
The Kalman Filter
(part 2)



Reading Assignment

• Chapter 4 of PR
– Focus on histogram and particle filters



Homework 1

• See canvas – will preview at end of class



Something fun



Administrative Stuff



Rudolf Emil Kalman

[http://www.cs.unc.edu/~welch/kalman/kalmanBiblio.html]



Definition

• A Kalman filter is simply an optimal 
recursive data processing algorithm

• Under some assumptions the Kalman filter 
is optimal with respect to virtually any 
criterion that makes sense.



Definition

   “The Kalman filter incorporates all 
information that can be provided to it. It 
processes all available measurements, 
regardless of their precision, to estimate 
the current value of the variables of 
interest.”

[Maybeck (1979)]



Why do we need a filter?

• No mathematical model of a real 
system is perfect

• Real world disturbances

• Imperfect Sensors



Application: Radar Tracking



Application: Lunar Landing

https://github.com/chrislgarry/Apollo-11

https://github.com/chrislgarry/Apollo-11




Application: Missile Tracking



Application: Sailing



Application: Robot Navigation



Application: Other Tracking



Application: Head Tracking



Face & Hand Tracking



A Simple Recursive Example

• Problem Statement:

Given the measurement sequence:

z1, z2, …, zn  find the mean

[Brown and Hwang (1992)]



First Approach

1. Make the first measurement z1

    Store z1 and estimate the mean as µ1=z1

2. Make the second measurement z2

    Store z1 along with z2 and estimate the mean as 

    µ2= (z1+z2)/2

[Brown and Hwang (1992)]



First Approach (cont’d)

3. Make the third measurement z3

    Store z3 along with z1 and z2 and 

    estimate the mean as 

µ3= (z1+z2+z3)/3

[Brown and Hwang (1992)]



First Approach (cont’d)

n.  Make the n-th measurement zn

     Store zn along with z1 , z2 ,…, zn-1 and 

  estimate the mean as 

µn= (z1 + z2 + … + zn)/n

[Brown and Hwang (1992)]



Second Approach

1. Make the first measurement z1

 Compute the mean estimate as 

µ1=z1

 Store µ1 and discard z1

[Brown and Hwang (1992)]



Second Approach (cont’d)

2. Make the second measurement z2

Compute the estimate of the mean as a
weighted sum of the previous estimate µ1 
and the current measurement z2:

                                  µ2= 1/2 µ1 +1/2 z2

Store µ2 and discard z2 and µ1

[Brown and Hwang (1992)]



Second Approach (cont’d)

3. Make the third measurement z3

Compute the estimate of the mean as a    
weighted sum of the previous estimate µ2

and the current measurement z3:

µ3= 2/3 µ2 +1/3 z3

Store µ3 and discard z3 and µ2

[Brown and Hwang (1992)]



Second Approach (cont’d)

n. Make the n-th measurement zn

Compute the estimate of the mean as a
weighted sum of the previous estimate 
µn-1 and the current measurement zn:

µn= (n-1)/n µn-1 +1/n zn

Store µn and discard zn and µn-1

[Brown and Hwang (1992)]



Comparison

Batch Method Recursive  Method



Analysis

• The second procedure gives the same 
result as the first procedure.

• It uses the result for the previous step to 
help obtain an estimate at the current step.

• The difference is that it does not need to 
keep the sequence in memory.

[Brown and Hwang (1992)]



Second Approach 
(rewrite the general formula)
  µn= (n-1)/n µn-1 +1/n zn

     µn= (n/n) µn-1 - (1/n) µn-1 +1/n zn



Second Approach 
(rewrite the general formula)
  µn= (n-1)/n µn-1 +1/n zn

     µn= (n/n) µn-1 - (1/n) µn-1 +1/n zn

µn= µn-1     +     1/n  (zn - µn-1)

Old 
Estimate

Difference
Between

New Reading 
and

Old Estimate

Gain
Factor



Second Approach 
(rewrite the general formula)

Old 
Estimate

Difference
Between

New Reading 
and

Old Estimate

Gain
Factor



Gaussian Properties



The Gaussian Function



Gaussian pdf



 Properties

• If     and

• Then  



pdf for 



Properties



Summation and Subtraction



A simple example using diagrams



Conditional density of position 
based on measured value of z1

[Maybeck (1979)]



Conditional density of position 
based on measured value of z1

[Maybeck (1979)]

position

measured position

uncertainty



Conditional density of position 
based on measurement of z2 alone

[Maybeck (1979)]



Conditional density of position 
based on measurement of z2 alone

[Maybeck (1979)]measured position 2

uncertainty 2



Conditional density of position 
based on data z1 and z2

[Maybeck (1979)]
position estimate

uncertainty estimate



Propagation of the conditional density

[Maybeck (1979)]



Propagation of the conditional density

[Maybeck (1979)]

movement vector

expected position just prior 
to taking measurement 3



Propagation of the conditional density

[Maybeck (1979)]

movement vector

expected position just prior 
to taking measurement 3



Propagation of the conditional density

z3

σx(t3)

measured position 3

uncertainty 3



Updating the conditional density after 
the third measurement

z3

σx(t3)

position uncertainty

position estimate

x(t3)





Questions?



Now let’s do the same thing
…but this time we’ll use math



How should we combine the two 
measurements?

[Maybeck (1979)]

σZ1

σZ2



Calculating the new mean

Scaling Factor 1 Scaling Factor 2



Calculating the new mean

Scaling Factor 1 Scaling Factor 2



Calculating the new mean

Scaling Factor 1 Scaling Factor 2

Why is this not z1?



Calculating the new variance

[Maybeck (1979)]

σZ1

σZ2



Calculating the new variance

Scaling Factor 1 Scaling Factor 2



Remember the Gaussian 
Properties? 



 Remember the Gaussian 
Properties?

• If     and

• Then  

This is a2 not a



The scaling factors must be squared!

Scaling Factor 1 Scaling Factor 2



The scaling factors must be squared!

Scaling Factor 1 Scaling Factor 2



Therefore the new variance is 

Try to derive this on your own.



Another Way to Express 
The New Position

[Maybeck (1979)]



Another Way to Express 
The New Position

[Maybeck (1979)]



Another Way to Express 
The New Position

[Maybeck (1979)]



The equation for the variance can 
also be rewritten as

[Maybeck (1979)]



Adding Movement

[Maybeck (1979)]



Adding Movement

[Maybeck (1979)]



Adding Movement

[Maybeck (1979)]



Properties of K

• If the measurement noise is large K is small

0

[Maybeck (1979)]



The Kalman Filter
(part 2)



Example Applications



https://www.youtube.com/watch?v=MxwVwCuBEDA

https://github.com/pabsaura/Prediction-of-Trajectory-with-kalman-filter-and-open-cv

https://www.youtube.com/watch?v=MxwVwCuBEDA
https://github.com/pabsaura/Prediction-of-Trajectory-with-kalman-filter-and-open-cv



https://www.youtube.com/watch?v=sG-h5ONsj9s

https://www.myzhar.com/blog/tutorials/tutorial-opencv-ball-tracker-using-kalman-filter/

https://www.youtube.com/watch?v=sG-h5ONsj9s
https://www.myzhar.com/blog/tutorials/tutorial-opencv-ball-tracker-using-kalman-filter/



Something fun



Another Example



A Simple Example

• Consider a ship sailing east with a perfect 
compass trying to estimate its position.

• You estimate the position x from the stars as 
z1=100 with a precision of σx=4 miles

x100

[www.cse.lehigh.edu/~spletzer/cse398_Spring05/lec011_Localization2.ppt]



A Simple Example (cont’d)

• Along comes a more experienced navigator, 
and she takes her own sighting z2

• She estimates the position x= z2 =125 with a 
precision of σx=3 miles

• How do you merge her estimate with your 
own?

x100 125

[www.cse.lehigh.edu/~spletzer/cse398_Spring05/lec011_Localization2.ppt]



A Simple Example (cont’d)

xx2=116

μ=[
σ z2
2

σ z1
2 +σ z

2

2 ] z1+[
σ z1
2

σ z1
2 +σ z

2

2 ] z2
=[ 9
16+9 ]100+[1616+9 ]125=116

1

σ2
=
1

σ z1
2 +

1

σ z
2

2

1

σ 2
=
1
9

+
1
16

=
25
144

⇒σ=2 .4

[www.cse.lehigh.edu/~spletzer/cse398_Spring05/lec011_Localization2.ppt]



• With the distributions being Gaussian, the 
best estimate for the state is the mean of the 
distribution, so…

or alternately 

where Kt is referred to as the Kalman gain, 
and must be computed at each time step 

=z1+[
σ z1
2

σ z
1

2
+σ z

2

2 ]( z2−z1 )
=z1+K2 ( z2−z1 )

A Simple Example (cont’d)

x2=[
σ z2
2

σ z
1

2 +σ z
2

2 ] z1+[
σ z 1
2

σz 1
2 +σ z

2

2 ] z2

Correction Term

[www.cse.lehigh.edu/~spletzer/cse398_Spring05/lec011_Localization2.ppt]



• OK, now you fall asleep on your watch.  You 
wake up after 2 hours, and you now have to 
re-estimate your position

• Let the velocity of the boat be nominally 20 
miles/hour, but with a variance of σ2

w=4 
miles2/hour

• What is the best estimate of your current 
position?

A Simple Example (cont’d)

xx2=116 x-
3 =?

[www.cse.lehigh.edu/~spletzer/cse398_Spring05/lec011_Localization2.ppt]



• The next effect is that the gaussian is 
translated by a distance and the variance of 
the distribution is increased to account for 
the uncertainty in dynamics

A Simple Example (cont’d)

x3
−=x2+vΔt

σ 3
2−=σ 2

2+σw
2− Δt

⇒ x3
−=116+40=156

⇒σ3
2−=5 .76+8=13 .76

xx2=116 x-
3 =156

[www.cse.lehigh.edu/~spletzer/cse398_Spring05/lec011_Localization2.ppt]



• OK, this is not a very accurate estimate.  So, since 
you’ve had your nap you decide to take another 
measurement and you get z3=165 miles

• Using the same update procedure as the first update, 
we obtain

and so on…

A Simple Example (cont’d)

x3=x3
−
+K3 ( z3−x3

−
)

σ 3
2
=σ 3

2−
−K3 σ3

2−

=13 .76−[13 . 7613 . 76+16 ]13 .76=7 .40

[www.cse.lehigh.edu/~spletzer/cse398_Spring05/lec011_Localization2.ppt]



• In this example, prediction came from using knowledge of 
the vehicle dynamics to estimate its change in position

• An analogy with a robot would be integrating information 
from the robot kinematics (i.e. you give it a desired [x, y, 
α] velocities for a time Δt) to estimate changed in position

• The correction is accomplished through making 
exteroceptive observations and then fusing this with your 
current estimate

• This is akin to updating position estimates using landmark 
information, etc.

• In practice, the prediction rate is typically much higher 
than the correction

The Predictor-Corrector Approach
[www.cse.lehigh.edu/~spletzer/cse398_Spring05/lec011_Localization2.ppt]





Calculating the new mean

Scaling Factor 1 Scaling Factor 2



Calculating the new variance

Scaling Factor 1 Scaling Factor 2



What makes these scaling factors 
special? Are there other ways to 
combine the two measurements?

• They minimize the error between the 
prediction and the true value of X.

• They are optimal in the least-squares 
sense.



Minimize the error



What is the minimum value?

[http://home.ubalt.edu/ntsbarsh/Business-stat/otherapplets/function.gif]



What is the minimum value?

[http://home.ubalt.edu/ntsbarsh/Business-stat/otherapplets/function.gif]



Finding the Minimum Value

• Y= 9x2  - 50x + 50
• dY/dX = 18 x – 50
• 0 = 18x – 50
• X = 50/18 = 2.68….
• Min Y = 



Finding the Minimum Value

• Y= 9x2  - 50x + 50

• dY/dx = 18x -50 = 0

• The minimum is obtained when  
x=50/18=2.77777(7)

• The minimum value is
Y(xmin) = 9*(50/18)2 -50*(50/18) +50 = -19.44444(4)



Start with two measurements 

• v1 and v2 represent zero mean noise



Formula for the estimation error

• The new estimate is

• The error is 



Expected value of the error



Expected value of the error



Expected value of the error



Expected value of the error



Expected value of the error

• If the estimate is unbiased this should hold





Find the Mean Square Error

=    ?





Mean Square Error



Minimize the mean square error



Finding S1

• Therefore



Finding S2



Finally we get what we wanted



Finding the 
new variance



Formula for the new variance



Kalman Filter Diagram

[Brown and Hwang (1992)]



Overview of Homework 1



THE END


	The Kalman Filter (part 1)
	Slide 2
	Slide 3
	Slide 4
	Administrative Stuff
	Rudolf Emil Kalman
	Definition
	Slide 8
	Why do we need a filter?
	Application: Radar Tracking
	Application: Lunar Landing
	Slide 12
	Application: Missile Tracking
	Application: Sailing
	Application: Robot Navigation
	Application: Other Tracking
	Application: Head Tracking
	Face & Hand Tracking
	A Simple Recursive Example
	First Approach
	First Approach (cont’d)
	Slide 22
	Second Approach
	Second Approach (cont’d)
	Slide 25
	Slide 26
	Comparison
	Analysis
	Second Approach (rewrite the general formula)
	Slide 30
	Slide 31
	Gaussian Properties
	The Gaussian Function
	Gaussian pdf
	Properties
	pdf for
	Properties
	Summation and Subtraction
	A simple example using diagrams
	Conditional density of position based on measured value of z1
	Slide 41
	Conditional density of position based on measurement of z2 alone
	Slide 43
	Conditional density of position based on data z1 and z2
	Propagation of the conditional density
	Slide 46
	Slide 47
	Slide 48
	Updating the conditional density after the third measurement
	Slide 50
	Questions?
	Now let’s do the same thing …but this time we’ll use math
	How should we combine the two measurements?
	Calculating the new mean
	Slide 55
	Slide 56
	Calculating the new variance
	Slide 58
	Remember the Gaussian Properties?
	Remember the Gaussian Properties?
	The scaling factors must be squared!
	Slide 68
	Therefore the new variance is
	Another Way to Express The New Position
	Slide 71
	Slide 72
	The equation for the variance can also be rewritten as
	Adding Movement
	Slide 75
	Slide 76
	Properties of K
	The Kalman Filter (part 2)
	Slide 79
	Slide 80
	Slide 81
	Slide 83
	Another Example
	A Simple Example
	A Simple Example (cont’d)
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	The Predictor-Corrector Approach
	Slide 93
	Slide 94
	Slide 95
	What makes these scaling factors special? Are there other ways to combine the two measurements?
	Minimize the error
	What is the minimum value?
	Slide 99
	Slide 100
	Finding the Minimum Value
	Start with two measurements
	Formula for the estimation error
	Expected value of the error
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Find the Mean Square Error
	Slide 111
	Mean Square Error
	Minimize the mean square error
	Finding S1
	Finding S2
	Finally we get what we wanted
	Finding the new variance
	Formula for the new variance
	Kalman Filter Diagram
	Slide 120
	THE END

