
10/22/08

1

Scripting Languages

Kathleen Fisher

What are scripting languages?
•  Unix shells: sh, ksh, bash

–  job control
•  Perl

–  Slashdot, bioinformatics, financial data processing, cgi
•  Python

–  System administration at Google
–  BitTorrent file sharing system

•  Ruby
–  Various blogs, data processing applications

•  PHP
–  Yahoo web site

•  JavaScript
–  Google maps “The glue that holds

 the web together”

Characteristics
•  Interpreted (no compilation step)
•  Dynamically typed
•  High-level model of underlying machine
•  Garbage collected
•  Don’t have to declare variables

Designed to support “quick programming”

Design philosophy
 Often people, especially computer engineers, focus on

the machines. They think, "By doing this, the
machine will run faster. By doing this, the machine
will run more effectively. By doing this, the machine
will something something something." They are
focusing on the machines. But in fact we need to
focus on humans, on how humans care about doing
programming or operating the application of the
machines. We are the masters. They are the slaves.

 Yukihiro “Matz” Matsumoto
 Creator of Ruby

Demo: Getting the homework
•  What if I don’t want to go to the web site

to see if I have cs242 homework?
•  Write a script to check for me!

> hwk http://www.stanford.edu/class/cs242/handouts/index.html
Hwk 1 was due on Wednesday, October 05.
Hwk 2 was due on Wednesday, October 12.
Hwk 3 is due on Wednesday, October 19.

#!/sw/bin/ruby
require 'uri'; require 'net/http'

uri= URI.parse(ARGV[0])
h=Net::HTTP.new(uri.host,80)

resp,data = h.get(uri.path)
hwk = {}
if resp.message == "OK"
 data.scan(/Homework (\d*) \(due (\d*)\/(\d*)\)/)\
 {|x,y,z| hwk[x] = Time.local(2005,y,z)}
end

hwk.each{| assignment, duedate|
 if duedate < (Time.now - 60 * 60 * 24)
 puts "Hwk #{assignment} was due on #{duedate.strftime("%A, %B %d")}."
 else
 puts "Hwk #{assignment} is due on #{duedate.strftime("%A, %B %d")}."
 end
 }

10/22/08

2

#!/sw/bin/ruby
require 'uri'; require 'net/http'

uri= URI.parse(ARGV[0])
h=Net::HTTP.new(uri.host,80)

resp,data = h.get(uri.path)
hwk = {}
if resp.message == "OK"
 data.scan(/Homework (\d*) \(due (\d*)\/(\d*)\)/)\
 {|x,y,z| hwk[x] = Time.local(2005,y,z)}
end

hwk.each{| assignment, duedate|
 if duedate < (Time.now - 60 * 60 * 24)
 puts "Hwk #{assignment} was due on #{duedate.strftime("%A, %B %d")}."
 else
 puts "Hwk #{assignment} is due on #{duedate.strftime("%A, %B %d")}."
 end
 }

“Shebang”

#!/sw/bin/ruby
require 'uri'; require 'net/http'

uri = URI.parse(ARGV[0])
h = Net::HTTP.new(uri.host,80)

resp,data = h.get(uri.path)
hwk = {}
if resp.message == "OK"
 data.scan(/Homework (\d*) \(due (\d*)\/(\d*)\)/)\
 {|x,y,z| hwk[x] = Time.local(2005,y,z)}
end

hwk.each{| assignment, duedate|
 if duedate < (Time.now - 60 * 60 * 24)
 puts "Hwk #{assignment} was due on #{duedate.strftime("%A, %B %d")}."
 else
 puts "Hwk #{assignment} is due on #{duedate.strftime("%A, %B %d")}."
 end
 }

Many useful
 libraries

#!/sw/bin/ruby
require 'uri'; require 'net/http'

uri= URI.parse(ARGV[0])
h=Net::HTTP.new(uri.host,80)

resp,data = h.get(uri.path)
hwk = {}
if resp.message == "OK"
 data.scan(/Homework (\d*) \(due (\d*)\/(\d*)\)/)\
 {|x,y,z| hwk[x] = Time.local(2005,y,z)}
end

hwk.each{| assignment, duedate|
 if duedate < (Time.now - 60 * 60 * 24)
 puts "Hwk #{assignment} was due on #{duedate.strftime("%A, %B %d")}."
 else
 puts "Hwk #{assignment} is due on #{duedate.strftime("%A, %B %d")}."
 end
 }

Powerful regular
 expression support

#!/sw/bin/ruby
require 'uri'; require 'net/http'

uri= URI.parse(ARGV[0])
h=Net::HTTP.new(uri.host,80)

resp,data = h.get(uri.path)
hwk = {}
if resp.message == "OK"
 data.scan(/Homework (\d*) \(due (\d*)\/(\d*)\)/)\
 {|x,y,z| hwk[x] = Time.local(2005,y,z) }
end

hwk.each{| assignment, duedate|
 if duedate < (Time.now - 60 * 60 * 24)
 puts "Hwk #{assignment} was due on #{duedate.strftime("%A, %B %d")}."
 else
 puts "Hwk #{assignment} is due on #{duedate.strftime("%A, %B %d")}."
 end
 }

Associative
 arrays

#!/sw/bin/ruby
require 'uri'; require 'net/http'

uri= URI.parse(ARGV[0])
h=Net::HTTP.new(uri.host,80)

resp,data = h.get(uri.path)
hwk = {}
if resp.message == "OK"
 data.scan(/Homework (\d*) \(due (\d*)\/(\d*)\)/)\
 {|x,y,z| hwk[x] = Time.local(2005,y,z)}
end

hwk.each{| assignment, duedate|
 if duedate < (Time.now - 60 * 60 * 24)
 puts "Hwk #{assignment} was due on #{duedate.strftime("%A, %B %d")}."
 else
 puts "Hwk #{assignment} is due on #{duedate.strftime("%A, %B %d")}."
 end
 }

String processing

Shebang
•  In Unix systems, shebang tells the O/S how

to evaluate an executable text file.

•  Advantages: Don’t need file extensions,
program looks built-in, and can change
implementation transparently.

> ./doit args

#! interp-path
prog-text

doit:

> interp-path doit args

10/22/08

3

Large standard library
•  Date, ParseDate
•  File, Tempfile
•  GetoptLong: processing command line switches
•  profile: automatic performance profiling
•  Pstore: automatic persistence
•  BasicSocket, IPSocket, TCPSocket, TCPServer, UDPSocket,

Socket
•  Net::FTP, Net::HTTP, Net::HTTPResponse, Net::POPMail,

Net::SMTP, Net::Telnet
•  CGI: cookies, session mngt.

Contributing users
•  Ruby Application Archive (RAA)

–  http://raa.ruby-lang.org/
–  144 library categories, 833 libraries available
–  eg: URI library, database access

•  Comprehensive Perl Archive Network (CPAN)
–  http://www.cpan.org/
–  8853 Perl modules from 4655 authors
–  “With Perl, you usually don’t have to write much

code: just find the code that somebody else has
already written to solve your problem.”

Example: URI and HTTP libs
require 'uri'; require 'net/http'

uri = URI.parse(ARGV[0])
h = Net::HTTP.new(uri.host,80)

resp,data = h.get(uri.path)

Require clauses
 cause Ruby to load
 named libraries.

Example: URI and HTTP libs
require 'uri'; require 'net/http'

uri = URI.parse(ARGV[0])
h = Net::HTTP.new(uri.host,80)

resp,data = h.get(uri.path)

URI.parse converts
 argument string into a
 uri object, with host
 and path components
 (among other things).

Example: URI and HTTP libs
require 'uri'; require 'net/http'

uri = URI.parse(ARGV[0])
h = Net::HTTP.new(uri.host,80)

resp,data = h.get(uri.path)

Net::HTTP.new creates
 an http connection
 object, ready to
 converse with the
 specified host on the
 indicated port.

Example: URI and HTTP libs
require 'uri'; require 'net/http'

uri = URI.parse(ARGV[0])
h = Net::HTTP.new(uri.host,80)

resp,data = h.get(uri.path)

h.get asks to retrieve
 the headers and
 content of the given
 path from the site
 associated with h. It
 returns a pair of the
 response code and the
 payload data.

10/22/08

4

Strings
•  Strings are just objects:

•  Strings can include expressions with # operator:

•  Plus operator concatenates strings:

•  Many more operations (more than 75!).

“hermione”.length yields 8

“3 + 4 = #{3+4}” yields “3 + 4 = 7”

“Hermione” + “ Granger” yields “Hermione Granger”

Powerful regular expressions
•  Regular expressions are patterns that match

against strings, possibly creating bindings in
the process. Uses greedy matching.

•  In Ruby, regular expressions are objects
created with special literal forms:

•  Examples:

/reg-exp/ or %r{reg-exp}

/arr/ matches strings containing arr
/\s*\|\s*/ matches a | with optional white space

Simple matches
All characters except .|()[\^{+$*? match themselves

.|()[\^{+$*? Precede by \ to match directly

. Matches any character
[characters] Matches any single character in […]

May include ranges; Initial ^ negates
\d Matches any digit
\w Matches any “word” character
\s Matches any whitespace
^ Matches the beginning of a line
$ Matches the end of a line

Compound matches
re* Matches 0 or more occurrences of re.
re+ Matches 1 or more occurrences of re.
re{m,n} Matches at least m and no more than

n occurrences of re.
re? Matches zero or one occurrence of re.
re1 | re2 Matches either re1 or re2
(…) Groups regular expressions and

directs interpretor to introduce bindings
for intermediate results.

Introducing bindings
Matching a string against a regular expression
causes interpretor to introduce bindings:

$` Portion of string that preceded match.

$& Portion of string that matched.

$’ Portion of string after match.

$1, $2,
…

Portion of match within ith set of
parentheses.

Using regular expressions
We can use these bindings to write functions to display
the results of a match:

showre(“hello”, /l+/) yields “he--->ll<---o”
showone(“hello”, /(l+)/) yields “ll”

def showre(str,regexp)
 if str =~ regexp
 "#{$`}--->#{$&}<---#{$'}"
 else
 "match failed"
 end
end

def showone(str,regexp)
 if str =~ regexp
 "#{$1}"
 else
 "match failed"
 end
end

10/22/08

5

Example: Finding homework

<TH>3</TH>
<TD>Homework 3 (due 10/19)</TD>
<!--<TD>PS</TD>-->
<TD>PDF</TD>
</TR>

To match the homework assignment portion of the
 course website, we can use the regular expression:

/Homework (\d*) \(due (\d*)\/(\d*)\)/

Example: Finding homework

<TH>3</TH>
<TD>Homework 3 (due 10/19)</TD>
<!--<TD>PS</TD>-->
<TD>PDF</TD>
</TR>

To match the homework assignment portion of the
 course website, we can use the regular expression:

/Homework (\d*) \(due (\d*)\/(\d*)\)/

Associative Arrays
•  Like arrays, indexed collection of objects
•  Unlike arrays, index can be any kind of object

aa = {'severus' => 'snape', 'albus' => 'dumbledore'}
aa['harry'] = 'potter'
aa['hermione'] = 'granger'
aa['ron'] = 'weasley'

def putaa(aa)
 aa.each{|first,last| puts first + " " + last}
end

puts aa['ginny']

#!/sw/bin/ruby
require 'uri'; require 'net/http'

uri= URI.parse(ARGV[0])
h=Net::HTTP.new(uri.host,80)

resp,data = h.get(uri.path)
hwk = {}
if resp.message == "OK"
 data.scan(/Homework (\d*) \(due (\d*)\/(\d*)\)/)\
 {|x,y,z| hwk[x] = Time.local(2005,y,z)}
end

hwk.each{| assignment, duedate|
 if duedate < (Time.now - 60 * 60 * 24)
 puts "Hwk #{assignment} was due on #{duedate.strftime("%A, %B %d")}."
 else
 puts "Hwk #{assignment} is due on #{duedate.strftime("%A, %B %d")}."
 end
 }

Other features
•  Reflection allows querying an object for its

capabilities at run-time
–  obj.class returns the class of an object
–  obj.methods returns its methods

•  “Native” modules
–  Relatively easy to implement Ruby modules in C for better

performance.
–  Provides APIs to access Ruby objects as C data structures

•  Swig allows wrapping of existing C/C++ libraries to
import into various scripting languages.

Tainting
•  Problem: How to ensure untrusted input data does

not corrupt one’s system?
•  Solution:

–  Track the influence of input data, marking dependent data as
tainted.

–  Disallow risky actions based on tainted data depending upon
a programmer-specified safety level.

In Ruby, the default safety level (0) permits everything.
Levels 1 to 4 add various restrictions;
The demo program fails to run at level 1.

10/22/08

6

Design Slogans
•  Optimize for people, not machines
•  Principle of Least Surprise (after you know the

language well…)
•  There’s more than one way to do it

(TMTOWTDI, pronounced Tim Toady)
•  No built-in limits
•  Make common things short
•  Make easy tasks easy and hard tasks possible
•  Executable pseudo-code

Some downsides…
•  “Write once, read never”

–  Perl in particular seems to facilitate writing difficult to
read programs. A consequence of TMTOWDI?

•  Performance can be difficult to predict
–  Fast: regular expression processing
–  Slow: threads
–  Shell calls?

•  Errors are detected dynamically

The past…
•  Unix shells: sh, ksh, bash (1971)
•  Perl (Larry Wall, 1987)
•  Python (Guido van Rossum, 1990)
•  Ruby (Yukihiro “Matz” Matsumoto, 1995)
•  PHP (Rasmus Lerdorf, 1995)
•  JavaScript (Brendan Eich, 1995)

Two things to note:
•  Each language was driven by one person
•  1995 was a big year…

The present…
•  Ruby, Perl, Python, etc., are all open source.
•  Rely on volunteers to

–  Write documentation
–  Write test cases
–  Maintain the systems
–  Port to new platforms
–  Fix bugs
–  Implement libraries
–  Implement new features
–  and more…

Sprit of fun
•  “The joy of Ruby”
•  “Golfing”

–  Competitions in which each entrant endeavors to
solve some problem with the minimum of keystrokes.

•  Poetry
–  About the language
–  In the language
–  Generated by the language
–  Original and transliterations

•  Obfuscation competitions

print STDOUT q
Just another Perl hacker,
unless $spring

Larry Wall

Obfuscation contests
Any guesses as to what this Perl program does?

@P=split//,".URRUU\c8R";@d=split//,”\nrekcah xinU / lreP rehtona tsuJ";sub p{
@p{"r$p","u$p"}=(P,P);pipe"r$p","u$p";++$p;($q*=2)+=$f=!fork;map{$P=$P[$f^ord
($p{$_})&6];$p{$_}=/ ^$P/ix?$P:close$_}keys%p}p;p;p;p;p;map{$p{$_}=~/^[P.]/&&
close$_}%p;wait until$?;map{/^r/&&<$_>}%p;$_=$d[$q];sleep rand(2)if/\S/;print

10/22/08

7

Obfuscation contests
Any guesses as to what this Perl program does?

It slowly prints:

It works by forking 32 processes, each of which prints one
letter in the message. It uses pipes for coordination.

http://perl.plover.com/obfuscated/ describes how it works.

@P=split//,".URRUU\c8R";@d=split//,”\nrekcah xinU / lreP rehtona tsuJ";sub p{
@p{"r$p","u$p"}=(P,P);pipe"r$p","u$p";++$p;($q*=2)+=$f=!fork;map{$P=$P[$f^ord
($p{$_})&6];$p{$_}=/ ^$P/ix?$P:close$_}keys%p}p;p;p;p;p;map{$p{$_}=~/^[P.]/&&
close$_}%p;wait until$?;map{/^r/&&<$_>}%p;$_=$d[$q];sleep rand(2)if/\S/;print

Just another Perl / Unix hacker

On to the future
•  Ruby 2, Python 3000, Perl 6, all in the works.

–  User communities working with language originator
to plan the future.

–  Projects to revise languages without worry about
backwards compatibility.

•  Perl 6 (a very dynamic language…)
–  Parrot runtime system, designed to be used by other

scripting languages as well. Will they?
–  Pugs implementation of Perl 6 completed (in

Haskell).
"We're really serious about reinventing everything
that needs reinventing." --Larry Wall

