
10/21/08 

1 

Kathleen Fisher!

cs242!

Reading: “A history of Haskell: Being lazy with class”, !
           Section 6.4 and Section 7!
           “Monads for functional programming”!

#Sections 1-3!
#“Real World Haskell”,  Chapter 14: Monads!

Thanks to Andrew Tolmach and Simon Peyton Jones for some of these slides. !

  “Monads for functional programming” uses!
  unit instead of return 
 ★ instead of >>= 
But it is talking about the same things.!

  “Real World Haskell”,  Chapter 14, uses 
running examples introduced in previous 
chapters.  You don’t need to understand all 
that code, just the big picture.!

  Basic actions in IO monad have “side effects”: !

  “Do” combines actions into larger actions:!

  Operations happen only at the “top level” where 
we implicitly perform an operation with type !

getChar :: IO Char 
putChar :: Char -> IO () 
isEOF   :: IO Bool 

echo :: IO () 
echo = do { b <- isEOF; 
            if not b then do  
              { x <- getChar; putChar x; echo } 
            else return () } 

runIO :: IO a -> a       -- Doesn’t really exist 

  The special notation!

   is “syntactic” sugar for the ordinary expression!

   where >>= (called bind) sequences actions.!

  The value returned by the first action needs 
to be fed to the second; hence the 2nd arg to 
>>= is a function (often an explicit lambda). !

do {v1 <- e1; e2}  

e1 >>= \v1 -> e2 

(>>=) :: IO a -> (a -> IO b) -> IO b 

  Actions of type IO() don’t carry a useful 
value, so we can sequence them with >>.!

  The full translation for “do” notation is:!

(>>) :: IO a -> IO b -> IO b 
e1 >> e2 = e1 >>= (\_ -> e2) 

do { x<-e; es } #= #e >>= \x -> do { es }!

do { e; es } #= #e >> do { es }!

do { e } #= #e!

do {let ds; es}        =     let ds in do {es} !

  Pure functional languages make all data flow 
explicit.!

  Advantages!
  Value of an expression depends only on its free 

variables, making equational reasoning valid.!
  Order of evaluation is irrelevant, so programs may 

be evaluated lazily.!
 Modularity: everything is explicitly named, so 

programmer has maximum flexibility.!

  Disadvantages!
  Plumbing, plumbing, plumbing!!



10/21/08 

2 

data Exp = Plus  Exp Exp 
         | Minus Exp Exp 
         | Times Exp Exp 
         | Div   Exp Exp 
         | Const Int 

eval :: Exp -> Int 
eval (Plus  e1 e2) = (eval e1) + (eval e2) 
eval (Minus e1 e2) = (eval e1) - (eval e2) 
eval (Times e1 e2) = (eval e1) * (eval e2) 
eval (Div   e1 e2) = (eval e1) `div` (eval e2) 
eval (Const i)     = i 

answer = eval (Div (Const 3) 
                   (Plus (Const 4) (Const 2))) 

  To add error checking!
  Purely: modify each recursive call to check for and 

handle errors.!
  Impurely: throw an exception, wrap with a handler.!

  To add logging!
  Purely: modify each recursive call to thread a log.!
  Impurely: write to a file or global variable.!

  To add a count of the number of operations!
  Purely: modify each recursive call to thread count.!
  Impurely: increment a global variable. !

Clearly the imperative approach is easier!!

  Modify code to check for division by zero:!
data Hope a = Ok a | Error String 

eval1 :: Exp -> Hope Int 
-- Plus, Minus, Times cases omitted, but similar. 
eval1 (Div   e1 e2) =  
   case eval1 e1 of 
      Ok v1 ->  
        case eval1 e2 of 
          Ok v2 -> if v2 == 0 then Error "divby0" 
                   else Ok (v1 `div` v2) 
          Error s -> Error s 
      Error s -> Error s 
eval1 (Const i)     = Ok i 

Yuck!!

  Modify code to check for division by zero:!
data Hope a = Ok a | Error String 

eval1 :: Exp -> Hope Int 
-- Plus, Minus, Times cases omitted, but similar. 
eval1 (Div   e1 e2) =  
   case eval1 e1 of 
      Ok v1 ->  
        case eval1 e2 of 
          Ok v2 -> if v2 == 0 then Error "divby0" 
                   else Ok (v1 `div` v2) 
          Error s -> Error s 
      Error s -> Error s 
eval1 (Const i)     = Ok i 

Note: whenever an expression evaluates to Error, that 
Error propagates to final result.!

  We can abstract how Error flows through the code 
with a higher-order function:!

ifOKthen :: Hope a -> (a -> Hope b) -> Hope b 
e `ifOKthen` k = case e of Ok x -> k x 
                           Error s -> Error s 

eval2 :: Exp -> Hope Int 
-- Cases for Plus and Minus omitted 
eval2 (Times e1 e2) =  
    eval2 e1 `ifOKthen` (\v1 -> 
    eval2 e2 `ifOKthen` (\v2 -> 
    Ok(v1 * v2))) 
eval2 (Div   e1 e2) =  
    eval2 e1 `ifOKthen` (\v1 -> 
    eval2 e2 `ifOKthen` (\v2 -> 
    if v2 == 0 then Error "divby0"  
               else Ok(v1 `div` v2))) 
eval2 (Const i)     = Ok i 

  Compare the types of these functions:!

  The similarities are not accidental!!

  Like IO, Hope is a monad.  !
  IO threads the “world” through functional code.!
  Hope threads whether an error has occurred.!

  Monads can describe many kinds of plumbing!!

ifOKthen :: Hope a -> (a -> Hope b) -> Hope b 
Ok       :: a -> Hope a   -- constructor for Hope 

(>>=)    :: IO a   -> (a -> IO b)   -> IO b 
return   :: a -> IO a 



10/21/08 

3 

  A monad consists of:!
  A type constructor M!
  A function return :: a -> M a 
  A function >>= :: M a -> ( a -> M b) -> M b 

  Where >>= and return obey these laws:!
(1) return x >>= k = k x 

(2) m >>= return = m 

(3)    m1 >>= (\x->m2 >>= \y->m3) 
                    = 
      (m1 >>= \x->m2) >>= \y->m3 
                  x not in free vars of m3 

e `ifOKthen` k = case e of Ok x -> k x 
                           Error s -> Error s 

First Monad Law:  return x >>= k = k x 
  Ok x `ifOKthen` k  

= case Ok x of Ok x -> k x 
               Error s -> Error s 
= k x                                   !

Second Monad Law:  m >>= return = m 

  m `ifOKthen`  Ok  
= case m of Ok x -> Ok x 
            Error s -> Error s 
= m                                 !

Third Monad Law                                  (left as an exercise)!

m1 >>= (\x->m2 >>= \y->m3) = (m1 >>= \x->m2) >>= \y->m3 

  A monad consists of:!
  A type constructor M!
  A function return :: a -> M a 
  A function >>= :: M a -> ( a -> M b) -> M b 

So, there are many different type 
(constructors) that are monads, 
each with these operations....!

...that sounds like a job for a 
type (constructor) class!!

  We can overload operators to work on many 
types:!

  Type classes and instances capture this 
pattern:!

(==) :: Int  -> Int  -> Bool 
(==) :: Char -> Char -> Bool 
(==) :: [Int]-> [Int]-> Bool 

class Eq a where 
  (==) :: a -> a -> Bool  ... 

instance Eq Int where 
  (==) = primIntEq 

instance Eq a => Eq [a] where 
  (x:xs) == (y:ys) = x==y && xs == ys  
... 

  We can define type classes over type constructors:!

class HasMap c where         -- HasMap = Functor 
  map :: (a->b) -> c a -> c b 

instance HasMap [] where 
  map f [] = [] 
  map f (x:xs) = f x : map f xs 

instance HasMap Tree where 
  map f (Leaf x) = Leaf (f x) 
  map f (Node(t1,t2)) = Node(map f t1, map f t2) 

instance HasMap Opt where 
  map f (Some s) = Some (f s) 
  map f None = None 

We can do the same thing for monads!!

  The Haskell Prelude defines a type 
constructor class for monadic behavior:!

  The Prelude defines an instance of this class 
for the IO type constructor.!

  The “do” notation works over any instance of 
class Monad.!

class Monad m where 
  return :: a -> m a 
  (>>=)  :: m a -> (a -> m b) -> m b 



10/21/08 

4 

  We can make Hope an instance of Monad:!

  And then rewrite the evaluator to be monadic!

instance Monad Hope where 
  return = Ok 
  (>>=)  = ifOKthen 

eval3 :: Exp -> Hope Int 
-- Cases for Plus and Minus omitted but similar 
eval3 (Times e1 e2) = do { 
    v1 <- eval3 e1; 
    v2 <- eval3 e2; 
    return (v1 * v2)     } 
eval3 (Div   e1 e2) =  do { 
    v1 <- eval3 e1; 
    v2 <- eval3 e2; 
    if v2 == 0 then Error "divby0" else return (v1 `div` v2)} 
eval3 (Const i)     = return i 

-- Div case, monadic case 
eval3 (Div   e1 e2) =  do { 
    v1 <- eval3 e1; 
    v2 <- eval3 e2; 
    if v2 == 0 then Error "divby0"  
    else return (v1 `div` v2)} 

-- Div case, non-monadic case 
eval1 (Div   e1 e2) =  
   case eval1 e1 of 
      Ok v1 ->  
        case eval1 e2 of 
          Ok v2 -> if v2 == 0 then Error "divby0" 
                   else Ok (v1 `div` v2) 
          Error s -> Error s 
      Error s -> Error s 

The monadic version is much easier to read and modify.!

  Modify (original) interpreter to generate a log 
of the operations in the order they are done.!
evalT :: Exp -> [String] -> ([String], Int) 
-- Minus, Times, Div cases omitted, but similar. 
evalT (Plus e1 e2) s =  
  let (s1,v1) = evalT e1 s 
      (s2,v2) = evalT e2 s1 
  in  (s2++["+"], v1 + v2) 
evalT (Const i) s = (s++[show i], i) 

expA = (Div (Const 3) 
            (Plus (Const 4) (Const 2))) 

(traceTA,answerTA) = evalT expA [] 
-- (["3","4","2","+","/"],0) 

More ugly plumbing!!

  We can capture this idiom with a tracing monad, avoiding 
having to explicitly thread the log through the computation.!

data Tr a = Tr [String] a 
instance Monad Tr where 
  return a = Tr [] a 
  m >>= k = let (trace,  a) = runTr m  
                (trace’, b) = runTr (k a) 
            in Tr (trace++trace') b 

-- runTr lets us "run" the Trace monad 
runTr :: Tr a -> ([String], a) 
runTr (Tr s a) = (s,a) 

-- trace adds argument to the log 
trace :: String -> Tr () 
trace x = Tr [x] () 

evalTM :: Exp -> Tr Int 
-- Cases for Plus and Minus omitted but similar 
evalTM (Times e1 e2) = do { 
    v1 <- evalTM e1; 
    v2 <- evalTM e2; 
    trace "*"; 
    return (v1 * v2)      } 
evalTM (Div   e1 e2) = do { 
    v1 <- evalTM e1; 
    v2 <- evalTM e2; 
    trace "/";         
    return (v1 `div` v2)  } 
evalTM (Const i)     = do{trace (show i); return i} 

answerTM = runTr (evalTM expA) 
-- (["3","4","2","+","/"],0) 

Which version would be easier to modify?!

  Non-monadically modifying the original evaluator to 
count the number of divisions requires changes similar 
to adding tracing: !
  thread an integer count through the code!
  update the count when evaluating a division.!

  Monadically, we can use a state monad ST, 
parameterized over an arbitrary state type.  Intuitively:!

  The IO monad can be thought of as an instance of the 
ST monad, where the type of the state is “World.”!

IO = ST World 
type IO a = World -> (a, World)  

type ST s a = s -> (a, s) 



10/21/08 

5 

  First, we introduce a type constructor for the new 
monad so we can make it an instance of Monad:!

  A newtype declaration is just like a datatype, except!
  It must have exactly one constructor.!
  Its constructor can have only one argument.!
  It describes a strict isomorphism between types.!
  It can often be implemented more efficiently than the 

corresponding datatype.!

  The curly braces define a record, with a single field 
named runST with type s -> (a,s).  !

  The name of the field can be used to access the 
value in the field:!

newtype State s a = ST {runST :: s -> (a,s)} 

runST :: State s a -> s -> (a,s) 

  We need to make ST s an instance of Monad:!

instance Monad (ST s) where 
  return a = ST (\s -> (a,s)) 
  m >>= k =  ST (\s -> let (a,s') = runST m s   
                       in runST (k a) s') 

newtype ST s a = ST {runST :: s -> (a,s)} 

return :: a -> ST s a 

return 
s !

a ! a !

s !

  We need to make ST s an instance of Monad:!

instance Monad (ST s) where 
  return a = ST (\s -> (a,s)) 
  m >>= k =  ST (\s -> let (a,s') = runST m s   
                       in runST (k a) s') 

newtype ST s a = ST {runST :: s -> (a,s)} 

>>= :: ST s a -> (a -> ST s b) -> (ST s b) 

k a m 
a 

s !
s’ !

s_res !

result 

  The monad structure specifies how to thread 
the state. Now we need to define operations 
for using the state.!

-- Get the value of the state, leave state value unchanged. 
get :: ST s s 
get = ST (\s -> (s,s)) 

-- Make put's argument the new state, return the unit value. 
put :: s -> ST s () 
put s = ST (\_ -> ((),s)) 

-- Before update, the state has value s. 
-- Return s as value of action and replace s with f s. 
update :: (s -> s) -> ST s s 
update f = ST (\s -> (s, f s)) 

evalCD :: Exp -> ST Int Int 
-- Plus and Minus omitted, but similar. 
evalCD (Times e1 e2) = do { 
    v1 <- evalCD e1; 
    v2 <- evalCD e2; 
    return (v1 * v2)      } 
evalCD (Div   e1 e2) = do { 
    v1 <- evalCD e1; 
    v2 <- evalCD e2; 
    update (+1);         -- Increment state by 1. (\x->x+1) 
    return (v1 `div` v2)  } 
evalCD (Const i)     = do{return i} 

answerCD = runST (evalCD expA) 0 
-- (0,1)     0 is the value of expA, 1 is the count of divs. 

The state flow is specified in the monad; eval can 
access the state w/o having to thread it explicitly.!

  The module Control.Module.ST.Lazy, part of 
the standard distribution, defines the ST monad, 
including the get and put functions.!

  It also provides operations for allocating, writing 
to, reading from, and modifying named imperative 
variables in ST s:!

  Analogous to the IORefs in the IO Monad.!

--  From Data.STRef.Lazy 
data STRef s a 
newSTRef :: a -> ST s (STRef s a) 
readSTRef :: STRef s a -> ST s a 
writeSTRef :: STRef s a -> a -> ST s () 
modifySTRef :: STRef s a -> (a -> a) -> ST s () 



10/21/08 

6 

  Using these operations, we can write an 
imperative swap function:!

  And test it...!

swap :: STRef s a -> STRef s a -> ST s () 
swap r1 r2 = do {v1 <- readSTRef r1; 
                 v2 <- readSTRef r2; 
                 writeSTRef r1 v2; 
                 writeSTRef r2 v1} 

testSwap :: Int 
testSwap = runST (do { r1 <- newSTRef 1; 
                       r2 <- newSTRef 2; 
                       swap r1 r2; 
                       readSTRef r2}) 
-- 1 

  Consider again the test code:!

  The runST :: ST s Int -> Int function 
allowed us to “escape” the ST s monad.!

testSwap :: Int 
testSwap = runST (do { r1 <- newSTRef 1; 
                       r2 <- newSTRef 2; 
                       swap r1 r2; 
                       readSTRef r2}) 

Result 

act Invent 
World 

Discard 
World 

  The analogous function in the IO Monad 
unsafePerformIO breaks the type system.!

  How do we know runST is safe?  !

-- What is to prevent examples like this one? 
-- It allocates a reference in one state thread, 
-- then uses the reference in a different state. 

let v = runST (newSTRef True)     
in  runST (readSTRef v)          -- BAD!! 

This code must be outlawed because actions in 
different state threads are not sequenced with respect 

to each other.  Purity would be lost!!

  Initially, the Haskell designers thought they 
would have to tag each reference with its 
originating state thread and check each use 
to ensure compatibility.  !
  Expensive, runtime test!
  Obvious implementation strategies made it possible 

to test the identity of a state thread and 
therefore break referential transparency.!

  Use the type system!!

  Precisely typing runST solves the problem!!

  In Hindley/Milner, the type we have given to 
runST is implicitly universally quantified:!

  But this type isn’t good enough.!

runST :: \/s,a.(ST s a -> a) 

  Intuition: runST should only be applied to an ST 
action which uses newSTRef to allocate any 
references it needs.!

  Or: the argument to runST should not make any 
assumptions about what has already been 
allocated.!

  Or: runST should work regardless of what initial 
state is given.!

  So, its type should be:!

   which is not a Hindley/Milner type because it has 
a nested quantifier.  It is an example of a rank-2 
polymorphic type.!

runST :: \/a.(\/s.ST s a) -> a 



10/21/08 

7 

  Consider the example again:!

  The type of readSTRef v depends upon the type 
of v, so during type checking, we will discover!

  To apply runST we have to give (readSTRef v)  
the type \/s.ST s Bool.!

  But the type system prevents this quantifier 
introduction because s is in the set of assumptions.!

let v = runST (newSTRef True) 
in  runST (readSTRef v)                  -- Bad! 

{...,v:STRef s Bool} |- readSTRef v : ST s Bool  

A foreign reference cannot be imported into a state thread.!

  In this example, v is escaping its thread:!

  During typing, we get!

  But we still can’t apply runST.  To try, we 
instantiate its type with STRef s Bool to get:!

v = runST (newSTRef True)                -- Bad! 

newSTRef True :: ST s (STRef s Bool) 
which generalizes to 
newSTRef True :: \/s.ST s (STRef s Bool) 

The types don’t match, so a reference cannot 
escape from a state thread.!

runST :: \/s,(\/a.ST s a) -> a       -- instantiate a 
runST ::(\/s’.    ST s’(STRef s Bool) -> STRef s Bool 

  These arguments just give the intuition for 
why the type preserves soundness.!

  In 1994, researchers showed the rank-2 type 
for runST makes its use safe.!

  They used proof techniques for reasoning 
about polymorphic programs developed by 
John Mitchell and Albert Meyer.!

  Consequence: we can write functions with 
pure type that internally use state.  The rest 
of the program cannot tell the difference.!

Lazy Functional State Threads by John Launchbury and Simon Peyton Jones!

  The ST monad could be implemented by 
threading the state through the computation, 
directly as the model suggests.!

  But, the type system ensures access to state 
will be single threaded.!

  So the system simply does imperative updates.!

  The safety of the type system ensures that 
user code cannot tell the difference (except 
in performance!)!

  In addition to imperative variables, the ST 
monad provides mutable arrays with the API:!

-- Allocate a new array, with each cell initialized to elt. 
newArray   :: Ix i => (i,i) -> elt -> ST s MArray(s i elt) 

-- Read an element of the array a[i] 
readArray  :: Ix i => MArray(s i elt) -> i -> ST s elt 

-- Write an element of the array a[i] := new_elt 
writeArray :: Ix i => MArray(s i elt) -> i -> elt -> ST s () 

  Problem:  Given a graph and a list of “root” 
vertices, construct a list of trees that form a 
spanning forest for the graph.!

  With lazy evaluation, the trees will be 
constructed on demand, so the this construction 
corresponds to depth-first search.!

  We can use the ST monad to give a purely 
functional interface to an imperative 
implementation of this algorithm.!

type Graph = Array Vertex [Vertex] 
data Tree a = Node a [Tree a] 



10/21/08 

8 

dfs :: Graph -> [Vertex] -> [Tree Vertex] 
dfs g vs = runST( 
              do{ marks <- newArray (bounds g) False; 
                  search marks vs}) 
    where search :: STArray s Vertex Bool ->  
                         [Vertex] -> ST s [Tree Vertex] 
          search marks [] = return [] 
          search marks (v:vs) = do { 
               visited <- readArray marks v; 
               if visited then  
                  search marks vs 
               else  
                  do { writeArray marks v True; 
                       ts <- search marks (g!v); 
                       us <- search marks vs; 
                       return ((Node v ts) : us)  } } 

-- Is Vertex b reachable from Vertex a in Graph g? 
reachable :: Graph -> Vertex -> Vertex -> Bool 
reachable g a b = b `elem` (toPreOrder ( dfs g [a])) 

toPreOrder :: [Tree Vertex] -> [Vertex] 

toPreOrder!

dfs g [a]!

a 

b 

c 

d 
e ... c, b, a!

if reachable g [a] b  
then e1 
else e2 

Lazy evaluation means e1 will 
start executing as soon as b is 

emitted, and dfs will stop, 
imperative state and all!!

The problem with this function is that it's not really 
Quicksort. ... What they have in common is overall algorithm: 
pick a pivot (always the first element), then recursively sort 
the ones that are smaller, the ones that are bigger, and then 
stick it all together. But in my opinion the real Quicksort has 
to be imperative because it relies on destructive update... The 
partitioning works like this: scan from the left for an element 
bigger than the pivot, then scan from the right for an 
element smaller than the pivot, and then swap them. Repeat 
this until the array has been partitioned.... Haskell has a 
variety of array types with destructive updates (in different 
monads), so it's perfectly possible to write the imperative 
Quicksort in Haskell.  [The code is on his blog]!

# # # #-- Lennart Augustsson !

qsort :: (Ord a Bool) => [a] -> [a] 
qsort [] = [] 
qsort (x:xs) = qsort (filter (<= x) xs) ++ [x] ++  
               qsort (filter (>  x) xs 

  Like many other algebraic types, lists form a 
monad:!

  The bind operator applies f to each element x in 
the input list, producing a list for each x.  Bind 
then concatenates the results.!

  We can view this monad as a representation of 
nondeterministic computations, where the 
members of the list are possible outcomes.!

  With this interpretation, it is useful to define:!

instance Monad [] where 
  return x = [x] 
  (x:xs) >>= f = (f x) ++ (xs >>= f) 

orelse = (++)   -- contatentation 
bad = []        -- empty list 

  This code returns a list of pairs of numbers that 
multiply to the argument n:!

  Lazy evaluation ensures that the function 
produces only as many pairs as the program 
consumes. !

multiplyTo :: Int -> [(Int,Int)] 
multiplyTo n = do { 
  x <- [1..n]; 
  y <- [x..n]; 
  if (x * y == n) then return (x,y) else bad } 

fstMult = head (multiplyTo 10) 
sndMult = head (tail (multiplyTo 10) 

type Row = Int  
type Col = Int  
type QPos = (Row,Col)  
type Board = [QPos]  

safe :: QPos -> QPos -> Bool  
safe (r,c) (r',c') = r /= r' && c /= c' && (abs(r-r') /= abs(c-c'))  

pick :: Int -> [Int]  
pick 0 = bad  
pick n = return n `orelse` pick (n-1)  

add :: QPos -> Board -> [Board]  
add q qs | all (safe q) qs = return (q:qs)  
         | otherwise = bad  

nqueens :: Int -> [Board]  
nqueens n = fill_row 1 []  
 where fill_row r board | r > n = return board  
                        | otherwise =  
                          do { c <- pick n; 
                               board' <- add (r,c) board;  
                               fill_row (r+1) board';     } 

queenResult = head (nqueens 8) 
-- [(8,5),(7,7),(6,2),(5,6),(4,3),(3,1),(2,4),(1,8)] 

Example: Eight Queens!



10/21/08 

9 

  We have seen many example monads!
  IO, Hope (aka Maybe), Trace, ST, Non-determinism!

  There are many more...!
  Continuation monad!
  STM: software transactional memory!
  Reader: for reading values from an environment!
 Writer: for recording values (like Trace)!
  Parsers!
  Random data generators (e.g, in Quickcheck)!

  Haskell provides many monads in its standard 
libraries, and users can write more.!

  In addition to the “do” notation, Haskell leverages 
type classes to provide generic functions for 
manipulating monads.!

-- Convert list of a actions to single [a] action. 
sequence :: Monad m => [m a] -> m [a] 
sequence [] = return [] 
sequence (m:ms) = do{ a <- m;  
                      as<-sequence ms;  
                      return (a:as) } 

-- Apply f to each a, sequence resulting actions. 
mapM :: Monad m => (a -> m b) -> [a] -> m [b] 
mapM f as = sequence (map f as) 

-- “lift” pure function in a monadic one. 
liftM :: Monad m -> (a -> b) -> m a -> m b 

-- and the many others in Control.Monad 

  Given the large number of monads, it is clear that 
putting them together is useful:!
  An evaluator that checks for errors, traces actions, and 

counts division operations.!

  They don’t compose directly.!

  Instead, monad transformers allow us to “stack” 
monads:!
  Each monad M typically also provides a monad 

transformer MT that takes a second monad N and adds M 
actions to N, producing a new monad that does M and N.   !

  Chapter 18 of RWH discusses monad transformers.!

  Monads are everywhere!!

  They hide plumbing, producing code that looks 
imperative but preserves equational reasoning.!

  The “do” notation works for any monad.!

  The IO monad allows interactions with the world.!

  The ST monad safely allows imperative 
implementations of pure functions.!

  Slogan: Programmable semi-colons. The 
programmer gets to choose what sequencing 
means. !

  In languages like ML or Java, the fact that the 
language is in the IO monad is baked in to the 
language.  There is no need to mark anything in 
the type system because IO is everywhere.  !

  In Haskell, the programmer can choose when to 
live in the IO monad and when to live in the 
realm of pure functional programming.!

  Interesting perspective: It is not Haskell that 
lacks imperative features, but rather the other 
languages that lack the ability to have a 
statically distinguishable pure subset.!

Arbitrary effects!

No effects!

Safe!

Useful!

Useless!

Dangerous!



10/21/08 

10 

Arbitrary effects!

No effects!

Useful!

Useless!

Dangerous! Safe!

Nirvana!

Plan A!
(everyone else)!

Plan B!
(Haskell)!

Examples!

  Regions!

  Ownership types!

  Vault, Spec#, Cyclone!

Arbitrary effects!

Default = Any effect!
Plan = Add restrictions!

Two main approaches:!

  Domain specific languages 
(SQL, Xquery, Google 
map/reduce)!

  Wide-spectrum functional 
languages + controlled 
effects (e.g. Haskell)!

Value oriented 
programming!

Types play a major role!

Default = No effects!
Plan = Selectively permit effects!

Arbitrary effects!

No effects!

Useful!

Useless!

Dangerous! Safe!

Nirvana!

Plan A!
(everyone else)!

Plan B!
(Haskell)!

Envy!

Arbitrary effects!

No effects!

Useful!

Useless!

Dangerous! Safe!

Nirvana!

Plan A!
(everyone else)!

Plan B!
(Haskell)!

Ideas; e.g. Software 
Transactional Memory 
(retry, orElse)!

One of Haskell’s most significant 
contributions is to take purity seriously, 
and relentlessly pursue Plan B.  !

Imperative languages will embody growing 
(and checkable) pure subsets.!

# # #-- Simon Peyton Jones!


