

COMP 141: Probabilistic Robotics for Human-Robot Interaction

Instructor: Jivko Sinapov

www.cs.tufts.edu/~jsinapov

Today: Reinforcement Learning

observation

Announcements

Reading Assignments

Monte Carlo Planning Demo

Policy Rollout Algorithm

- 1. For each a_i run SimQ(s, a_i , π ,h) w times
- 2. Return action with best average of SimQ results

Policy Rollout Algorithm

```
SimQ(s,a,\pi,h)
r = R(s,a)
s = T(s,a)
for i = 1 to h-1
r = r + \beta^{i} R(s, \pi(s))
s = T(s, \pi(s))
Return r
simulate a in s
s = mathematical simulate a in s
s = number of simul
```

- Simply simulate taking **a** in **s** and following policy for h-1 steps, returning discounted sum of rewards
- Expected value of SimQ(s,a, π ,h) is Q_{π} (s,a,h)

Python Demo of Policy Improvement

S0	a0	27.16
S0	a1	27.81
S1	a0	29.83
S1	a1	27.66
S2	a0	25.77
S2	a1	25.94

S0	a0	46.67
S0	a1	47.37
S1	a0	48.86
S2	a1	47.14
S3	a0	44.29
S3	a1	44.95

Horizon = 30 time steps Discount factor = 1.0 State-action value table with random policy

State-action value table with policy derived from table 1

Monte Carlo Tree Search

Applications

 https://www.youtube.com/watch?v=NscV-RpRS Rw

 https://www.youtube.com/watch?v=gDG1WgZq GKU

https://www.youtube.com/watch?v=fS5tTa_Tl1Y

Reinforcement Learning

observation

BE a reinforcement learner

- You, as a class, will act as the learning agent
- Actions: wave, clap, or nod
- Observations: color, reward
- Goal: find an optimal policy
 - What is a policy? What makes a policy optimal?

What actually happened...

A Simple RL Algorithm: Q-learning

+ 100 reward for getting to S6 0 for all other transitions

Update rule upon executing action a, ending up in state s' and observing reward r:

$$Q(s, a)=r + \gamma \max a' Q(s', a')$$

 $\gamma = 0.5$ (discount factor)

Q-Table

S1	right
S1	down
S2	right
S2	left
S2	down
S3	left
S3	down
S4	up
S4	right
S5	left
S5	up
S5	right

+ 100 reward for getting to S6 0 for all other transitions

Update rule upon executing action a, ending up in state s' and observing reward r :

$$Q(s, a)=r + \gamma \max a' Q(s', a')$$

 $\gamma = 0.5$ (discount factor)

Q-Table

S1	right	25
S1	down	25
S2	right	50
S2	left	12.5
S2	down	50
S3	left	25
S3	down	100
S4	up	12.5
S4	right	50
S5	left	25
S5	up	25
S5	right	100

Example with larger board

Q-Learning Algorithm

```
Q-learning (off-policy TD control) for estimating \pi \approx \pi_*

Initialize Q(s,a), for all s \in \mathcal{S}, a \in \mathcal{A}(s), arbitrarily, and Q(terminal\text{-}state,\cdot) = 0

Repeat (for each episode):

Initialize S

Repeat (for each step of episode):

Choose A from S using policy derived from Q (e.g., \epsilon\text{-}greedy)

Take action A, observe R, S'

Q(S,A) \leftarrow Q(S,A) + \alpha \left[R + \gamma \max_a Q(S',a) - Q(S,A)\right]

S \leftarrow S'

until S is terminal
```

Other Approaches

Some Applications of RL in Robotics

https://www.youtube.com/watch?v=W_gxLKSsSIE &t=12s

https://www.youtube.com/watch?v=ZVIxt2rt1_4

https://www.youtube.com/watch?v=QZvu8M02Be

https://www.youtube.com/watch?v=mRpX9DFCdwl

If you want to know more about RL...

- take CS 138: Reinforcement Learning in the Fall

Student Paper Presentation