cs 242

AN INTRODUCTION TO MONADS

Kathleen Fisher

Reading: "A history of Haskell: Being lazy with class", Section 6.4 and Section 7
"Monads for functional programming" Sections 1-3
"Real World Haskell", Chapter 14: Monads
Thanks to Andrew Tolmach and Simon Peyton Jones for some of these slides.

Reviewing IO Monad

- Basic actions in IO monad have "side effects":
getChar :: IO Char
putChar $:$: Char -> IO ()
isEOF $:$: IO Boor
isEOF :: IO Mol
- "Do" combines actions into larger actions:
echo :: IO ()

echo = do | \{ $b<-$ isEOF; | |
| ---: | :--- |
| | if not b then do |
| | $\{x<-$ getChar; putChar $x ;$ echo \} |
| | else return () \} |

- Operations happen only at the "top level" where we implicitly perform an operation with type
runIO :: IO a -> a -- Doesn't really exist

More about "do"

- Actions of type IO () don't carry a useful value, so we can sequence them with >>.
(>>) :: IO a -> IO b -> IO b

$$
\text { el >> eq = el >>= (_ } \rightarrow \text { en) }
$$

- The full translation for "do" notation is:

do $\{x<-e ;$ es $\}$	$=e \gg=\mid x \rightarrow$ do $\{$ es $\}$
do $\{e ; e s\}$	$=e \gg$ do $\{$ es $\}$
do $\{e\}$	$=e$
do $\{l e t d s ; e s\}$	$=l e t d s$ in do $\{e s\}$

Notes on the Reading

- "Monads for functional programming" uses
- unit instead of return
- instead of >>=

But it is talking about the same things.

- "Real World Haskell", Chapter 14, uses running examples introduced in previous chapters. You don't need to understand all that code, just the big picture.

Abstract

An Evaluator

data Exp $=$ Plus Exp Exp
\mid Minus Exp Exp
| Times Exp Exp
| Div Exp Exp
| Const Int
eval :: Exp -> Int
eval (Plus e1 e2) = (eval e1) + (eval e2)
eval (Minus e1 e2) $=$ (eval e1) - (eval e2)
eval (Times e1 e2) $=($ eval e1) * (eval e2)
eval (Div e1 e2) $=$ (eval e1) ‘div` (eval e2) eval (Const i)
answer = eval (Div (Const 3)
(Plus (Const 4) (Const 2)))

Making Modifications

- To add error checking
- Purely: modify each recursive call to check for and handle errors.
- Impurely: throw an exception, wrap with a handler.
- To add logging
- Purely: modify each recursive call to thread a log.
- Impurely: write to a file or global variable.
- To add a count of the number of operations - Purely: modify each recursive call to thread count.
- Impurely: increment a global variable.

Clearly the imperative approach is easier!

Adding Error Handling

- Modify code to check for division by zero:
data Hope $a=O k$ a \mid Error String
eval1 :: Exp \rightarrow Hope Int
-- Plus, Minus, Times cases omitted, but similar
evall (Div e1 e2) =
case evall el of
Ok v1 ->
evall e2 of
Ok v2 -> if v2 == 0 then Error "divby0" else Ok (v1 `div` v2)
Error s -> Error s
Error s -> Error s
evall (Const i) $\quad=\mathrm{Ok}$ i

Yuck!

Adding Error Handling

- Modify code to check for division by zero:

```
data Hope a = Ok a | Error String
eval1 :: Exp -> Hope Int
-- Plus, Minus, Times cases omitted, but similar
evall (Div e1 e2) =
        case evall el of
            Ok v1 ->
                    ase evall e2 of
                                    Ok v2 -> if v2 == 0 then Error "divby0
                                    else Ok (v1 `div` v2)
                                    Error s -> Error s
            Error s -> Error s
evall (Const i) =Ok i
```

Note: whenever an expression evaluates to Error, that Error propagates to final result.

A Useful Abstraction

- We can abstract how Error flows through the code with a higher-order function:
ifokthen :: Hope $a \rightarrow->$ (a $->$ Hope b) \rightarrow Hope b e 'ifoKthen` $k=$ case e of $O k x \rightarrow k x$

Error s \rightarrow Error s

```
eval2 :: Exp -> Hope Int
    -- Cases for Plus and Minus omitted
    eval2 (Times e1 e2) =
        eval2 e1 `ifOKthen` (\v1 ->
        eval2 e2 `ifOKthen` (\v2 ->
        Ok(v1 * v2)))
        eval2 (Div e1 e2) =
            eval2 e1 `ifOKthen` (\v1 ->
            eval2 e2 `ifOKthen` (\v2 ->
            if v2 == 0 then Error "divby0"
            if v2 == 0 then Error "divby0"
                else Ok(v1 `div` v2)))
                = Ok i
```


A Pattern...

- Compare the types of these functions:
ifokthen :: Hope $\mathrm{a} \rightarrow$ ($\mathrm{a} \rightarrow$ Hope b) \rightarrow Hope b
Ok : : a $->$ Hope a -- constructor for Hope
(>>=) $\quad:$: IO a $\quad \rightarrow$ (a \rightarrow IO b) $\quad \rightarrow$ IO b
return :: a -> IO a
- The similarities are not accidental!
- Like IO, Hope is a monad.
- IO threads the "world" through functional code.
- Hope threads whether an error has occurred.
- Monads can describe many kinds of plumbing!

Monads, Formally

- A monad consists of:
- A type constructor M
- A function return : : a $->\mathrm{M}$ a

A function $\gg=:: M$ a $->(\mathrm{a}->\mathrm{Mb})->\mathrm{Mb}$

- Where >>= and return obey these laws:
(1) return $x \gg=k=k x$
(2) $m \gg=$ return $=m$
(3) $\quad \mathrm{m} 1 \quad \gg=(\backslash x->m 2 \gg=\backslash y->m 3)$
($\mathrm{m} 1 \gg=\mid \mathrm{x}->\mathrm{m} 2$) $\gg=\mid \mathrm{y}->\mathrm{m} 3$
x not in free vars of $m 3$

Many Monads

- A monad consists of:
- A type constructor M
- A function return : : a $->\mathrm{M}$ a
- A function $\gg=:: M$ a $->(\mathrm{a}->\mathrm{M}$ b) $->\mathrm{M} \mathrm{b}$

So, there are many different type (constructors) that are monads, each with these operations....
..that sounds like a job for type (constructor) class.

Recall Type Constructor Classes

The Monad Constructor Class

- The Haskell Prelude defines a type constructor class for monadic behavior:

```
class Monad m where
    return :: a -> m a
    (>>=) :: m a -> (a -> m b) -> mb
```

- The Prelude defines an instance of this class for the IO type constructor.
- The "do" notation works over any instance of class Monad.

Hope, Revisited

- We can make Hope an instance of Monad:

> instance Monad Hope where return $=$ Ok
> (>>=) $=$ ifOKthen

- And then rewrite the evaluator to be monadic
eval3 :: Exp -> Hope Int
-- Cases for Plus and Minus omitted but similar
eval3 (Times e1 e2) = do $\{$
v1 <- eval3 e1;
v2 <- eval3 e2;
return (v1 * v2)
eval3 (Div e1 e2) = do $\{$
v1 <- eval3 e1;
v2 <- eval3 e2;
if v2 == 0 then Error "divby0" else return (v1 `div` v2)
eval3 (Const i) = return i

Adding Tracing

- Modify (original) interpreter to generate a log of the operations in the order they are done.
evalt :: Exp -> [String] -> ([String], Int) -- Minus, Times, Div cases omitted, but similar. evalt (Plus e1 e2) $s=$
let $(s 1, v 1)=$ evalt e1
(s2,v2) = evalt e2 s1
in (s2++["+"], v1 + v2)
evalt (Const i) $s=$ (s++[show i], i)
$\operatorname{expA}=($ Div $($ Const 3$)$
(Plus (Const 4) (Const 2)))
(traceTA, answerTA) = evalt expA []
-- (["3","4","2","+","/"],0)
More ugly plumbing!

Eval with Monadic Tracing

```
evalTM :: Exp -> Tr Int
-- Cases for Plus and Minus omitted but similar
evalTM (Times e1 e2) = do {
    v1 <- evalTM e1;
    v2 <- evalTM e2
    trace "*";
    return (v1 * v2)
evalTM (Div e1 e2) = do {
    v1 <- evalTM e1;
    v2 <- evaltM e2
    trace "/";
    return (v1 `div` v2) }
evalTM (Const i) = do{trace (show i); return i}
answerTM = runTr (evalTM expA)
```


Adding a Count of Div Ops

- Non-monadically modifying the original evaluator to count the number of divisions requires changes similar to adding tracing:
- thread an integer count through the code
- update the count when evaluating a division.
- Monadically, we can use a state monad ST, parameterized over an arbitrary state type. Intuitively:

$$
\text { type } \operatorname{ST} \mathbf{s} a=s->(a, s)
$$

- The IO monad can be thought of as an instance of the ST monad, where the type of the state is "World."

[^0]
The ST Monad

- First, we introduce a type constructor for the new monad so we can make it an instance of Monad:
newtype State s a $=$ ST $\{$ runsT :: s $->(a, s)\}$
- A newtype declaration is just like a datatype, except - It must have exactly one constructor
- Its constructor can have only one argument.
- It describes a strict isomorphism between types.
- It can often be implemented more efficiently than the corresponding datatype.
- The curly braces define a record, with a single field named runST with type s $->$ (a, s).
- The name of the field can be used to access the value in the field:
runST :: State s a -> s -> (a, s)

The ST Monad, Continued

- We need to make ST s an instance of Monad:
newtype ST s a = ST $\{$ runST :: s -> $(a, s)\}$

```
instance Monad (ST s) where
    return a =ST (\s -> (a,s))
    m >>= k = ST (\s -> let (a,s') = runST m s
```

in runST (k a) s')
>>= :: ST s a -> (a -> ST s b) -> (ST s b)

Counting Divs in the ST Monad

evalCD :: Exp -> ST Int Int

-- Plus and Minus omitted, but similar
evalcD (Times e1 e2) = do $\{$
v1 <- evalcD e1;
v2 <- evalCD e2
return (v1 * v2)
evalcD (Div e1 e2) = do
v1 <- evalCD e1;
v2 <- evalCD e2
update (+1) ; \quad-- Increment state by 1. ($\backslash x->x+1$)
return (v 1 `div` v2) \}
evalCD (Const i) $=$ do\{return i\}
answerCD $=$ runsr (evalCD expA)
-- $(0,1) \quad 0$ is the value of expA, 1 is the count of divs.

```
The state flow is specified in the monad; eval can
access the state w/o having to thread it explicitly
```


The ST Monad, Continued

- We need to make ST s an instance of Monad: newtype ST s a $=$ ST $\{$ runst : : s $->(a, s)\}$
instance Monad (ST s) where return a = ST (\s -> (a,s) $\mathrm{m} \gg=\mathrm{k}=\mathrm{ST}\left(\backslash \mathrm{s}->\right.$ let $\left(\mathrm{a}, \mathrm{s}^{\prime}\right)=$ runST m s in runST (k a) s'

Operations in the ST Monad

- The monad structure specifies how to thread the state. Now we need to define operations for using the state.
-- Get the value of the state, leave state value unchanged
get : : ST s s
get $=$ ST ($\backslash \mathrm{s}->(\mathrm{s}, \mathrm{s})$)
-- Make put's argument the new state, return the unit value put :: s -> ST s (
put $s=S T\left(\backslash_{-}>((), s)\right)$
-- Before update, the state has value
-- Return s as value of action and replace s with $f s$ update :: (s -> s) -> ST s s
update $\mathrm{f}=\mathrm{ST}$ ($\backslash \mathrm{s} \rightarrow$ ($\mathrm{s}, \mathrm{f} \mathrm{s}$))

The "Real" ST Monad

- The module Control. Module.ST. Lazy, part of the standard distribution, defines the ST monad, including the get and put functions.
- It also provides operations for allocating, writing to, reading from, and modifying named imperative variables in ST s :

```
-- From Data.STRef.Lazy
```

data STRef s a
newSTRef :: a \rightarrow ST s (STRef s a)
readSTRef : : STRef s a \rightarrow ST s a
writeSTRef : : STRef s a -> a $->$ ST s ()
writeSTRef $::$ STRef s a $->$ a $->$ ST s
modifySTRef $::$ STRef 2 a \rightarrow (a $->$ a) $->$ ST s ()

- Analogous to the IORefs in the IO Monad.

Swapping in ST s

- Using these operations, we can write an imperative swap function:
swap :: STRef s a -> STRef s a -> ST s () swap r1 r2 = do $\{\mathrm{v} 1<$ - readSTRef r1;
v2 <- readSTRef r2
writeSTRef r 1 v 2
writeSTRef r2 v1\}
- And test it...

A Closer Look

- Consider again the test code:

r2 <- newSTRef 2
readSTRef

- The runST : : ST s Int $->$ Int function allowed us to "escape" the ST s monad.

But Wait!!!!

- The analogous function in the IO Monad unsafePerformIO breaks the type system.
- How do we know runST is safe?
-- What is to prevent examples like this one?
It allocates a reference in one state thread, - then uses the reference in a different state.
let $\mathrm{v}=$ runST (newSTRef True)
in runSt (readSTRef v)

This code must be outlawed because actions in different state threads are not sequenced with respect to each other. Purity would be lost!

But How?

- Initially, the Haskell designers thought they would have to tag each reference with its originating state thread and check each use to ensure compatibility.
- Expensive, runtime test
- Obvious implementation strategies made it possible to test the identity of a state thread and therefore break referential transparency.
- Use the type system!

Typing runST

- Precisely typing runST solves the problem!
- In Hindley/Milner, the type we have given to runST is implicitly universally quantified:
runST :: \/s,a.(ST s a -> a)
- But this type isn't good enough.

A Better Type

- Intuition: runST should only be applied to an ST action which uses newSTRef to allocate any references it needs.
- Or: the argument to runST should not make any assumptions about what has already been allocated.
- Or: runST should work regardless of what initial state is given.
- So, its type should be:
runST : : \/a. (\/s.ST s a) -> a
which is not a Hindley/Milner type because it has a nested quantifier. It is an example of a rank-2 polymorphic type.

How does this work?

- Consider the example again:

```
let v = runST (newSTRef True)
in runST (readSTRef v)
```

- The type of readSTRef v depends upon the type of v, so during type checking, we will discover \{...,v:STRef s Bool\} |-readSTRef v : ST s Bool
- To apply runST we have to give (readSTRef v) the type $\backslash / \mathrm{s} . \mathrm{ST}$ s Bool.
- But the type system prevents this quantifier introduction because s is in the set of assumptions.

A foreign reference cannot be imported into a state thread.

Formally

- These arguments just give the intuition for why the type preserves soundness.
- In 1994, researchers showed the rank-2 type for runST makes its use safe.
- They used proof techniques for reasoning about polymorphic programs developed by John Mitchell and Albert Meyer.
- Consequence: we can write functions with pure type that internally use state. The rest of the program cannot tell the difference.

Lazy Functional State Threads by John Launchbury and Simon Peyton Jones

Mutable Arrays

- In addition to imperative variables, the ST monad provides mutable arrays with the API:

```
-- Allocate a new array, with each cell initialized to elt
    newArray :: Ix i => (i,i) -> elt -> ST s MArray(s i elt)
    -- Read an element of the array a[i]
    readArray :: Ix i => MArray(s i elt) -> i -> ST s elt
    -- Write an element of the array a[i] := new_elt
    writeArray :: Ix i => MArray(s i elt) -> i -> elt -> ST s ()
writeArray :: Ix i => MArray (s i elt) -> i -> elt -> ST s ()
```


How does this work?

- In this example, v is escaping its thread: $\mathrm{v}=$ runST (newSTRef True)
- Bad!
- During typing, we get

```
newSTRef True :: ST s (STRef s Bool)
which generalizes to
newSTRef True :: \/s.ST s (STRef s Bool)
```

- But we still can't apply runST. To try, we instantiate its type with STRef s Bool to get:
 runST :: ($\backslash / \mathrm{s}^{\prime} . \quad$ ST $\mathbf{s}^{\prime}($ STRef s Bool) \rightarrow STRef s Bool escape from a state thread.

The Implementation

- The ST monad could be implemented by threading the state through the computation, directly as the model suggests.
- But, the type system ensures access to state will be single threaded.
- So the system simply does imperative updates.
- The safety of the type system ensures that user code cannot tell the difference (except in performance!)

Imperative Depth First Search

- Problem: Given a graph and a list of "root" vertices, construct a list of trees that form a spanning forest for the graph.

type Graph = Array Vertex [Vertex]

data Tree a = Node a [Tree a]

- With lazy evaluation, the trees will be constructed on demand, so the this construction corresponds to depth-first search.
- We can use the ST monad to give a purely functional interface to an imperative implementation of this algorithm.

Imperative Depth First Search

```
dfs :: Graph -> [Vertex] -> [Tree Vertex]
dfs g vs = runST(
            do{ marks <- newArray (bounds g) False
                    search marks vs})
    where search :: STArray s Vertex Bool ->
                [Vertex] -> ST s [Tree Vertex]
            search marks [] = return []
            search marks (v:vs) = do {
            visited <- readArray marks v;
            if visited then
            search marks vs
            else
                    do { writeArray marks v True;
                    ts <- search marks (g!v)
                    us <- search marks vs;
                    return ((Node v ts) : us) } }
```


Quicksort

qsort :: (Ord a Bool) => [a] -> [a] qsort [] = [] qsort (x:xs) = qsort (filter (<= x) xs) ++ [x] ++ qsort (filter (> x) xs

The problem with this function is that it's not really Quicksort. ... What they have in common is overall algorithm: pick a pivot (always the first element), then recursively sort the ones that are smaller, the ones that are bigger, and then stick it all together. But in my opinion the real Quicksort has to be imperative because it relies on destructive update... The partitioning works like this: scan from the left for an element bigger than the pivot, then scan from the right for an element smaller than the pivot, and then swap them. Repeat this until the array has been partitioned.... Haskell has a variety of array types with destructive updates (in different monads), so it's perfectly possible to write the imperative Quicksort in Haskell. [The code is on his blog]

Using DFS

-- Is Vertex b reachable from Vertex a in Graph g? reachable :: Graph $->$ Vertex \rightarrow Vertex \rightarrow Bool reachable $g a b=b$ 'elem' (toPreOrder (dfs g [a]))
toPreOrder :: [Tree Vertex] \rightarrow [Vertex]

A Monad of Nondeterminism

- Like many other algebraic types, lists form a monad:

```
instance Monad [] where
return x = [x]
(x:xs) >>= f= (f x) ++ (xs >>= f)
```

- The bind operator applies f to each element x in the input list, producing a list for each x . Bind then concatenates the results.
- We can view this monad as a representation of nondeterministic computations, where the members of the list are possible outcomes.
- With this interpretation, it is useful to define:
orelse = (++)
bad $=[]$

```
type Row = Int
type Col = Int
type QPos = (Row,Col)
type Board = [QPos]
safe :: QPos -> QPos -> Bool
safe (r,c) (r',c') = r /= r'&&c /= c' && (abs(r-r') /= abs(c-c'))
pick :: Int -> [Int]
pick :: Int ->
pick n = return n `orelse` pick (n-1)
add :: Qpos -> Board -> [Board]
add q qs | all (safe q) qs = return (q:qs)
otherwise = bad
nqueens :: Int -> [Board]
nqueens n = fill row 1 []
where fill_row }\overline{r}\mathrm{ board | r > n = return board
                                    otherwise =
                                    board' <- add (r,c) board;
                                    fill_row (r+1) board'
queenResult = head (nqueens 8)
--[(8,5),(7,7),(6,2),(5,6),(4,3),(3,1),(2,4),(1,8)]
```


Monad Menagerie

- We have seen many example monads
- IO, Hope (aka Maybe), Trace, ST, Non-determinism
- There are many more...
- Continuation monad
- STM: software transactional memory
- Reader: for reading values from an environment
- Writer: for recording values (like Trace)
- Parsers
- Random data generators (e.g, in Quickcheck)
- Haskell provides many monads in its standard libraries, and users can write more.

Operations on Monads

- In addition to the "do" notation, Haskell leverages type classes to provide generic functions for manipulating monads.

```
sequence :: Monad m => [m a] -> m [a]
sequence [] = return []
sequence (m:ms) = do{ a <- m;
                                    as<-sequence ms
                                    return (a:as) }
-- Apply f to each a, sequence resulting actions
mapM :: Monad m => (a -> m b) -> [a] -> m [b]
mapM f as = sequence (map f as)
Mift pure function in a monadic one.
liftM :: Monad m -> (a -> b) -> m a -> m b
-- and the many others in Control.Monad
```


Composing Monads

- Given the large number of monads, it is clear that putting them together is useful:
- An evaluator that checks for errors, traces actions, and counts division operations.
- They don't compose directly.
- Instead, monad transformers allow us to "stack" monads:
- Each monad M typically also provides a monad transformer MT that takes a second monad N and adds M actions to N , producing a new monad that does M and N .
- Chapter 18 of RWH discusses monad transformers.

A Monadic Skin

- In languages like ML or Java, the fact that the language is in the IO monad is baked in to the language. There is no need to mark anything in the type system because IO is everywhere.
- In Haskell, the programmer can choose when to live in the IO monad and when to live in the realm of pure functional programming.
- Interesting perspective: It is not Haskell that lacks imperative features, but rather the other languages that lack the ability to have a statically distinguishable pure subset.

Summary

- Monads are everywhere!
- They hide plumbing, producing code that looks imperative but preserves equational reasoning.
- The "do" notation works for any monad.
- The IO monad allows interactions with the world.
- The ST monad safely allows imperative implementations of pure functions.
- Slogan: Programmable semi-colons. The programmer gets to choose what sequencing means.

The Challenge of Effects

Two Basic Approaches: Plan A

Examples
Default = Any effec \dagger Plan = Add restrictions

- Regions
- Ownership types
- Vault, Spec\#, Cyclone

Two Basic Approaches: Plan B
Default = No effects
Plan $=$ Selectively permit effects

Types play a major role

Two main approaches:

- Domain specific languages (SQL, Xquery, Google map/reduce)
- Wide-spectrum functional languages + controlled effects (e.g. Haskell)

Lots of Cross Over

An Assessment and a Prediction

```
One of Haskell's most significant
contributions is to take purity seriously,
and relentlessly pursue Plan B.
```

Imperative languages will embody growing (and checkable) pure subsets.
-- Simon Peyton Jones

[^0]: IO $=\mathrm{ST}$ World
 type IO a = World -> (a, World)

