f2 from v2 in lockstep.”�

sumP :: [:Float:] -> Float	


Operations over parallel array 
are computed in parallel; that is 
the only way the programmer 
says “do parallel stuff.”�

NB: no locks! �

sDotP :: [:(Int,Float):] -> [:Float:] -> Float	


sDotP sv v = sumP [: f * (v!i) | (i,f) <- sv :]	


A sparse vector is represented as a vector of 
(index, value) pairs: �
[:(0,3),(2,10):] instead of [:3,0,10,0:].	


v!i gets the ith element of v	


Parallelism is proportional to length of sparse vector.�

sDotP [:(0,3),(2,10):][:2,1,1,4:]	

 = sumP [: 3 * 2, 10 * 1 :]	

 = 16 	


smMul :: [:[:(Int,Float):]:] -> [:Float:] -> Float	


smMul sm v = sumP [: sDotP sv v | sv <- sm :]	


A sparse matrix is a vector of sparse vectors: �
[:[:(1,3),(4,10):],	

    (0,2),(1,12),(4,6):]:]	


Nested data parallelism here!  �
We are calling a parallel operation, sDotP, on 

every element of a parallel array, sm.�

sort :: [:Float:] -> [:Float:]	

sort a = if (lengthP a <= 1) then a	

	
 	
 	
else sa!0 +:+ eq +:+ sa!1	


 	
where 	

	
 	
p = a!0	

	
 	
lt = [: f | f<-a, f<p :]	

	
 	
eq = [: f | f<-a, f==p :]	

	
 	
gr = [: f | f<-a, f>p :]	

	
 	
sa = [: sort a | a <- [:lt,gr:] :]	


2-way nested data 
parallelism here.  �

Parallel 
filters �

�
type Doc    = [: String :]   — Sequence of words	

type Corpus = [: Document :]	


search :: Corpus -> String -> [: (Doc,[:Int:]):]	


Find all Docs that mention 
the string, along with the 
places where it is mentioned �
(e.g. word 45 and 99) �

Find all the places where a string is mentioned 
in a document (e.g. word 45 and 99) .�

type Doc    = [: String :]	

type Corpus = [: Doc :]	


search :: Corpus -> String -> [: (Doc,[:Int:]):]	


wordOccs :: Doc -> String -> [: Int :]	
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type Doc    = [: String :]	

type Corpus = [: Doc :]	


search :: Corpus -> String -> [: (Doc,[:Int:]):]	

search ds s = [: (d,is) | d <- ds	

	
 	
 	
 	
 	
 	
, let is = wordOccs d s	

	
 	
 	
 	
 	
 	
, not (nullP is) :]	


wordOccs :: Doc -> String -> [: Int :]	


nullP :: [:a:] -> Bool	


type Doc    = [: String :]	

type Corpus = [: Doc :]	


search :: Corpus -> String -> [: (Doc,[:Int:]):]	


wordOccs :: Doc -> String -> [: Int :]	

wordOccs d s = [: i | (i,s2) <- zipP positions d	

                    , s == s2 :]	

    where	

      positions :: [: Int :]	

      positions = [: 1..lengthP d :]	


zipP    :: [:a:] -> [:b:] -> [:(a,b):]	

lengthP :: [:a:] -> Int	


•  Evenly chunking at top level might be ill-balanced. �
•  Top level alone might not be very parallel.�

etc…�

- Concatenate sub-arrays into one big, flat array.�
- Operate in parallel on the big array.�
- Segment vector tracks extent of sub-arrays.�

- Lots of tricksy book-keeping! �
- Possible to do by hand (and done in practice), 

but very hard to get right.�
- Blelloch showed it could be done systematically.�

Flattening enables load balancing, but it is not 
enough to ensure good performance.  Consider: �

  Bad idea: �
1.  Generate [: f1*f2 | f1 <- v1 | f2 <-v2 :] �
2.  Add the elements of this big intermediate vector.�

  Good idea: Multiply and add in the same loop.�
-  That is, fuse the multiply loop with the add loop.�
-  Very general, aggressive fusion is required.�

vecMul :: [:Float:] -> [:Float:] -> Float	

vecMul v1 v2 = sumP [: f1*f2 | f1 <- v1 | f2 <- v2 :]	


Four key pieces of technology: �
1.  Vectorization �

-  Specific to parallel arrays�

2.  Non-parametric data representations�
-  A generically useful new feature in GHC�

3.  Distribution �
-  Divide up the work evenly between processors�

4.  Aggressive fusion �
-  Uses “rewrite rules,” an old feature of GHC�

Main advance: an optimizing data-parallel compiler 
implemented by modest enhancements to a full-scale 

functional language implementation.�

} �
Flattening 
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  Rewrite Haskell source into simpler core, e.g, 
removing array comprehensions: �

sDotP :: [:(Int,Float):] -> [:Float:] -> Float	

sDotP sv v = sumP [: f * (v!i) | (i,f) <- sv :]	


sDotP sv v = sumP (mapP (\(i,f) -> f * (v!i)) sv)	


sumP :: Num a => [:a:] -> a	

mapP :: (a -> b) -> [:a:] -> [:b:]	


svMul sv v = sumP (snd^ sv  *^  bpermuteP v (fst^ sv))	


  Replace scalar function f by the lifted 
(vectorized) version, written f^.�

svMul :: [:(Int,Float):] -> [:Float:] -> Float	

svMul sv v = sumP (mapP (\(i,f) -> f * (v!i)) sv)	


sumP 	
:: Num a => [:a:] -> a	

*^ 	
:: Num a => [:a:] -> [:a:] -> [:a:]	

fst^ 	
:: [:(a,b):] -> [:a:]	

snd^ 	
:: [:(a,b):] -> [:b:]	

bpermuteP	
:: [:a:] -> [:Int:] -> [:a:]	


mapP f v	


  For every function f, generate its �
lifted version, named f^.�

  Result: A functional program, operating over 
flat arrays, with a fixed set of primitive 
operations *^, sumP, fst^, etc.�

  Lots of intermediate arrays! �

f^ v	


f  :: T1 -> T2	

f^ :: [:T1:] -> [:T2:]  — f^ = mapP f	


f  :: Int -> Int	

f x = x + 1	


f^ :: [:Int:] -> [:Int:]	

f^ x = x +^ (replicateP (lengthP x) 1)	


replicateP :: Int -> a -> [:a:]	

lengthP :: [:a:] -> Int	


Source� Transformed to…�

Locals, x � x�
Globals, g � g^ �
Constants, k � replicateP (lengthP x) k �

  How do we lift functions that have already 
been lifted?�

f  :: [:Int:] -> [:Int:]	

f a = mapP g a = g^ a	


f^ :: [:[:Int:]:] -> [:[:Int:]:]	

f^ a = g^^ a 	
—???	


Yet another version of g???�

f  :: [:Int:] -> [:Int:]	

f a = mapP g a = g^ a	


f^ :: [:[:Int:]:] -> [:[:Int:]:]	

f^ a = segmentP a (g^ (concatP a))	


concatP  :: [:[:a:]:] -> [:a:]	

segmentP :: [:[:a:]:] -> [:b:] -> [:[:b:]:]	


First concatenate, �
then map, �

then re-split �

Shape � Flat data � Nested 
data�

Payoff: f and f^ are enough.  No f^^.	
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[:Double:] 	
Arrays of pointers to boxed 
numbers are Much Too Slow.�

[:(a,b):] "Arrays of pointers to pairs are 
also Much Too Slow.�

Idea! �
Select representation 
of array based on its 

element type…�

...�

�
  Extend Haskell with construct to specify 

families of data structures each with a 
different implementation.  �

data family [:a:]	


data instance [:Double:] = AD Int ByteArray	

data instance [:(a, b):] = AP [:a:] [:b:]	


[POPL05], [ICFP05], [TLDI07] �

AP	


�
data family [:a:]	

data instance [:Double:] = AD Int ByteArray	

data instance [:(a, b):] = AP [:a:] [:b:]	


AP�

fst^ :: [:(a,b):] -> [:a:]	

fst^ (AP as bs) = as	


-  Now *^ can be a fast loop because array 
elements are not boxed.�

-  And fst^ is constant time! �

  Represent nested array as a pair of a shape 
descriptor and a flat array:�

Shape �

data instance [:[:a:]:] = AN [:Int:] [:a:]	


Flat data �

etc…�

  Representation supports operations needed 
for lifting efficiently: �

Surprise: concatP, segmentP are constant time! �

Shape �

data instance [:[:a:]:] = AN [:Int:] [:a:]	


concatP  :: [:[:a:]:] -> [:a:]	

concatP (AN shape data) = data	


segmentP :: [:[:a:]:] -> [:b:] -> [:[:b:]:]	

segmentP (AN shape _) data = AN shape data	


Flat data � 1.   Distribution: Divide is, fs into chunks, one 
chunk per processor.�

2.  Fusion: Execute                                   
sumP (fs *^ bpermute v is)            
in a tight, sequential loop on each processor.�

3.   Combining: Add the results of each chunk.�

sDotP :: [:(Int,Float):] -> [:Float:] -> Float	

sDotP (AP is fs) v = sumP (fs  *^  bpermuteP v is)	


Step 2 alone is not good on a parallel machine! �
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  Introduce new type to mark distribution.�
  Type Dist a denotes collection of distributed a values.�

  (Selected) Operations: �
  splitD: Distribute data among processors.�
  joinD: Collect result data.�
  mapD: Run sequential function on each processor.�
  sumD: Sum numbers returned from each processor.�

splitD  	
:: [:a:] -> Dist [:a:]	

joinD 	
:: Dist [:a:] -> [:a:]	

mapD 	
:: (a->b) -> Dist a -> Dist b	

sumD 	
:: Dist Float -> Float	


sumP is the composition of more primitive functions: �

sumP :: [:Float:] -> Float	

sumP xs = sumD (mapD sumS (splitD xs)	


xs = [: 2,1,4,9,5 :]	


xs1 = [: 2,1,4 :]	

t1  = mapD sumS xs1	

    = 7	


xs2 = [: 9,5 :]	

t2  = mapD sumS xs2	

    = 14	


result = 21	


splitD	


mapD	


sumD	


Processor 1	
 Processor 2	


*^ :: [:Float:] -> [:Float:] -> [:Float:]	

*^ xs ys = joinD (mapD mulS	

	
 	
 	
(zipD (splitD xs) (splitD ys))	


xs = [: 2,1,4,9,5 :]	

ys = [: 3,2,2,1,1 :]	


xs1 = [: 2,1,4 :]	

ys1 = [: 3,2,2 :]	

zs1 = zipD …	

t1  = mapD mulS zs1	

    = [: 6,2,8 :]	


xs2 = [: 9,5 :]	

ys2 = [: 1,1 :]	

zs2 = zipD …	

t2  = mapD sumS zs2	

    = [: 9,5 :]	


result = [: 6,2,8,9,5 :]	


splitD	


joinD	


Processor 1	
 Processor 2	


mapD	


Idea: Rewriting rules eliminate synchronizations.�
sDotP :: [:(Int,Float):] -> [:Float:] -> Float	

sDotP (AP is fs) v 	

  = sumP (fs  *^  bpermuteP v is)	

  = sumD . mapD sumS . splitD . joinD . mapD mulS $	

	
      zipD (splitD fs) (splitD (bpermuteP v is))	


joinD	


splitD	
 {-# RULE	

	
splitD (joinD x) = x 

#-}	


A joinD followed by a splitD �
can be replaced by doing nothing.�

Idea: Rewriting rules eliminate synchronizations.�
sDotP :: [:(Int,Float):] -> [:Float:] -> Float	

sDotP (AP is fs) v 	

  = sumP (fs  *^  bpermuteP v is)	

  = sumD . mapD sumS . mapD mulS $	

	
      zipD (splitD fs) (splitD (bpermuteP v is))	


joinD	


splitD	
 {-# RULE	

	
splitD (joinD x) = x 

#-}	


A joinD followed by a splitD �
can be replaced by doing nothing.�

Idea: Rewriting rules eliminate synchronizations.�
sDotP :: [:(Int,Float):] -> [:Float:] -> Float	

sDotP (AP is fs) v 	

  = sumP (fs  *^  bpermuteP v is)	

  = sumD . mapD sumS . mapD mulS $	

	
      zipD (splitD fs) (splitD (bpermuteP v is))	


{-# RULE	

	
mapD f (mapD g x)	
	


      = mapD (f.g) x 	

#-}	


Successive uses of mapD can �
be coalesced, which removes a�
synchronization point.�
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Idea: Rewriting rules eliminate synchronizations.�

{-# RULE	

	
mapD f (mapD g x)	
	


      = mapD (f.g) x 	

#-}	


Successive uses of mapD can �
be coalesced, which removes a�
synchronization point.�

sDotP :: [:(Int,Float):] -> [:Float:] -> Float	

sDotP (AP is fs) v 	

  = sumP (fs  *^  bpermuteP v is)	

  = sumD . mapD (sumS . mulS) $	

	
 	
   zipD (splitD fs) (splitD (bpermuteP v is))	


  Now we have a sequential fusion problem.�
  Problem: �

-  Lots and lots of functions over arrays�
-  Can’t have fusion rules for every pair�

  New idea: stream fusion.�

sDotP :: [:(Int,Float):] -> [:Float:] -> Float	

sDotP (AP is fs) v = sumP (fs  *^  bpermuteP v is)	

 = sumD . mapD (sumS . mulS) $	

	
 	
zipD (splitD fs) (splitD (bpermuteP v is))	


Four key pieces of technology: �
1.  Vectorization �

-  Specific to parallel arrays�

2.  Non-parametric data representations�
-  A generically useful new feature in GHC�

3.  Distribution �
-  Divide up the work evenly between processors�

4.  Aggressive fusion �
-  Uses “rewrite rules,” an old feature of GHC�

Main advance: an optimizing data-parallel compiler 
implemented by modest enhancements to a full-scale 

functional language implementation.�

} �
Flattening 

  Two key transformations: �
-  Flattening �
-  Fusion �

  Both rely on purely-functional semantics: �
-  No assignments.�
-  Every operation is pure.�

Prediction: The data-parallel 
languages of the future will be 

functional languages�

1-processor 
version goes 
only 30% 
slower than C�

Perf win with 2 
processors�

Pinch 
of 
salt �

  Data parallelism is the most promising way to 
harness 100’s of cores.�

  Nested DP is great for programmers: far, far 
more flexible than flat DP.�

  Nested DP is tough to implement, but we (think 
we) know how to do it.�

  Functional programming is a massive win in this 
space.�

  Work in progress: starting to be available in GHC 
6.10 and 6.12. �

http://haskell.org/haskellwiki/GHC/Data_Parallel_Haskell�
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  Explicit threads�
  Non-deterministic by design �
  Monadic: forkIO and STM	


  Semi-implicit parallelism�
  Deterministic�
  Pure: par and pseq	


  Data parallelism�
  Deterministic�
  Pure: parallel arrays�
  Shared memory initially; distributed memory eventually; 

possibly even GPUs…�

main :: IO () 	

  = do { ch <- newChan	


	
; forkIO (ioManager ch)	

	
; forkIO 	
(worker 1 ch)	

	
... etc ... }	


f :: Int -> Int	

f x = a `par` b `pseq` a + b	


	
where	

	
 	
a = f1 (x-1)	

	
 	
b = f2 (x-2)	


  Making effective use of multicore hardware is 
the challenge for programming languages now.�

  Hardware is getting increasingly complicated: �
-  Nested memory hierarchies�
-  Hybrid processors: GPU + CPU, Cell, FPGA...�
- Massive compute power sitting mostly idle.�

  We need new programming models to program 
new commodity machines effectively.�

  Language researchers are working hard to 
answer this challenge…�


