
10/22/08

1

Interoperability

Kathleen Fisher

Why is interoperability important?
•  Write each part of a complex system in a language

well-suited to the task:
–  C for low-level machine management
–  Java/C#/Objective-C for user-interface
–  Ocaml/ML for tree transformations

•  Integrate existing systems:
–  implemented in different languages
–  for different operating systems
–  on different underlying hardware systems

Java

C
ML

Why is it hard?
•  Languages make different choices:

–  Function calling conventions
•  caller vs callee saved registers

–  Data representations
•  strings, object layout

–  Memory management
•  tagging scheme

•  Interoperating requires
bridging the gap.

C/C++ as Lingua Franca
•  Ubiquitous
•  Computation model is underlying machine:

–  Other languages already understand.
–  No garbage collection.

•  Representations well-known and fixed
–  Millions of lines of code would break if changed.

Java

C

ML

Marshaling and Unmarshaling
•  Convert data representations from one

language to another.
•  Easier when one end

is C as rep is known.
•  Policy choice:

copy or leave abstract?
•  Tedious, low-level
•  Modulo policy, fixed by two languages

Integer int

String char *

Window * void *

window
 data *

?

Interface specifications
•  Contract describing what an implementation written in

one language will provide for another.
–  Inferred from high-level language: JNI
–  Inferred from C header files: SWIG
–  Specified in Interface Definition Language:

ocamlidl, COM, CORBA

•  Allow tools to generate marshaling/unmarshaling code
automatically.

Interface Compiler

Marshal

Unmarshal

10/22/08

2

JNI: Integrating C/C++ and Java
•  Java Native Interface

–  Allows Java methods to be implemented in C/C++.
–  Such methods can

•  create, inspect, and send messages to Java objects
•  modifiy Java objects & have changes reflected to system
•  catch and throw exceptions in

C that Java will handle.

•  JNI enforces policy in
which pointers are
abstract.

java.sun.com/docs/books/tutorial/native1.1/TOC.html

JNI Example: Hello World!

HelloWorld.java
Write Java
Program

JNI Example: Hello World!

HelloWorld.java javac HelloWorld.class
Write Java
Program

JNI Example: Hello World!

HelloWorld.java javac HelloWorld.class

javah -jni

HelloWorld.h

Write Java
Program

JNI Example: Hello World!

Write C
Code

HelloWorld.java javac HelloWorld.class

javah -jni

HelloWorld.h

Write Java
Program

jni.h stdio.h

HelloWorldImpl.c

JNI Example: Hello World!

Write C
Code

HelloWorld.java javac HelloWorld.class

javah -jni

HelloWorld.h

Write Java
Program

jni.h stdio.h

HelloWorldImpl.c gcc hello.so

10/22/08

3

JNI Example: Hello World!

Write C
Code

HelloWorld.java javac HelloWorld.class

javah -jni

HelloWorld.h

Write Java
Program

jni.h stdio.h

HelloWorldImpl.c gcc hello.so

java

“Hello, World!”

JNI Example: Write Java Code
class HelloWorld {
 public native void displayHelloWorld();

 static {
 System.loadLibrary("hello");
 }

 public static void main(String[] args) {
 new HelloWorld().displayHelloWorld();
 }
}

JNI Example: Compile Java Code

javac HelloWorld.java

café babe 0000 002e 001b 0a00 0700 1207
0013 0a00 0200 120a 0002 0014 0800 130a
…

JNI Example: Generate C Header

#include <jni.h>
/* Header for class HelloWorld */
#ifndef _Included_HelloWorld
 #define _Included_HelloWorld
 #ifdef __cplusplus
 extern "C" {
 #endif

JNIEXPORT void JNICALL
 Java_HelloWorld_displayHelloWorld
 (JNIEnv *, jobject);
#endif

javah -jni
 HelloWorld.java

Function takes two “extra”
 arguments:
 - environment pointer
 - object pointer (this)

JNI Example: Write C Method
#include <jni.h>
#include "HelloWorld.h”
#include <stdio.h>

JNIEXPORT void JNICALL
Java_HelloWorld_displayHelloWorld(JNIEnv *env, jobject obj) {
 printf("Hello world!\n");
 return;
}

Implementation includes 3 header files:
 - jni.h: provides information that C needs to
 interact with JVM
 - HelloWorld.h: generated in previous step
 - stdio.h: provides access to printf.

JNI Example: Create Shared Lib
How to create a shared library depends on platform:

cc -G -I/usr/local/java/include \
 -I/usr/local/java/include/solaris \
 HelloWorldImp.c -o libhello.so

cl -Ic:\java\include
 -Ic:\java\include\win32
 -LD HelloWorldImp.c -Fehello.dll

Solaris:

Microsoft Windows w/ Visual C++ 4.0:

10/22/08

4

JNI Example: Run Program

java HelloWorld

Hello World!

JNI: Type Mapping
•  Java primitive types map to corresponding types in C.
•  All Java object types are passed by reference.

JNI: Method Mapping
•  The javah tool uses type mapping to

generate prototypes for native methods:

JNI: Accessing Java Strings
•  Type jstring is not char *!
•  Native code must treat jstring as an abstract

type and use env functions to manipulate:

JNIEXPORT jstring JNICALL
Java_Prompt_getLine(JNIEnv *env, jobject obj, jstring prompt)
{
 char buf[128];
 const char *str = (*env)->GetStringUTFChars(env, prompt, 0);
 printf("%s", str);
 (*env)->ReleaseStringUTFChars(env, prompt, str);
 ...
 scanf("%s", buf);
 return (*env)->NewStringUTF(env, buf);
}

JNI: Calling Methods
•  Native methods can invoke Java methods

using the environment argument:

JNIEXPORT void JNICALL
Java_Callbacks_nativeMethod(JNIEnv *env, jobject obj, jint depth)
{
 jclass cls = (*env)->GetObjectClass(env, obj);
 jmethodID mid = (*env)->GetMethodID(env, cls, "callback", "(I)V");
 if (mid == 0) {
 return;
 }
 printf("In C, depth = %d, about to enter Java\n", depth);
 (*env)->CallVoidMethod(env, obj, mid, depth);
 printf("In C, depth = %d, back from Java\n", depth);
}

JNI: Summary
•  Allows Java methods to be implemented in C/C++.
•  Interface determined by native method signature.
•  Tools generate C interfaces and marshaling code.
•  References are treated abstractly, which facilitates

memory management.
•  Environment pointer provides access

to JVM services such as object
creation and method invocation.

10/22/08

5

SWIG
•  Tool to make C/C++ libraries easily available in

many high level languages:

•  Goal: Read interface from C/C++ headers,
requiring annotations only to customize.

•  Marshaling policy: references treated opaquely. C
library must provide extra functions to allow high-
level language to manipulate.

www.swig.org

Tcl, Python, Perl, Guile, Java, Ruby, Mzscheme, PHP, Ocaml, Pike,
C#, Allegro CL, Modula-3, Lua, Common Lisp, JavaScript, Eiffel, …

Interface Definition Languages
•  IDLs provide some control over marshaling

policies:
–  Are parameters in, out, or both?
–  Is NULL a distinguished value?
–  Should payload of pointers be copied or left abstract?
–  Is char* a pointer to a character or a string?
–  Is one parameter the length of an argument array?
–  Who is responsible for allocating/deallocating space?

•  Language-specific IDL compilers generate glue
code for marshaling/unmarshaling.

IDLs
•  Typically look like C/C++ header files with additional

declarations and attributes.

•  Annotations tell high-level language how to interpret C/C
++ parameters.

•  Unlike SWIG, pointers don’t have to be abstract on high-
level language side.

•  Unlike JNI, pointers don’t have to be abstract on C side.

int foo([out] long* l,
 [string, in] char* s,
 [in, out] double * d);

IDLs: Pointer Annotations
•  Five annotations to clarify role of pointers:

–  ref: a unique pointer that can be safely marshaled.
–  unique: just like ref except it may also be null.
–  ptr: could be shared, could point to cyclic data;

can’t be marshaled.
–  string char*: null terminated sequence of

characters, should be treated like a string.
–  size_is(parameter_name) : pointer is array

whose length is given by parameter_name.

void DrawPolygon
 ([in, size_is(nPoints)] Point* points,
 [in] int nPoints)

Examples of IDL-based Systems
•  Simple high-level language to C bindings:

–  camlidl, H/Direct, mlidl, etc.
•  COM: Microsoft’s interoperability platform.
•  CORBA: OMG’s interoperability platform.

COM and CORBA both leverage the idea of IDLs
to go well beyond simple interoperability, supporting
distributed components: collections of related
behaviors grouped into objects.

COM: Component Object Model
•  Purpose (marketing page)

–  “COM is used by developers to create re-usable
software components, link components together to
build applications, and take advantage of Windows
services. …”

•  Used in applications like Microsoft Office.
•  Current incarnations

–  COM+, Distributed COM (DCOM) , ActiveX Controls
•  References

–  Don Box, Essential COM
–  MS site: http://www.microsoft.com/com/

10/22/08

6

COM
•  Each object (aka server) supports multiple

interfaces, each representing a different view
of the object.

•  COM clients acquire pointers to one of an
object’s interfaces and invoke methods
through that pointer as if object were local.

•  All COM objects provide QueryInterface
method to support dynamic interface
discovery.

Server
Object Interface Client

Versioning
•  Microsoft uses multiple interfaces to support

versioning.
•  Objects never modify existing interfaces,

merely add new ones.
•  New client code asks for newer server

interfaces; legacy code can continue to ask
for older versions.

Server
Object Interface Client

Binary Compatibility
•  COM specifies that object implementations

must conform to C++ vtable layout.
•  Each object can be implemented in any

language as long as compiler for language
can produce vtables.

•  Interfaces of COM objects described in MIDL.
•  Language-specific IDL compiler generates

proxy/stub functions for marshaling and
unmarshaling to a wire format.

Execution Model, Local
•  If executing in the same address space, client

and server objects are dynamically linked.

•  The first time a message is sent to server,
code in initial stub vtable finds and loads code,
replacing itself with the actual vtable.

Client Server

Execution Model, Remote
•  If executing in different address spaces, stub

vtable marshals arguments, sends message
to remote object, waits for response,
unmarshals it and delivers it.

Client Server

Wire

Stub

COM: Grid Example
•  Grid server object maintains two

dimensional array of integers.
•  Supports two groups of methods:

get() : gets value stored at argument location.
set() : sets value at argument location.

reset() : resets value of all cells to supplied value.
IGrid2

IGrid1

10/22/08

7

COM: Grid Example IDL

// uuid and definition of IGrid1
[object,
 uuid(3CFDB283-CCC5–11D0-BA0B-00A0C90DF8BC),
 helpstring("IGrid1 Interface"),
 pointer_default(unique)
]
interface IGrid1 : IUnknown {
 import "unknwn.idl";
 HRESULT get([in] SHORT n, [in] SHORT m, [out] LONG *value);
 HRESULT set([in] SHORT n, [in] SHORT m, [in] LONG value);
};

•  Portion of IDL file to describe IGrid1 interface:

•  Each interface has a globally unique GUID and
extends the IUnknown interface, which provides
queryInterface and reference counting methods.

COM: Grid Example Client Code

#include "grid.h”
void main(int argc, char**argv) {
 IGrid1 *pIGrid1;
 IGrid2 *pIGrid2;
 LONG value;
 CoInitialize(NULL); // initialize COM
 CoCreateInstance(CLSID_CGrid, NULL, CLSCTX_SERVER,
 IID_IGrid1, (void**) &pIGrid1);
 pIGrid1->get(0, 0, &value);
 pIGrid1->QueryInterface(IID_IGrid2, (void**) &pIGrid2);
 pIGrid1->Release();
 pIGrid2->reset(value+1);
 pIGrid2->Release();
 CoUninitialize();
}

my.execpc.com/~gopalan/misc/compare.html

COM Summary
•  Object servers are abstract data types described by

interfaces.
•  Object servers can be loaded dynamically and

accessed remotely.
•  Clients interrogate server objects for functionality via

RTTI-like constructs (ie, queryInterface).
•  Clients notify server objects when references are

duplicated or destroyed to manage memory.
•  Supports binary-compatible multi-language

programming.

Server
Object Interface Client

CORBA
•  Interoperability where systems can’t be tightly

coupled:
–  Companies working together (telecommunications,

medical, etc.)
–  Large system integrations

•  Can’t enforce same language, same OS, or
same hardware.
–  Engineering tradeoffs, cost effectiveness, legacy

systems

OMG
•  CORBA is a standard developed by the

Object Management Group.
–  Common Object Request Broker Architecture
–  Over 700 participating companies
–  Request for proposal process

•  Example:
–  Telecommunications industry uses CORBA to

manage provisioning process, in which
competitors have to work together.

CORBA Concept
•  Insert “broker” between client and server,

called the Object Request Broker.

CLIENT

ORB
request

ORB
Result/
error

SERVER/OBJECT
 IMPLEMENTATION

10/22/08

8

Client

IDL
Stub

ORB
Interface

ORB Core

ORB
Interface

IDL
Skeleton

Object
Adapter

Server

ORB Core

Internet
Inter-ORB Protocol
(IIOP)

CORBA Architecture
Server described in IDL.
Compiler generates Stub
 and Skeleton from
 description.

Functions of ORB
•  Communication between client and server

–  Insulates application from system configuration details

•  Local ORB
–  Intercepts calls via stub code
–  Locates server object host machine
–  Sends message with wire representation of request.

•  Remote ORB/Object Adaptor
–  Finds server object implementation, potentially starting new

server if necessary, and delivers message.
–  Returns results or error messages to local ORB

CORBA: Grid Example IDL

interface grid1 {
 long get(in short n, in short m);
 void set(in short n, in short m, in long value);
};

interface grid2 {
 void reset(in long value);
};

// multiple inheritance of interfaces
interface grid: grid1, grid2 {};

CORBA: Grid Client Code
import org.omg.CORBA.*;
import org.omg.CosNaming.*;
import Grid.*;
public class GridClient{
 public static void main(String[] args){
 try{
 ORB orb = ORB.init();
 NamingContext root =
 NamingContextHelper.narrow(
 orb.resolve_initial_references("NameService"));
 NameComponent[] name = new NameComponent[1] ;
 name[0] = new NameComponent(”GRID","");
 Grid gridVar = GridHelper.narrow(root.resolve(name));
 value = gridVar.get(0, 0);
 gridVar.reset(value+1);
 } catch(SystemException e){System.err.println(e);}
 }
}

CORBA Summary
•  Interoperability for loosely coupled systems.
•  Interface definition language specifies server

object functionality.
•  Language-specific IDL compiler generates

stubs and skeletons.
•  ORB and related services manage

remote message sending.

.NET Framework
•  Microsoft cross-language platform

–  Many languages can use/extend .NET Framework
•  Compile language to MSIL

–  All languages are conceptually interoperable

•  Focus on security and trust
–  Building, deploy, and run semi-trusted applications

•  Two key components
–  Common Language Runtime
–  .NET Framework Class Library

10/22/08

9

Current .NET Languages
•  C++
•  Visual Basic
•  C#
•  Jscript
•  J#
•  Perl
•  Python
•  Fortran
•  COBOL
•  Eiffel
•  Haskell

•  SmallTalk
•  Oberon
•  Scheme
•  Mercury
•  Oz
•  RPG
•  Ada
•  APL
•  Pascal
•  ML

C# Scheme

MSIL MSIL

Common
 Language
 Runtime

Here the MSIL/CLR is playing
the role of the lingua franca.

string s = "authors";
SqlCommand cmd = new SqlCommand("select * from "+s, sqlconn);
cmd.ExecuteReader();

.NET: SQL Program Examples

String *s = S"authors"; �
SqlCommand cmd = new SqlCommand(

 String::Concat(S"select * from ", s),

 sqlconn); �
cmd.ExecuteReader();

String *s = S"authors"; �
SqlCommand cmd = new SqlCommand(
 String::Concat(S"select * from ", s),
 sqlconn); �
cmd.ExecuteReader();

s = "authors"
cmd = SqlCommand("select * from " + s, sqlconn)
cmd.ExecuteReader()

.NET: SQL Program Examples
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
REPOSITORY.
 CLASS SqlCommand AS "System.Data.SqlClient.SqlCommand"
 CLASS SqlConnection AS "System.Data.SqlClient.SqlConnection".
DATA DIVISION.
WORKING-STORAGE SECTION.
01 str PIC X(50).
01 cmd-string PIC X(50).
01 cmd OBJECT REFERENCE SqlCommand.
01 sqlconn OBJECT REFERENCE SqlConnection.
PROCEDURE DIVISION.
 *> Establish the SQL connection here somewhere.
MOVE "authors" TO str.
STRING "select * from " DELIMITED BY SIZE,
 str DELIMITED BY " " INTO cmd-string.
INVOKE SqlCommand "NEW" USING BY VALUE cmd-string sqlconn RETURNING cmd.
INVOKE cmd "ExecuteReader".

.NET: SQL Program Examples

.NET Interoperability
•  As examples illustrate, language

implementers make CLR Framework Class
Hierarchy available within language.

•  Compilers can record meta data
along with MSIL code.

•  Other languages can read meta
data to use compiled code from
other languages.

•  Requires cooperation between
compiler writers.

.NET Summary
•  Compile multiple languages to common

intermediate language (MSIL) which serves
as lingua franca instead of C/C++.

•  MSIL executed by virtual machine
–  Similar to Java VM in many respects
–  More elaborate security model
–  JIT is standard, instead of interpreter

•  MSIL contains special provisions for certain
languages.

10/22/08

10

Summary
•  Interoperability is a difficult problem, with lots of low-

level details.
•  C/C++ can serve as a lingua franca.
•  Interface definition languages specify interfaces

between components.
•  IDL compilers can generate marshaling code.
•  COM and CORBA leverage IDLs to support

distributed computation.
•  .NET’s MSIL and CLR can serve as a higher level

lingua franca.

