Self

Kathleen Fisher

10/22/08

History

» Prototype-based pure object-oriented language.

» Designed by Randall Smith (Xerox PARC) and
David Ungar (Stanford University).
— Successor to Smalltalk-80.
— “Self: The power of simplicity” appeared at OOPSLA ‘87.

— Initial implementation done at Stanford; then project
shifted to Sun Microsystems Labs.

— Vehicle for implementation research.
+ Self 4.2 available from Sun web site:

http://research.sun.com/self/

Design Goals

* Occam’s Razor: Conceptual economy
— Everything is an object.
— Everything done using messages.

—No classes [s
. balance 20 31
— No variables L L
arent = traits clonable
« Concreteness |

— Objects should seem “real.”
— GUI to manipulate objects directly

How successful?

« Self is a very well-designed language.
» Few users: not a popular success
— Not clear why.
* However, many research innovations
— Very simple computational model.
— Enormous advances in compilation techniques.
— Influenced the design of Java compilers.

Language Overview

Dynamically typed.
Everything is an object.
« All computation via message passing.

« Creation and initialization done by copying
example object.

« Operations on objects:
— send messages

— add new slots
— replace old slots
— remove slots

Objects and Slots

Object consists of named slots.

—Data
« Such slots return contents upon evaluation; so act
like variables .
i 4an ohject
— Assignment Module:
« Set the value of parent* wais clonable =
N balance 20 ¢
associated slot deposit d baiance: balance +d B
— Method withdraw: w balance: (0 max: balance - w) &
« Slot contains Self code

— Parent
« References existing object to inherit slots

Messages and Methods

10/22/08

+ When message is sent, m
object searched for slot with -

name.
« If none found, all parents are parent*
searched. -
— Runtime error if more than one print
parent has a slot with the
same name.
« If slot is found, its contents parent*
evaluated and returned.
— Runtime error if no slot found. X 3
X: -~

Messages and Methods

Mixing State and Behavior

parent®

+ add points
parent* / parent®
X 4 X random

number

y 17 generator
X: = y o
y = y: <~

Hx — 3
obj print ——— print point
object parent*
objx: 4 —— obj print
after setting
x to 4.
parent®
X 3
X: =
Object Creation
* To create an object, ~ tachiea
we copy an old one. et objot e
« We can add new deposit d "FM ice: balance +d B

withdraw: v balance: (0 max: balance - w) 8

methods, override con
existing ones, or even
remove methods.

» These operations also apply to parent slots.

Evahate Disniss

Changing Parent Pointers

frog |jump prince [dance
eatFly .o eatCake
p |parent*
- parent*: =
p jump.
p eatFly. name Charles
p parent: prince. name: -~
p dance.

Changing Parent Pointers

frog |jump prince [dance

eatFly .. eatCake

p |parent*
- parent*: <~
p jump.
p eatFly. name Charles
p parent: prince. name: -
p dance

Disadvantages of classes?

10/22/08

Classes require programmers to understand a
more complex model.

— To make a new kind of object, we have to create a
new class first.

— To change an object, we have to change the class.
— Infinite meta-class regression.

» But: Does Self require programmer to reinvent
structure?

— Common to structure Self programs with traits:
objects that simply collect behavior for sharing.

Contrast with C++

o C++
— Restricts expressiveness to ensure efficient
implementation.

* Self

— Provides unbreakable high-level model of
underlying machine.

— Compiler does fancy optimizations to obtain
acceptable performance.

Implementation Challenges |

« Many, many slow function calls:
— Function calls generally somewhat expensive.

— Dynamic dispatch makes message invocation even
slower than typical procedure calls.

— OO programs tend to have lots of small methods.
— Everything is a message: even variable access!

“The resulting call density of pure object-
oriented programs is staggering, and brings
naive implementations to their

knees” [Chambers & Ungar, PLDI 89]

Implementation Challenges Il

» No static type system

— Each reference could point to any object,
making it hard to find methods statically.

* No class structure to enforce sharing

— Each object having a copy of its methods
leads to space overheads.

Optimized Smalltalk-80 roughly 10
times slower than optimized C.

Optimization Strategies

Avoid per object space requirements.
» Compile, don't interpret.

* Avoid method lookup.

* Inline methods wherever possible.

— Saves method call overhead.

— Enables further optimizations.

"
Clone Families VOIS PO OAIEER 28

Implementation
prototype | Mutable
map
Fixed |Info
Fixed
clone family
M Mutable Mutable
Map
Fixed

10/22/08

Avoid interpreting

Dynamic Compilation

Source Byte Code Machine Code
01001010

LOAD RO

MOV R1 2 01001100
- — | ADD R1 R2 [01001011
"~ *Method First 01000110
. o
“is entered methoq
execution

* Method is converted to byte codes when entered.
» Compiled to machine code when first executed.
» Code stored in cache
« if cache fills, previously compiled method flushed.
» Requires entire source (byte) code to be available.

Lookup Cache

+ Cache of recently used methods, indexed
by (receiver type, message name) pairs.
* When a message is sent, compiler first
consults cache
— if found: invokes associated code.
— if absent: performs general lookup and
potentially updates cache.
+ Berkeley Smalltalk would have been 37%
slower without this optimization.

Static Type Prediction

« Compiler predicts types that are unknown
but likely:
— Arithmetic operations (+, -, <, efc.) have small
integers as their receivers 95% of time in
Smalltalk-80.

—ifTrue had Boolean receiver 100% of the time.
» Compiler inlines code (and test to confirm
guess):

if type = smallInt Jjump to method smalllInt
call general_ lookup

Avoid method lookup

Inline Caches

* First message send from a call site:
— general lookup routine invoked
— call site back-patched
« is previous method still correct?

— yes: invoke code directly
— no: proceed with general lookup & backpatch

» Successful about 95% of the time

+ All compiled implementations of Smalltalk
and Self use inline caches.

Avoid method lookup

Polymorphic Inline Caches

» Typical call site has <10 distinct receiver types.
— So often can cache all receivers.

« At each call site, for each new receiver, extend
patch code:

if type rectangle jump to method_rect
if type circle jump to method circle
call general_ lookup

» After some threshold, revert to simple inline
cache (megamorphic site).

« Order clauses by frequency.

Inline short methods into PIC code.

Inline methods

Customized Compilation

» Compile several copies of each method,
one for each receiver type.

» Within each copy:
— Compiler knows the type of self

— Calls through self can be statically selected
and inlined.

Enables downstream optimizations.
Increases code size.

10/22/08

Type Analysis

« Constructed by compiler by flow analysis.

» Type: set of possible maps for object.
— Singleton: know map statically
— Union/Merge: know expression has one of a

fixed collection of maps.

— Unknown: know nothing about expression.

« If singleton, we can inline method.

« If type is small, we can insert type test and
crate branch for each possible receiver
(type casing).

Message Splitting

* Type information above a

merge point is often better.
* Move message send “before”
merge point:
— duplicates code
— improves type information
— allows more inlining

PICS as Type Source

« Polymorphic inline caches build a call-site
specific type database as the program runs.

« Compiler can use this runtime information
rather than the result of a static flow analysis
to build type cases.

* Must wait until PIC has collected information.

— When to recompile?

— What should be recompiled?

Initial fast compile yielding slow code; then

dynamically recompile hotspots.

Performance Improvements

« Initial version of Self was 4-5 times slower
than optimized C.

» Adding type analysis and message
splitting got within a factor of 2 of
optimized C.

* Replacing type analysis with PICS
improved performance by further 37%.

Current Self compiler is within a
factor of 2 of optimized C.

Impact on Java

Self with Sun cancels Self |animorphics
PICs Smalltalk

Java becomes popular

Animorphics| Java
Java Sun buys A.J. Hotspot

Summary

+ “Power of simplicity”
— Everything is an object: no classes, no variables.
— Provides high-level model that can’t be violated

(even during debugging).

» Fancy optimizations recover reasonable
performance.

* Many techniques now used in Java compilers.

» Papers describing various optimization
techniques available from Self web site.

http://research.sun.com/self/ ‘

