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Reading: “Beautiful Concurrency”, !
           “The Transactional Memory / Garbage Collection Analogy”!

Thanks to Simon Peyton Jones for these slides. !



  Multi-cores are coming!!
-  For 50 years, hardware designers delivered  

40-50% increases per year in sequential program 
performance.!

-  Around 2004, this pattern failed because power 
and cooling issues made it impossible to increase 
clock frequencies.!

-  Now hardware designers are using the extra 
transistors that Moore’s law is still delivering to 
put more processors on a single chip.  !

  If we want to improve performance, 
concurrent programs are no longer optional.!



  Concurrent programming is essential to improve 
performance on a multi-core.!

  Yet the state of the art in concurrent programming 
is 30 years old: locks and condition variables.       
(In Java: synchronized, wait, and notify.)!

  Locks and condition variables are fundamentally 
flawed: it’s like building a sky-scraper out of 
bananas.!

  This lecture describes significant recent progress: 
bricks and mortar instead of bananas!
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Locks and condition variables !
(a) are hard to use and !
(b) do not compose!



Atomic blocks!
3 primitives: atomic, retry, orElse!
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Atomic blocks 
are much 
easier to use, 
and do compose!



!

A 10-second review:!
  Races: forgotten locks lead to inconsistent views !
  Deadlock: locks acquired in “wrong” order!

  Lost wakeups: forgotten notify to condition variables!
  Diabolical error recovery: need to restore invariants 

and release locks in exception handlers!

  These are serious problems.  But even worse...!



  Consider a (correct) Java bank Account class:!

  Now suppose we want to add the ability to 
transfer funds from one account to another.!

class Account{ 
  float balance; 

  synchronized void deposit(float amt) {  
    balance += amt;  
  }  

  synchronized void withdraw(float amt) {    
    if (balance < amt) 
      throw new OutOfMoneyError();  
    balance -= amt; 
  } 
}  



  Simply calling withdraw and deposit to 
implement transfer causes a race condition:!
class Account{ 
  float balance; 
  synchronized void deposit(float amt) {  
    balance += amt;  
  }  
  synchronized void withdraw(float amt) {    
    if(balance < amt) 
      throw new OutOfMoneyError();  
    balance -= amt; 
  } 
  void transfer_wrong1(Acct other, float amt) {  
    other.withdraw(amt);  
    // race condition: wrong sum of balances 
    this.deposit(amt);}  
} 



  Synchronizing transfer can cause deadlock:!
class Account{ 
  float balance; 
  synchronized void deposit(float amt) {  
    balance += amt;  
  }  
  synchronized void withdraw(float amt) {    
    if(balance < amt) 
      throw new OutOfMoneyError();  
    balance -= amt; 
  } 
  synchronized  
  void transfer_wrong2(Acct other, float amt) { 
    // can deadlock with parallel reverse-transfer 
    this.deposit(amt);  
    other.withdraw(amt); 
  } 
}  



Scalable double-ended queue: one lock per cell!

No interference if 
ends “far enough” 

apart!

But watch out when the queue 
is 0, 1, or 2 elements long!!
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Coding style! Difficulty of queue 
implementation!

Sequential code! Undergraduate!

Locks and condition 
variables!

Publishable result at 
international conference1!

Atomic blocks! Undergraduate!

1 Simple, fast, and practical non-blocking and blocking concurrent queue algorithms. !



atomic {...sequential code...} 

  To a first approximation, just write the sequential code, 
and wrap atomic around it!

  All-or-nothing semantics: Atomic commit!
  Atomic block executes in Isolation!
  Cannot deadlock (there are no locks!)!
  Atomicity makes error recovery easy !

(e.g. throw exception inside sequential code)!

Like database 
transactions!

ACID!



One possibility:!
  Execute <code> without taking any locks.!
  Log each read and write in <code> to a           

thread-local transaction log.!
  Writes go to the log only, not to memory.!
  At the end, the transaction validates the log. !

-  If valid, atomically commits changes to memory.!
-  If not valid, re-runs from the beginning, discarding changes.!

Optimistic !
concurrency!

atomic {... <code> ...} 

read y; 
read z; 

write 10 x; 
write 42 z; 

… 



Realising STM !
in !

Haskell!



  Logging memory effects is expensive. !
  Haskell already partitions the world into!

-  immutable values (zillions and zillions)!
-  mutable locations (some or none)!
Only need to log the latter!!

  Type system controls where I/O effects happen.!
  Monad infrastructure ideal for constructing 

transactions & implicitly passing transaction log.!
  Already paid the bill.  Simply reading or writing a 

mutable location is expensive (involving a procedure 
call) so transaction overhead is not as large as in 
an imperative language.!

Haskell programmers 
brutally trained from 
birth to use memory 
effects sparingly.!



  Consider a simple Haskell program:!

  Effects are explicit in the type system.!

  Main program is a computation with effects.!

main = do { putStr (reverse “yes”); 
        putStr “no” } 

(reverse “yes”) :: String  -- No effects 

(putStr  “no” ) :: IO ()   -- Effects okay 

main :: IO () 



Recall that Haskell uses newRef, readRef, and writeRef 
functions within the IO Monad to manage mutable state.!

main = do { r <- newRef 0; 
    incR r; 
    s <- readRef r; 
    print s } 

incR :: Ref Int -> IO () 
incR r = do { v <- readRef r;              

      writeRef r (v+1) } 

newRef   :: a -> IO (Ref a) 
readRef  :: Ref a -> IO a 
writeRef :: Ref a -> a -> IO () 

Reads and writes are 100% explicit.!
The type system disallows (r + 6), because r :: Ref Int!



main = do { r <- newRef 0; 
    fork (incR r); 
    incR r; 
    ... } 

incR :: Ref Int -> IO () 
incR r = do { v <- readRef f;                        

      writeRef r (v+1) } 

  The fork function spawns a thread.!
  It takes an action as its argument.!

fork :: IO a -> IO ThreadId 

A race!



  Worry: What prevents using incR outside atomic, which would 
allow data races between code inside atomic and outside?!

atomic :: IO a -> IO a  -- almost 

main = do { r <- newRef 0; 
    fork (atomic (incR r)); 
    atomic (incR r); 
    ... } 

  Idea: add a function atomic that executes its argument 
computation atomically.!



  Introduce a type for imperative transaction variables 
(TVar) and a new Monad (STM) to track transactions.!

  Ensure TVars can only be modified in transactions. !

atomic    :: STM a -> IO a 
newTVar   :: a -> STM (TVar a) 
readTVar  :: TVar a -> STM a 
writeTVar :: TVar a -> a -> STM () 

incT :: TVar Int -> STM () 
incT r = do { v <- readTVar r;                   

    writeTVar r (v+1) }  

main = do { r <- atomic (newTVar 0); 
  fork (atomic (incT r)) 
  atomic (incT r); 

            ... } 



Notice that:!
  Can’t fiddle with TVars outside atomic block [good]!
  Can’t do IO or manipulate regular imperative variables 

inside atomic block                  [sad, but also good]!

  atomic is a function, not a syntactic construct      
(called atomically in the actual implementation.)!

  ...and, best of all... !

atomic    :: STM a -> IO a 
newTVar   :: a -> STM (TVar a) 
readTVar  :: TVar a -> STM a 
writeTVar :: TVar a -> a -> STM() 

atomic (if x<y then launchMissiles) 



  The type guarantees that an STM computation is always 
executed atomically (e.g. incT2).  !

  Simply glue STMs together arbitrarily; then wrap with 
atomic to produce an IO action.!

incT :: TVar Int -> STM () 
incT r = do { v <- readTVar r;                 

      writeTVar r (v+1) }  

incT2 :: TVar Int -> STM () 
incT2 r = do { incT r; incT r }  

foo :: IO () 
foo = ...atomic (incT2 r)... 



  The STM monad supports exceptions:!

  In the call (atomic s), if s throws an exception, the 
transaction is aborted with no effect and the 
exception is propagated to the enclosing IO code.!

  No need to restore invariants, or release locks!!

  See “Composable Memory Transactions” for more 
information. !

throw :: Exception -> STM a 
catch :: STM a ->                    

 (Exception -> STM a) -> STM a 



Three new ideas!
retry 
orElse 
always 



  retry means “abort the current transaction and re-
execute it from the beginning”.!

  Implementation avoids the busy wait by using reads in 
the transaction log (i.e. acc) to wait simultaneously on 
all read variables.!

withdraw :: TVar Int -> Int -> STM () 
withdraw acc n = 

         do { bal <- readTVar acc; 
              if bal < n then retry; 
              writeTVar acc (bal-n) } 

retry :: STM () 



  No condition variables!  !
  Retrying thread is woken up automatically when acc is 

written, so there is no danger of forgotten notifies.!
  No danger of forgetting to test conditions again when 

woken up because the transaction runs from the 
beginning.  For example:!
     atomic (do { withdraw a1 3;!
                    withdraw a2 7 })!

withdraw :: TVar Int -> Int -> STM () 
withdraw acc n = 

         do { bal <- readTVar acc; 
              if bal < n then retry; 
              writeTVar acc (bal-n) } 



  retry can appear anywhere inside an atomic block, 
including nested deep within a call.  For example,!

"waits for a1>3 AND a2>7, without any change to 
withdraw function.!

  Contrast: "!

which breaks the abstraction inside “...stuff...”!

atomic (do { withdraw a1 3; 
             withdraw a2 7 }) 

atomic (a1 > 3 && a2 > 7) { ...stuff... } 



atomic (do { 
 withdraw a1 3   
 `orelse` 
 withdraw a2 3; 

   deposit b 3 }) 

  Suppose we want to transfer 3 dollars from 
either account a1 or a2 into account b.!

Try this!

...and if it retries, 
try this!

...and and 
then do this!

orElse :: STM a -> STM a -> STM a 



transfer :: TVar Int ->      
            TVar Int ->      
            TVar Int ->     
            STM () 

transfer a1 a2 b = do 
 { withdraw a1 3 
   `orElse` 
   withdraw a2 3; 

   deposit b 3 } 

atomic 
 (transfer a1 a2 b 
  `orElse` 
  transfer a3 a4 b) 

  The function transfer calls orElse, but calls to 
transfer can still be composed with orElse.!



  A transaction is a value of type STM a.!
  Transactions are first-class values.!
  Build a big transaction by composing little 

transactions: in sequence, using orElse and 
retry, inside procedures....!

  Finally seal up the transaction with!
"      atomic :: STM a -> IO a!



  STM supports nice equations for reasoning:!
– orElse is associative (but not commutative)!
– retry `orElse` s = s!
– s `orElse` retry = s!

  (These equations make STM an instance of the 
Haskell typeclass MonadPlus, a Monad with some 
extra operations and properties.)!



  The route to sanity is to establish invariants 
that are assumed on entry, and guaranteed on 
exit, by every atomic block.!

  We want to check these guarantees. But we 
don’t want to test every invariant after every 
atomic block.!

  Hmm.... Only test when something read by the 
invariant has changed.... rather like retry. !



always :: STM Bool -> STM () 

newAccount :: STM (TVar Int) 
newAccount =                              
 do { v <- newTVar 0;                             
      always (do { cts <- readTVar v;   
                    return (cts >= 0) });  
       return v } 

An arbitrary boolean 
valued STM computation!Any transaction that modifies the 

account will check the invariant 
(no forgotten checks). If the check 
fails, the transaction restarts.!



always 

  The function always adds a new invariant to a global 
pool of invariants.!

  Conceptually, every invariant is checked as every 
transaction commits.!

  But the implementation checks only invariants that 
read TVars that have been written by the transaction!

  ...and garbage collects invariants that are checking 
dead Tvars.!

always :: STM Bool -> STM () 



  Everything so far is intuitive and arm-wavey.!

  But what happens if it’s raining, and you are 
inside an orElse and you throw an exception 
that contains a value that mentions...?!

  We need a precise specification!!



One 
exists!

See “Composable Memory Transactions” for details.!



  A complete, multiprocessor implementation of STM 
exists as of GHC 6.!

  Experience to date: even for the most mutation-
intensive program, the Haskell STM 
implementation is as fast as the previous MVar 
implementation.  !
-  The MVar version paid heavy costs for (usually unused) 

exception handlers.!
  Need more experience using STM in practice, 

though!!
  You can play with it.  The reading assignment 

contains a complete STM program.!



  There are similar proposals for adding STM to 
Java and other mainstream languages.!

class Account {  
  float balance;  
  void deposit(float amt) {  
    atomic { balance += amt; }  
  }  
  void withdraw(float amt) {  
    atomic {  
      if(balance < amt) throw new OutOfMoneyError();  
      balance -= amt;  } 
  } 
  void transfer(Acct other, float amt) {  
    atomic {  // Can compose withdraw and deposit. 
      other.withdraw(amt); 
      this.deposit(amt); } 
  } 
} 



  Unlike Haskell, type systems in mainstream 
languages don’t control where effects occur.!

  What happens if code outside a transaction 
conflicts with code inside a transaction?!
-  Weak Atomicity: Non-transactional code can see 

inconsistent memory states. Programmer should 
avoid such situations by placing all accesses to 
shared state in transaction.!

-  Strong Atomicity: Non-transactional code is 
guaranteed to see a consistent view of shared 
state.  This guarantee may cause a performance hit.!

For more information: “Enforcing Isolation and Ordering in STM”!



  At first, atomic blocks look insanely expensive. !
A naive implementation (c.f. databases):!
-  Every load and store instruction logs information 

into a thread-local log.!
-  A store instruction writes the log only.!
-  A load instruction consults the log first.!
-  Validate the log at the end of the block.!

  If succeeds, atomically commit to shared memory.!
  If fails, restart the transaction.!



No
rm

al
ise

d 
ex

ec
ut

io
n 

ti
m
e!

Sequential 
baseline (1.00x)!

Coarse-grained 
locking (1.13x)!

Fine-grained 
locking (2.57x)!

Traditional STM 
(5.69x)!

Workload: operations on 
a red-black tree,         
1 thread, 6:1:1 

lookup:insert:delete mix 
with keys 0..65535!

See “Optimizing Memory Transactions” for more information.!



  Direct-update STM!
-  Allows transactions to make updates in place in the heap!
-  Avoids reads needing to search the log to see earlier 

writes that the transaction has made!
-  Makes successful commit operations faster at the cost of 

extra work on contention or when a transaction aborts!
  Compiler integration!

-  Decompose transactional memory operations into 
primitives!

-  Expose these primitives to compiler optimization                 
(e.g. to hoist concurrency control operations out of a 
loop)!

  Runtime system integration !
-  Integrates transactions with the garbage collector to 

scale to atomic blocks containing 100M memory accesses!
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Sequential 
baseline (1.00x)!

Coarse-grained 
locking (1.13x)!

Fine-grained 
locking (2.57x)!

Direct-update 
STM (2.04x)!

Direct-update STM + 
compiler integration 

(1.46x)!

Traditional STM 
(5.69x)!

Scalable to multicore!

Workload: operations on 
a red-black tree,         
1 thread, 6:1:1 

lookup:insert:delete mix 
with keys 0..65535!



#threads!

Fine-grained locking!

Direct-update STM + 
compiler integration!

Traditional STM!

Coarse-grained locking!
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  Naïve STM implementation is hopelessly inefficient.!

  There is a lot of research going on in the compiler 
and architecture communities to optimize STM.!

  This work typically assumes transactions are smallish 
and have low contention.  If these assumptions are 
wrong, performance can degrade drastically.!

  We need more experience with “real” workloads and 
various optimizations before we will be able to say 
for sure that we can implement STM sufficiently 
efficiently to be useful.!



  The essence of shared-memory concurrency is 
deciding where critical sections should begin 
and end.  This is a hard problem.!
-  Too small: application-specific data races (Eg, may see 

deposit but not withdraw if transfer is not atomic).!
-  Too large: delay progress because deny other threads 

access to needed resources.!



  Consider the following program:!

  Successful completion requires A3 to run after A1 
but before A2.  !

  So adding a critical section (by uncommenting A0) 
changes the behavior of the program (from 
terminating to non-terminating).!

Thread 1  
// atomic {                      //A0 
     atomic { x = 1; }           //A1 
     atomic { if (y==0) abort; } //A2 
//}  

Thread 2  
atomic {      //A3 
  if (x==0) abort;  
  y = 1;  
} 

Initially, x = y = 0  



  Worry: Could the system “thrash” by 
continually colliding and re-executing?!

  No: A transaction can be forced to re-execute 
only if another succeeds in committing.  That 
gives a strong progress guarantee.!

  But: A particular thread could starve:!

Thread 1!
Thread 2!
Thread 3!



  In languages like ML or Java, the fact that the 
language is in the IO monad is baked in to the 
language.  There is no need to mark anything in 
the type system because IO is everywhere.  !

  In Haskell, the programmer can choose when to 
live in the IO monad and when to live in the realm 
of pure functional programming.!

  Interesting perspective: It is not Haskell that 
lacks imperative features, but rather the other 
languages that lack the ability to have a statically 
distinguishable pure subset.!

  This separation facilitates concurrent programming.!
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Examples!

  Regions!

  Ownership types!

  Vault, Spec#, Cyclone!

Arbitrary effects!

Default = Any effect!
Plan = Add restrictions!



Two main approaches:!

  Domain specific languages 
(SQL, Xquery, Google 
map/reduce)!

  Wide-spectrum functional 
languages + controlled 
effects (e.g. Haskell)!

Value oriented 
programming!

Types play a major role!

Default = No effects!
Plan = Selectively permit effects!



Arbitrary effects!

No effects!

Useful!

Useless!

Dangerous! Safe!

Nirvana!

Plan A!
(everyone else)!

Plan B!
(Haskell)!

Envy!



Arbitrary effects!

No effects!

Useful!

Useless!

Dangerous! Safe!

Nirvana!

Plan A!
(everyone else)!

Plan B!
(Haskell)!

Ideas; e.g. Software 
Transactional Memory 
(retry, orElse)!



One of Haskell’s most significant 
contributions is to take purity seriously, 
and relentlessly pursue Plan B.  !

Imperative languages will embody growing 
(and checkable) pure subsets.!

" " "-- Simon Peyton Jones!



  Atomic blocks (atomic, retry, orElse) dramatically raise 
the level of abstraction for concurrent programming.!

  It is like using a high-level language instead of 
assembly code. Whole classes of low-level errors are 
eliminated.!

  Not a silver bullet: !
-  you can still write buggy programs; !
-  concurrent programs are still harder than sequential ones!
-  aimed only at shared memory concurrency, not message passing!

  There is a performance hit, but it seems acceptable (and 
things can only get better as the research community 
focuses on the question.)!


