COMP 141: Probabilistic Robotics
for Human-Robot Interaction

Instructor: Jivko Sinapov


http://www.cs.tufts.edu/~jsinapov
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Reading Assignment

* Chapter 5 of Probabilistic Robotics



Research Article Presentation

* Sign-up for research article presentation



Robotics and Al Conferences

|IEEE International Conference on
Robotics and Automation (ICRA)

|IEEE International Conference on
Intelligent Robots (IROS)

IEEE International Conference on
Development and Learning (ICDL)

Robotics Science and Systems (RSS)



Robotics Journals

* |EEE Transactions on Robotics (TRO)

 |EEE Transactions on Autonomous Mental
Development (TAMD)

e |nternational Journal of Robotics Research
(IJRR)

* Robotics and Autonomous System (RAS)
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Visual Registration and Recognition



Registration
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Registration

[http://vihari.github.io/personal_website/images/3dregistration.png]
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Interest Point Registration

a2 N




Interest Point Detection

Look for image regions that are unusual
- Leads to unambiguous matches in other images
- How do we define unusual?



Suppose we only consider a small window of pixels

-2 What defines whether a feature is a good or bad
candidate?

IR NG N

Slide adapted from Darya Frolova, Denis Simakov, Weizmann Institute.



Local measure of feature uniqueness
- How does the window change when you shift it?
= Shifting the window In any direction causes a big change

N R NG I

R

R Y

“flat” region: “edge”: ‘corner’:
no change in all no change along significant change
directions the edge direction in all directions

Slide adapted from Darya Frolova, Denis Simakov, Weizmann Institute.



Consider shifting the window W by (u,Vv)
* how do the pixels in W change?

* compare each pixel before and after by
summing up the squared differences
(SSD)

* this defines an SSD “error” of E(u,v):




Harris Detector: Mathematics

Change of intensity for the shift [u,v]:

E(u,v) IZ w(x,y){[(x+u,y +V) - I(x,y)]2

\

1 in window, 0 outside Gaussian
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Find local maxima of the remaining.







OpenCV: finding features

cv..cornerHarris(...)

http://docs.opencv.org/2.4/doc/tutorials/features2d/trackingmoti
on/harris_detector/harris_detector.ntml



http://docs.opencv.org/2.4/doc/tutorials/features2d/trackingmotion/harris_detector/harris_detector.html
http://docs.opencv.org/2.4/doc/tutorials/features2d/trackingmotion/harris_detector/harris_detector.html

OpenCV: finding features

Shi and Tomasi '94: cv:.goodFeaturesToTrack(.

] Good Feature Ta Track A8



http://docs.opencv.org/2.4/modules/imgproc/doc/feature_detection.html

Harris Detector: Some
Properties

Rotation Invariance

6"

Ellipse rotates but its shape remains the same

comer response R 1S Invariant to image
rotation




Harris Detector: Some
Properties

Partial invariance to affine intensity change

R 4

threshold

v Intensity scale: | al

AN

o

W

x (Image coordinaté)

v Only derivatives are used => invariance to
intensity shift/ I +b

o

VAV

x (Image coordinaté)



Harris Detector: Some
Properties

But: non-invariant to image scale!

A7 T mm) B

All points will be Corner !
classified as edges



Achieving Scale Invariance

How do we choose scale?

III

Amount of interesting stuff




Difference-of-Gaussians

Scale
(first
octave)

B

s Difference of

Gaussian Gaussian (DOG)




Gaussian Blur

output : kern:el{flipped} i

1 |2 |1 1] 9] [aafnofeot
1 __{1,1] fii onfjanjz? |
E 2 4 2 B Li _j__ ;{;’;“’mﬂ}_._--——-'
1| 2 |1 | [ e
L_,__.----""""'"' 1 B
..-——-"""'"ff
3x3 Gaussian Kernel Computation of the

Output Image




Gaussian Blur Kernels

116

1/273

4 7 4
16 | 26 | 16
26 | 41 | 26
16 | 26 | 16
4 T 4

111003

0 1 2 1 0
3 13 | 22 |13 | 3
13 | 59 | 97 | 59 | 13
22 | 97 | 159 | 97 | 22
13 | 59 | 97 | 59 | 13
3 13 (22 (13 | 3
0 1 2 1 0




Finding Keypoints - Scale,
Location

Scale ﬁ?—j :" g
- =
octave) ‘gpa € Find extrema

in 3D DoG space

e

— }.’F.r" -
T T T
P e
Scale = g
(first P T T R
octave) | Sttt — > L

ffffff

) P e e
Convolve wi >@ ;ﬁﬂ%
. i e s i s s s e ol
Gaussian U | === Difference of

~ Gaussian Gaussian (DOG) E}{I‘ . {T:l







SIFT descriptor




Interest Point Descriptors

“ Now that we can find interest points,
how do we compare them?




Interest Point Descriptors

Now that we can find interest points,
how do we compare them?

Answer: compute a numerical feature
descriptor describing the orientation,
and scale of the interest point



SIFT descriptor

Basic idea:

* Take 16x16 square window around detected feature

* Compute edge orientation (angle of the gradient - 90 ) for each
pixel

* Create histogram of edge orientations

\4

0 2

angle histogram

a
v

Image gradients

Adapted from slide by David Lowe



SIFT descriptor

Full version

* Divide the 16x16 window into a 4x4 grid of cells
(2x2 case shown below)

* Compute an orientation histogram for each cell

e 16 cells * 8 orientations = 128 dimensional
descriptor

Image gradients Keypoint descriptor

Adapted from slide by David Lowe



SIFT descriptor

*Keypoint location = extrema location
*Keypoint scale is scale of the DOG image



SIFT descriptor

gradient
magnitude

b
[N T S
\

gaussian image
(at closest scale,

from pyramid) gradient

orientation

— e w v

—— -
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Sy e w L
N T I T
=




Computing Angle of

Gradient

Angle and magnitude of
gradient are computed using
1 and 2-side edge filters:

IZIZII:IH
- -

3

Patch



SIFT descriptor

weighted gradient
magnitude

weighted orientation histogram.

Each bucket contains sum of weighted gradient
magnitudes corresponding to angles that fall within
that bucket.

gradient

orie

|

1 1 1 T
5 10 15 =20 25 30 35

36 buckets

10 degree range of angles in each bucket, i.e.
0 <=ang<10 : bucket 1
10<=ang<20 : bucket 2
20<=ang<30 : bucket 3 ...






The problem with SIFT...

Slow...

Copyrighted!
2 Alternatives: SURF
4 OpenSUREF:

http://opensurfl.googlecode.com/files/OpenSURF.pdf

J Included in OpenCV 2.0+
H OpenCV Tutorial:

http://achuwilson.wordpress.com/2011/08/05/object-detection-using-surf-in-opencv-p
art-1/



http://opensurf1.googlecode.com/files/OpenSURF.pdf
http://achuwilson.wordpress.com/2011/08/05/object-detection-using-surf-in-opencv-part-1/
http://achuwilson.wordpress.com/2011/08/05/object-detection-using-surf-in-opencv-part-1/

SURF

“ Achieves quicker computation by scaling
the filter rather than the image:

Scale




To summarize...

Feature detectors:

< Find interest points in image (e.g., using
difference of Gaussians, Harris corner detection,
etc.)

Feature descriptors

- Each detected feature can be represented by a
numerical descriptor encoding orientation, scale,
etc.



Applications



Object Detection



https://www.youtube.com/watch?v=zQSFzmzR-is


Marker-less tracking

https://www.youtube.com/watch?v=caFHvamMUTw




SURF feature tracking during
Curiosity Landing

50 100 150 200 250 300

https://www.youtube.com/watch?v=Dgz0U4iWW _E




Isual-odometry

Videos A E N % ® 5 & B ED(30%) 4x 1731 LF viki
< »  fMHome Videos Q||=
Places
Ot - e - - - e =
M Home Documentany Friends Live Shows Movies Open Cowrse fadpk k] deskbop record.
& Desktop rpd
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& Trash
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B windows 10
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‘desktop record. mpa” selected (2657 kB)

https://www.youtube.com/watch?v=kNy7ruXnWTo




Image Registration in ROS

800 {3 Eind-Object
Q06 Objects Camera(2 Hz - 2 Hz) SURF/SURF

83 (100)

81(121) __ SURF/SURF 14 in 39 out

82 (75) 18 in 31 out

24 in 25 out

| Update objects | L F

http://wiki.ros.org/find_object_2d



Optical Flow

Interest key points and feature
descriptors are great but suffer from

one limitation:
HJ They ignore time



Why Optlcal Flow?
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Why Optlcal Flow?
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Why Optical Flow?



Why Optical Flow?



Optical Flow Video

https://www.youtube.com/watch?v=08NOabnZPlY




What is Optical Flow?

Velocity vectors || |

“Optical flow is the distribution of apparent velocities
of movement of brightness patterns in an image”
- Horn and Schunk, 1981



Motion Fields

" The motion field is the projection of
the 3D scene motion into the image
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Motion Fields and Camera Movement

S — Length of flow
TR R vectors inversely
proportional to
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Figure 1.2: Two images taken from a helicopter flying through a canyon and the computed pO!ntS Closer tO the camera move more
optical flow field. quickly across the image plane

Figure from Michael Black, Ph.D. Thesis



Visual-odometry for Drones

https://www.youtube.com/watch?v=V4r2HXGA8jw




Computing Optical Flow

Given a set of points in an image,
find those same points in another
image

Or, given point [u,, u J" in image /, find the
point [u, + 6, u, + 6 ] in image [, that
minimizes €.

u +tw, Uy +W},

£(0,,0,) = Z 2(11(x=y)_]2(x+ §x=y+§y))

X=U =Wy Y=U,—W,



Optical Flow Assumptions

Assumption

Image measurements (e.g. brightness) in a small region remain
the same although their location may change.

I(x+u,y+v,it+1)=1(x, y,t)

(assumption)

* Slide from Michael Black, CS143 2003



Spatial Coherence

Image Plane

Assumption
* Neighboring points in the scene typically belong to the same
surface and hence typically have similar motions.
* Since they also project to nearby points in the image, we expect
spatial coherence in image flow.

* Slide from Michael Black, CS143 2003



Temporal Persistence

Assumption:
The 1mage motion of a surface patch changes gradually over time.

* Slide from Michael Black, CS143 2003



Dense vs. Sparse Optical
Flow

71



Code

MATLAB:
< |terative Pyramidal LK Optical Flow

9 http://www.mathworks.com/matlabcentral/fileexchange/23142-iterative-pyramidal-lk-optical-flow

OpenCV

2 http://robots.stanford.edu/cs223b05/notes/optical_flow_demo.cpp



http://www.mathworks.com/matlabcentral/fileexchange/23142-iterative-pyramidal-lk-optical-flow
http://robots.stanford.edu/cs223b05/notes/optical_flow_demo.cpp

To summarize...

Feature detectors:

< Find interest points in image (e.g., using
difference of Gaussians, Harris corner detection,
etc.)

Feature descriptors

- Each detected feature can be represented by a
numerical descriptor encoding orientation, scale,
etc.



To summarize...

Optical Flow

- Computes how pixels (or features) move from
frame to frame

- Dense optical flow computes a movement vector
for each pixel

- Sparse optical flow computes a movement vector
only for a subset of pixels (e.g., the pixels that are
Interest points)

< Optical flow can be used to infer movement of
objects as well as movement of the camera



Project Breakout

How does computer vision relate to your
project?

Will your robot need to process visual data —
If so, what are some of the tasks and
functions you will need?



THE END
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