Monte-Carlo Planning: Basic Principles and Recent Progress

Alan Fern

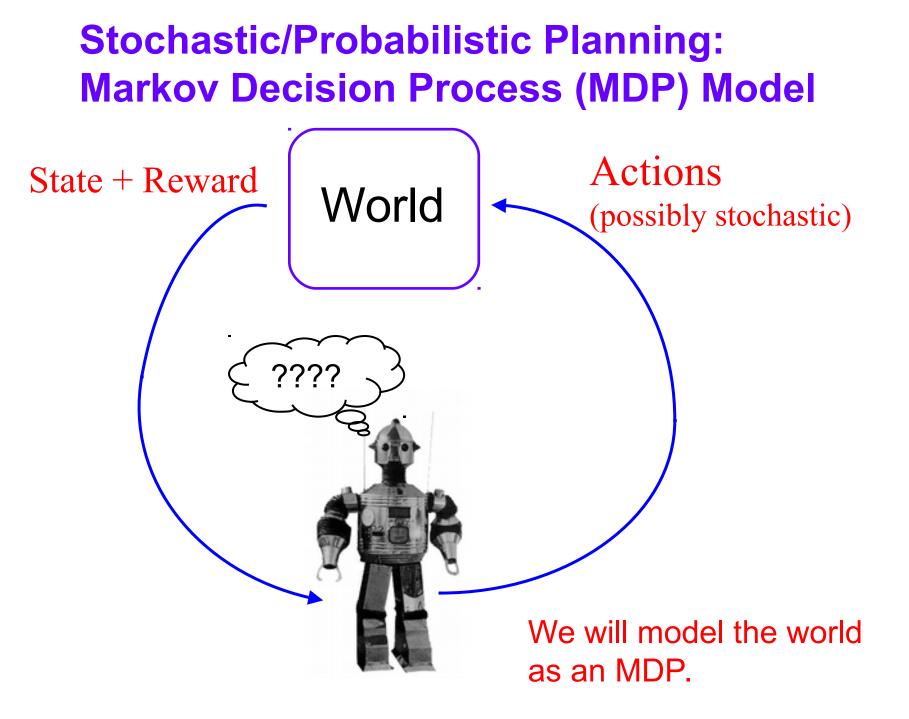
School of EECS Oregon State University

Announcements

- Title: Developing Robot
 Teammates that Enhance
 Social Dynamics and
 Performance in Human Robot
- Speaker: Sarah Sebo
- Time: 3 pm today

Outline

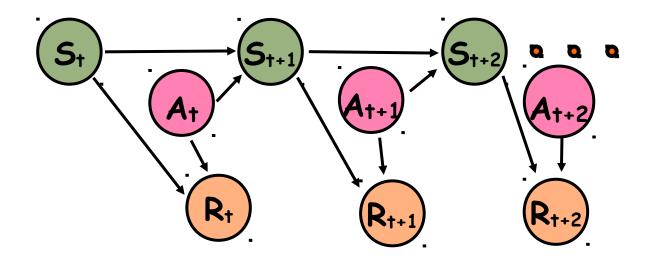
- Preliminaries: Markov Decision Processes
- What is Monte-Carlo Planning?
- Uniform Monte-Carlo
 - Single State Case (PAC Bandit)
 - Policy rollout
 - Sparse Sampling
- Adaptive Monte-Carlo
 - Single State Case (UCB Bandit)
 - UCT Monte-Carlo Tree Search



Markov Decision Processes

- An MDP has four components: S, A, P_R , P_T :
 - finite state set S
 - I finite action set A
 - **Transition distribution P_T(s' | s, a)**
 - Probability of going to state s' after taking action a in state s
 - First-order Markov model
 - Bounded reward distribution $P_R(r | s, a)$
 - Probability of receiving immediate reward r after taking action a in state s
 - First-order Markov model

Graphical View of MDP



First-Order Markovian dynamics (history independence)
 Next state only depends on current state and current action

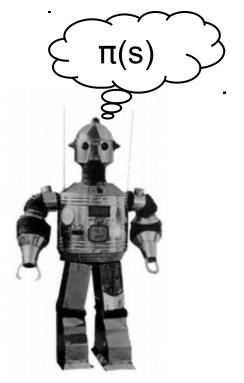
First-Order Markovian reward process

Reward only depends on current state and action

Policies ("plans" for MDPs)

- Given an MDP we wish to compute a policy
 - Could be computed offline or online.
- A policy is a possibly stochastic mapping from states to actions
 π:S → A
 - Π $\pi(s)$ is action to do at state s
 - specifies a continuously reactive controller

How to measure goodness of a policy?



Value Function of a Policy

- We consider finite-horizon discounted reward, discount factor $0 \le \beta < 1$
- $\hfill V_{\pi}(s,h)$ denotes expected h-horizon discounted total reward of policy π at state s
- \hfill Each run of π for h steps produces a random reward sequence: $R_1 \ R_2 \ R_3 \ \dots \ R_h$
- ~~ $V_{\pi}(s,h)$ is the expected discounted sum of this sequence

I Optimal policy π^* is policy that achieves maximum value across all states

$$V_{\pi}(s,h) = E \prod_{t=0}^{n} \beta^{t} R_{t} | \pi, s \prod_{t=0}^{n} \beta^{t} R_{t}| \pi, s \prod_{t=0}^{n} \beta^{t} R_{t} | \pi, s \prod_{t=0}^{n} \beta^{t} R_{t}| \pi, s \prod_{t=0}^{n} \beta^{t}$$

Relation to Infinite Horizon Setting

□ Often value function $V_{\pi}(s)$ is defined over infinite horizons for a discount factor $0 \le \beta < 1$

$$V_{\pi}(s) = E\left[\sum_{t=0}^{\infty} \beta^{t} R^{t} \mid \pi, s\right]$$

It is easy to show that difference between $V_{\pi}(s,h)$ and $V_{\pi}(s)$ shrinks exponentially fast as h grows

$$\left|V_{\pi}(s) - V_{\pi}(s,h)\right| \leq \left\|\frac{R_{\max}}{1 - \beta}\right\|\beta^{h}$$

h-horizon results apply to infinite horizon setting

Computing a Policy

- Optimal policy maximizes value at each state
- Optimal policies guaranteed to exist [Howard, 1960]
- When state and action spaces are small and MDP is known we find optimal policy in poly-time via LP
 - Can also use value iteration or policy Iteration

We are interested in the case of exponentially large state spaces.

Large Worlds: Model-Based Approach

- 1. Define a language for compactly describing MDP model, for example:
 - Dynamic Bayesian Networks
 - Probabilistic STRIPS/PDDL
- 2. Design a planning algorithm for that language

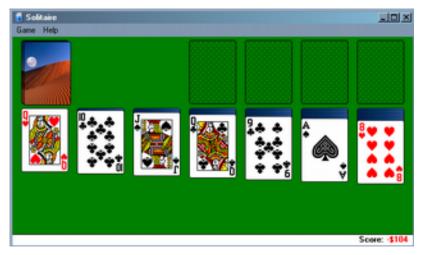
Problem: more often than not, the selected language is inadequate for a particular problem, e.g.

- Problem size blows up
- Fundamental representational shortcoming

Large Worlds: Monte-Carlo Approach

- Often a simulator of a planning domain is available or can be learned from data
 - Even when domain can't be expressed via MDP language

Klondike Solitaire

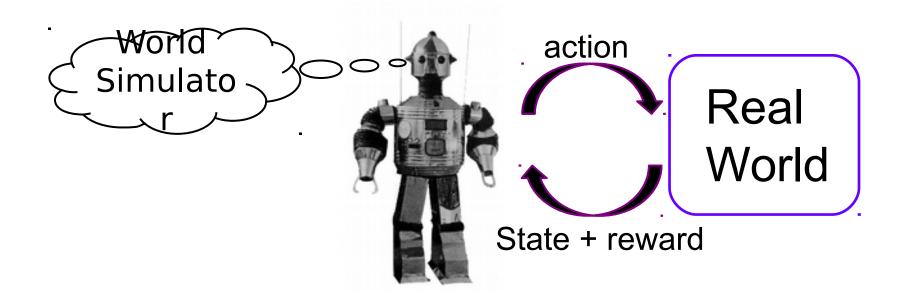


Control Fire Service Fixed End Non-Configs Select Sendation Andrew map Image: Select Sendation Service Fixed Select Sendation Configs Select Sendation Andrew map Image: Select Sendation Select S

Fire & Emergency Response

Large Worlds: Monte-Carlo Approach

- Often a simulator of a planning domain is available or can be learned from data
 - Even when domain can't be expressed via MDP language
- Monte-Carlo Planning: compute a good policy for an MDP by interacting with an MDP simulator



Example Domains with Simulators

- Traffic simulators
- Robotics simulators
- Military campaign simulators
- Computer network simulators
- Emergency planning simulators
 - large-scale disaster and municipal
- Sports domains (Madden Football)
- Board games / Video games
 - Go / RTS

In many cases Monte-Carlo techniques yield state-of-the-art performance. Even in domains where model-based planner is applicable.

MDP: Simulation-Based Representation

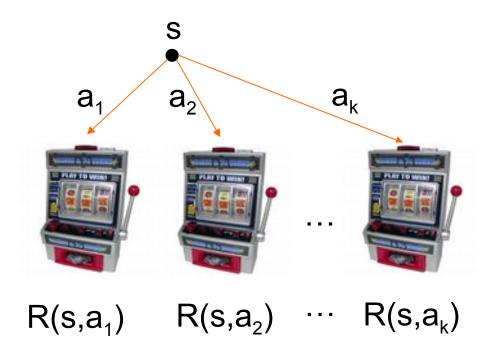
- A <u>simulation-based representation</u> gives: S, A, R, T:
 - finite state set S (generally very large)
 - finite action set A
 - Stochastic, real-valued, bounded reward function R(s,a) = r
 - Stochastically returns a reward r given input s and a
 - Can be implemented in arbitrary programming language
 - Stochastic transition function T(s,a) = s' (i.e. a simulator)
 - Stochastically returns a state s' given input s and a
 - Probability of returning s' is dictated by Pr(s' | s,a) of MDP
 - T can be implemented in an arbitrary programming language

Outline

- Preliminaries: Markov Decision Processes
- What is Monte-Carlo Planning?
- Uniform Monte-Carlo
 - Single State Case (Uniform Bandit)
 - Policy rollout
 - Sparse Sampling
- Adaptive Monte-Carlo
 - Single State Case (UCB Bandit)
 - UCT Monte-Carlo Tree Search

Single State Monte-Carlo Planning

- Suppose MDP has a single state and k actions
 - Figure out which action has best expected reward
 - Can sample rewards of actions using calls to simulator
 - Sampling a is like pulling slot machine arm with random payoff function R(s,a)

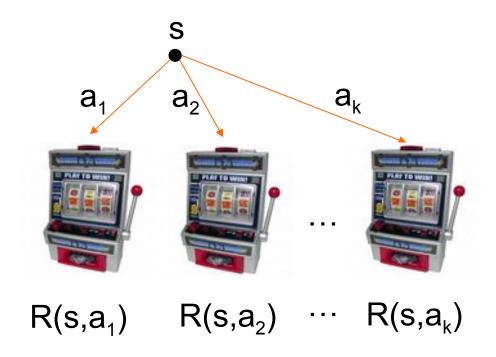


Multi-Armed Bandit Problem

PAC Bandit Objective

Probably Approximately Correct (PAC)

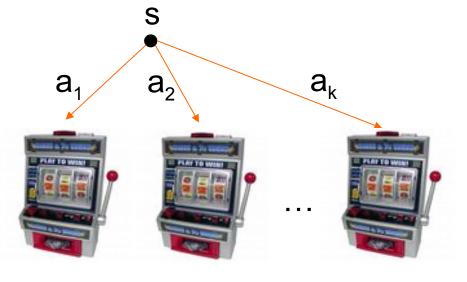
- Select an arm that probably (w/ high probability) has approximately the best expected reward
- ^I Use as few simulator calls (or pulls) as possible



Multi-Armed Bandit Problem

UniformBandit Algorithm NaiveBandit from [Even-Dar et. al., 2002]

- 1. Pull each arm w times (uniform pulling).
- 2. Return arm with best average reward.



 $\mathbf{r}_{11} \ \mathbf{r}_{12} \ \dots \ \mathbf{r}_{1w} \qquad \mathbf{r}_{21} \ \mathbf{r}_{22} \ \dots \ \mathbf{r}_{2w} \ \dots \ \mathbf{r}_{k1} \ \mathbf{r}_{k2} \ \dots \ \mathbf{r}_{kw}$

How large must w be to provide a PAC guarantee?

Aside: Additive Chernoff Bound

- Let R be a random variable with maximum absolute value Z.
 An let r_i i=1,...,w be i.i.d. samples of R
- The Chernoff bound gives a bound on the probability that the average of the r_i are far from E[R]

Chernoff
Bound
$$\Pr\left(\left|E[R] - \frac{1}{w}\sum_{i=1}^{w}r_i\right| \ge \varepsilon\right) \le \exp\left(-\left(\frac{\varepsilon}{Z}\right)^2 w\right)$$

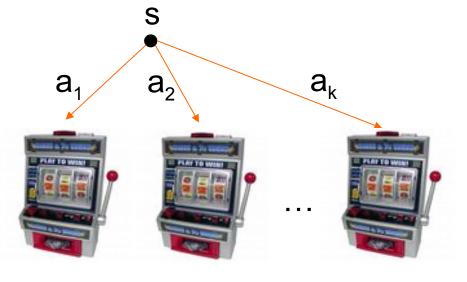
Equivalently:

With probability at least 1-
$$\delta$$
 we have that,

$$\left| E[R] - \frac{1}{w} \sum_{i=1}^{w} r_i \right| \leq Z \sqrt{\frac{1}{w} \ln \frac{1}{\delta}}$$

UniformBandit Algorithm NaiveBandit from [Even-Dar et. al., 2002]

- 1. Pull each arm w times (uniform pulling).
- 2. Return arm with best average reward.



 $\mathbf{r}_{11} \ \mathbf{r}_{12} \ \dots \ \mathbf{r}_{1w} \qquad \mathbf{r}_{21} \ \mathbf{r}_{22} \ \dots \ \mathbf{r}_{2w} \ \dots \ \mathbf{r}_{k1} \ \mathbf{r}_{k2} \ \dots \ \mathbf{r}_{kw}$

How large must w be to provide a PAC guarantee?

UniformBandit PAC Bound

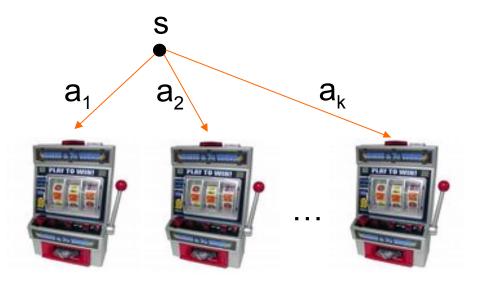
With a bit of algebra and Chernoff bound we get:

If
$$w \ge \left(\frac{R_{\max}}{\varepsilon}\right)^2 \ln \frac{k}{\delta}$$
 for all arms simultaneously

$$\left| E[R(s,a_i)] - \frac{1}{w} \sum_{j=1}^{w} r_{ij} \right| \le \varepsilon$$
with probability at least $1 - \delta$

- That is, estimates of all actions are ε accurate with probability at least 1- δ
- Thus selecting estimate with highest value is approximately optimal with high probability, or PAC

Simulator Calls for UniformBandit



 $R(s,a_1)$ $R(s,a_2)$ \cdots $R(s,a_k)$

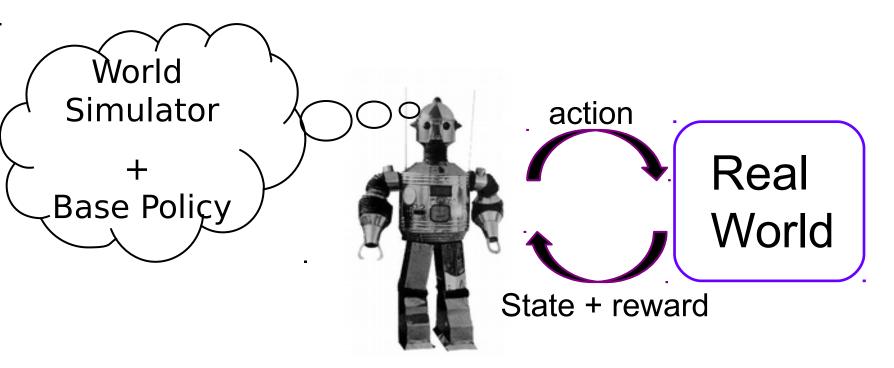
- Total simulator calls for PAC: $k \cdot w = O\left(\frac{k}{\varepsilon^2} \ln \frac{k}{\delta}\right)$
- Can get rid of ln(k) term with more complex algorithm [Even-Dar et. al., 2002].

Outline

- Preliminaries: Markov Decision Processes
- What is Monte-Carlo Planning?
- Non-Adaptive Monte-Carlo
 - Single State Case (PAC Bandit)
 - Policy rollout
 - Sparse Sampling
- Adaptive Monte-Carlo
 - Single State Case (UCB Bandit)
 - UCT Monte-Carlo Tree Search

Policy Improvement via Monte-Carlo

- Now consider a multi-state MDP.
- Suppose we have a simulator and a non-optimal policy
 E.g. policy could be a standard heuristic or based on intuition
- Can we somehow compute an improved policy?



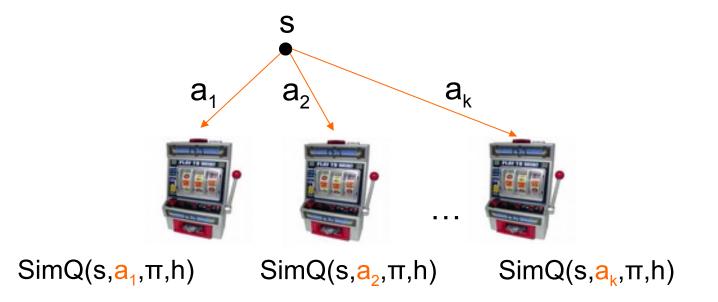
Policy Improvement Theorem

The h-horizon Q-function $Q_{\pi}(s,a,h)$ is defined as: expected total discounted reward of starting in state s, taking action a, and then following policy π for h-1 steps

Define:
$$\pi'(s) = \operatorname{argmax}_a Q_{\pi}(s, a, h)$$

- **Theorem [Howard, 1960]:** For any non-optimal policy π the policy π ' a strict improvement over π .
- Computing π' amounts to finding the action that maximizes the Q-function
 - Can we use the bandit idea to solve this?

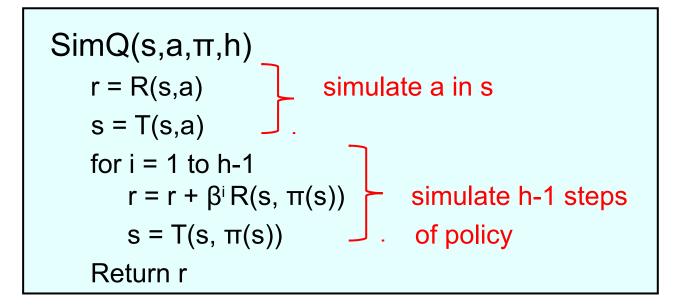
Policy Improvement via Bandits



- Idea: define a stochastic function SimQ(s,a,π,h) that we can implement and whose expected value is Q_π(s,a,h)
- Use Bandit algorithm to PAC select improved action

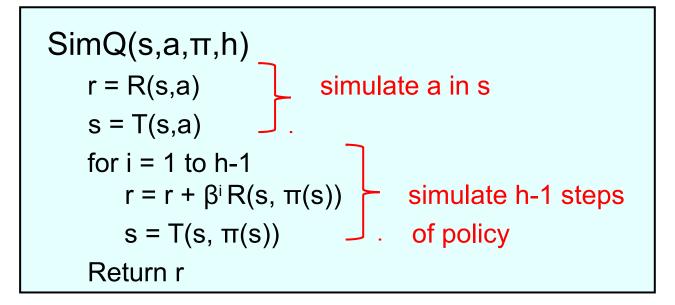
How to implement SimQ?

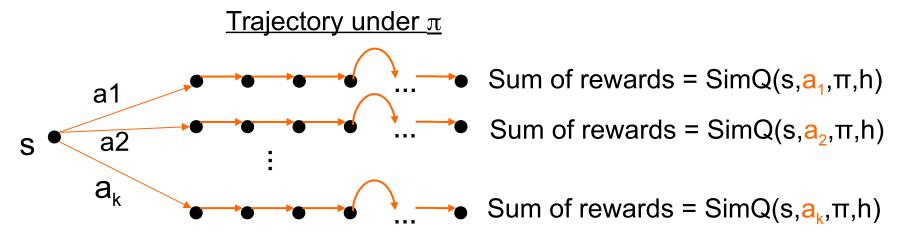
Policy Improvement via Bandits



- Simply simulate taking a in s and following policy for h-1 steps, returning discounted sum of rewards
- Expected value of SimQ(s,a, π ,h) is Q_{π}(s,a,h)

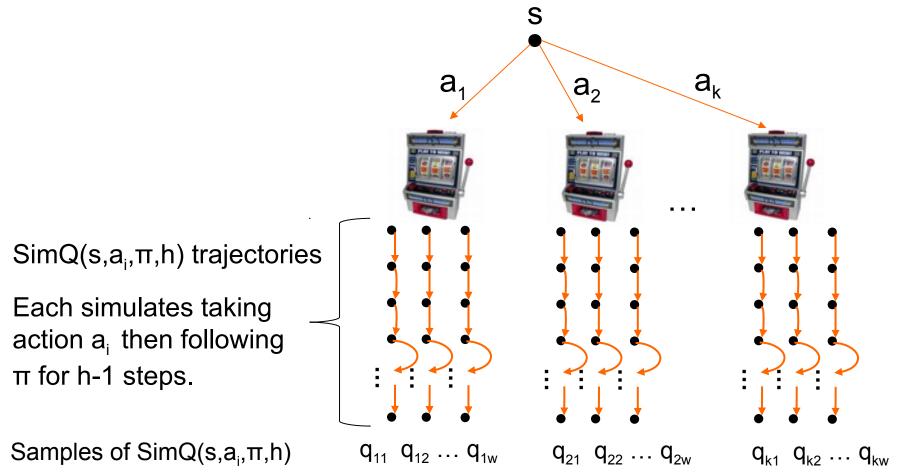
Policy Improvement via Bandits



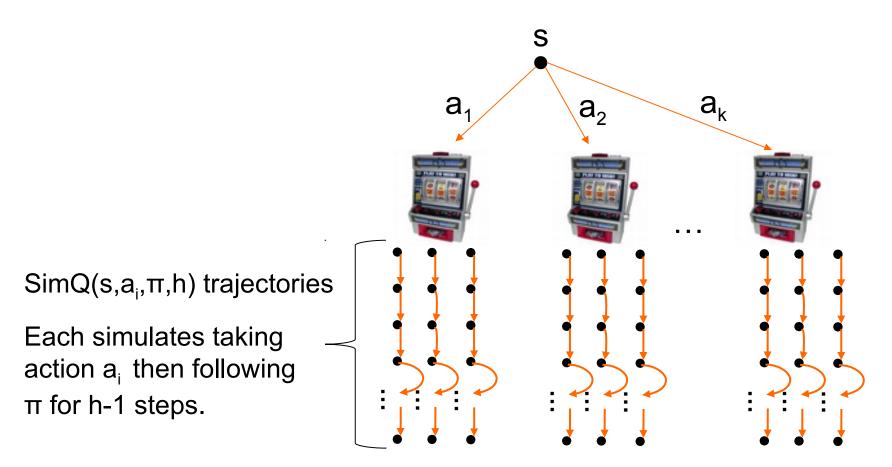


Policy Rollout Algorithm

- **1.** For each a_i run SimQ(s, a_i , π ,h) **w** times
- 2. Return action with best average of SimQ results

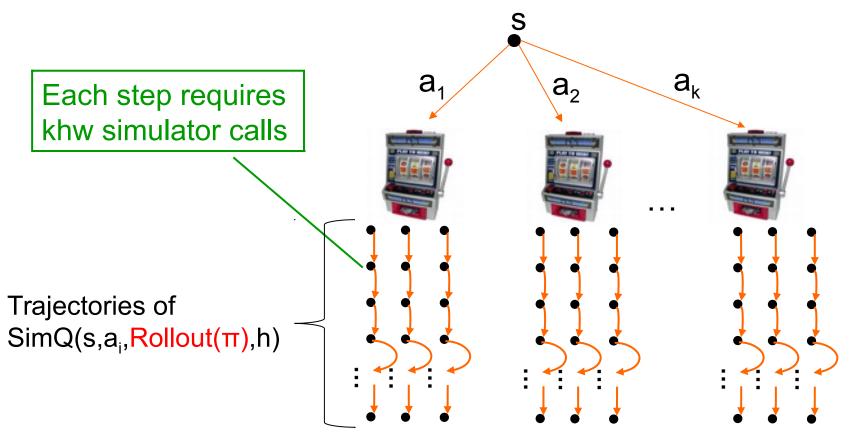


Policy Rollout: # of Simulator Calls



- For each action w calls to SimQ, each using h sim calls
- Total of khw calls to the simulator

Multi-Stage Rollout



- Two stage: compute rollout policy of rollout policy of $\boldsymbol{\pi}$
- Requires (khw)² calls to the simulator for 2 stages
- In general exponential in the number of stages

Rollout Summary

- We often are able to write simple, mediocre policies
 - Network routing policy
 - Policy for card game of Hearts
 - Policy for game of Backgammon
 - Solitaire playing policy
- Policy rollout is a general and easy way to improve upon such policies
- Often observe substantial improvement, e.g.
 - Compiler instruction scheduling
 - Backgammon
 - Network routing
 - Combinatorial optimization
 - Game of GO
 - Solitaire

Outline

- Preliminaries: Markov Decision Processes
- What is Monte-Carlo Planning?
- Uniform Monte-Carlo
 - Single State Case (UniformBandit)
 - Policy rollout
 - Sparse Sampling
- Adaptive Monte-Carlo
 - Single State Case (UCB Bandit)
 - UCT Monte-Carlo Tree Search

Sparse Sampling

Rollout does not guarantee optimality or near optimality

- Can we develop simulation-based methods that give us near optimal policies?
 - With computation that doesn't depend on number of states!
- In deterministic games and problems it is common to build a look-ahead tree at a state to determine best action
 - Can we generalize this to general MDPs?
- Sparse Sampling is one such algorithm
 - Strong theoretical guarantees of near optimality

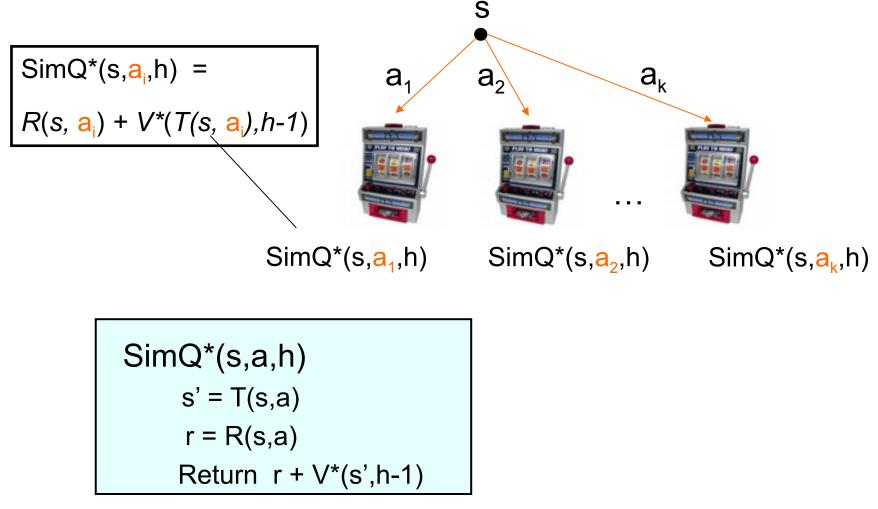
MDP Basics

- Let V*(s,h) be the optimal value function of MDP
- Define $Q^{*}(s,a,h) = E[R(s,a) + V^{*}(T(s,a),h-1)]$
 - Optimal h-horizon value of action *a* at state *s*.
 - R(s,a) and T(s,a) return random reward and next state

Optimal Policy: $\pi^*(x) = \operatorname{argmax}_a Q^*(x,a,h)$

- What if we knew V*?
 - Can apply bandit algorithm to select action that approximately maximizes Q*(s,a,h)

Bandit Approach Assuming V*



- Expected value of SimQ*(s,a,h) is Q*(s,a,h)
 - Use UniformBandit to select approximately optimal action

But we don't know V*

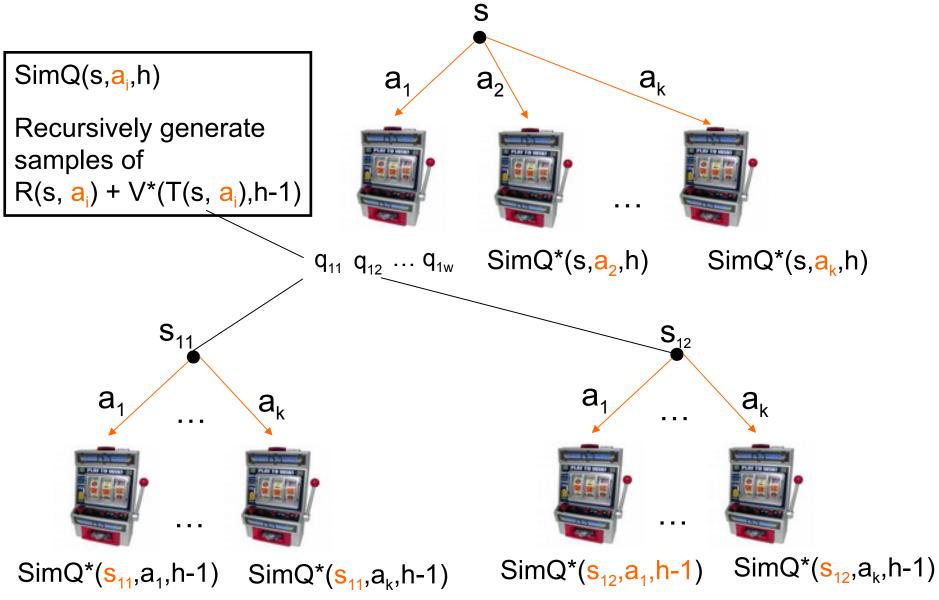
To compute SimQ*(s,a,h) need V*(s',h-1) for any s'

Use recursive identity (Bellman's equation):
 V*(s,h-1) = max_a Q*(s,a,h-1)

Idea: Can recursively estimate V*(s,h-1) by running h-1 horizon bandit based on SimQ*

Base Case: $V^*(s,0) = 0$, for all s

Recursive UniformBandit



Sparse Sampling [Kearns et. al. 2002]

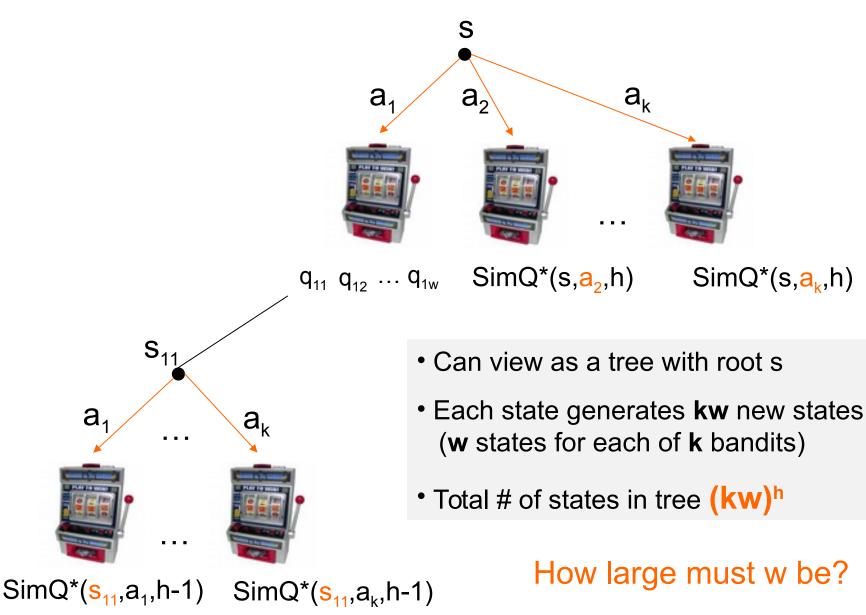
This recursive UniformBandit is called Sparse Sampling

Return value estimate V*(s,h) of state s and estimated optimal action a*

```
SparseSampleTree(s,h,w)
```

```
For each action a in s
     Q^{*}(s,a,h) = 0
     For i = 1 to w
            Simulate taking a in s resulting in s_i and reward r_i
            [V^*(s_i,h),a^*] = SparseSample(s_i,h-1,w)
            Q^{*}(s,a,h) = Q^{*}(s,a,h) + r_{i} + V^{*}(s_{i},h)
     Q^{*}(s,a,h) = Q^{*}(s,a,h) / w;; estimate of Q^{*}(s,a,h)
V^{*}(s,h) = \max_{a} Q^{*}(s,a,h) ;; estimate of V^{*}(s,h)
a^* = \operatorname{argmax}_a Q^*(s,a,h)
Return [V*(s,h), a*]
```

of Simulator Calls

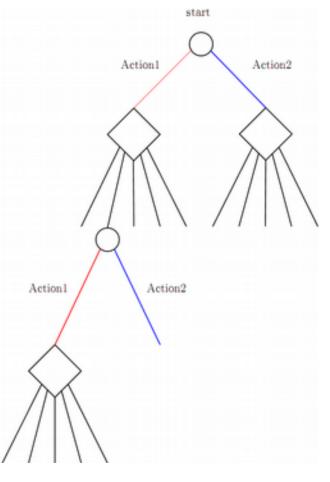


Sparse Sampling

- For a given desired accuracy, how large should sampling width and depth be?
 - Answered: [Kearns et. al., 2002]
- Good news: can achieve near optimality for value of w independent of state-space size!
 - First near-optimal general MDP planning algorithm whose runtime didn't depend on size of state-space
- Bad news: the theoretical values are typically still intractably large---also exponential in h
- In practice: use small h and use heuristic at leaves (similar to minimax game-tree search)

Uniform vs. Adaptive Bandits

- Sparse sampling wastes time on bad parts of tree
 - Devotes equal resources to each state encountered in the tree
 - Would like to focus on most promising parts of tree
- But how to control exploration of new parts of tree vs. exploiting promising parts?
- Need adaptive bandit algorithm that explores more effectively

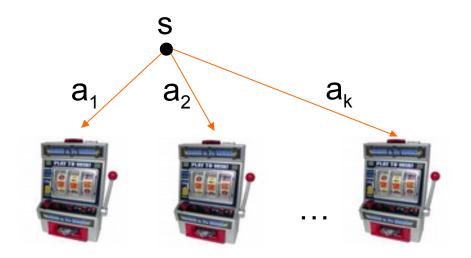


Outline

- Preliminaries: Markov Decision Processes
- What is Monte-Carlo Planning?
- Uniform Monte-Carlo
 - Single State Case (UniformBandit)
 - Policy rollout
 - Sparse Sampling
- Adaptive Monte-Carlo
 - Single State Case (UCB Bandit)
 - UCT Monte-Carlo Tree Search

Regret Minimization Bandit Objective

- Problem: find arm-pulling strategy such that the expected total reward at time n is close to the best possible (i.e. pulling the best arm always)
 - UniformBandit is poor choice --- waste time on bad arms
 - Must balance exploring machines to find good payoffs and exploiting current knowledge



UCB Adaptive Bandit Algorithm [Auer, Cesa-Bianchi, & Fischer, 2002]

- Q(a) : average payoff for action a based on current experience
- n(a) : number of pulls of arm a
- Action choice by UCB after n pulls:

$$a^* = \arg\max_a Q(a) + \sqrt{\frac{2\ln n}{n(a)}}$$

- Theorem: The expected regret after n arm pulls compared to optimal behavior is bounded by O(log n)
- No algorithm can achieve a better loss rate

Assumes payoffs

in [0,1]

UCB Algorithm [Auer, Cesa-Bianchi, & Fischer, 2002]

$$a^* = \arg\max_a Q(a) + \sqrt{\frac{2\ln n}{n(a)}}$$

Value Term: favors actions that looked good historically

Exploration Term:

actions get an exploration bonus that grows with ln(n)

Expected number of pulls of sub-optimal arm **a** is bounded by:

$$\frac{8}{\Delta_a^2} \ln n$$

where Δ_a is regret of arm **a**

Doesn't waste much time on sub-optimal arms unlike uniform!

UCB for Multi-State MDPs

UCB-Based Policy Rollout:

Use UCB to select actions instead of uniform

UCB-Based Sparse Sampling

Use UCB to make sampling decisions at internal tree nodes

UCB-based Sparse Sampling [Chang et. al. 2005]

 Use UCB instead of Uniform to direct sampling at each state

S₁₁

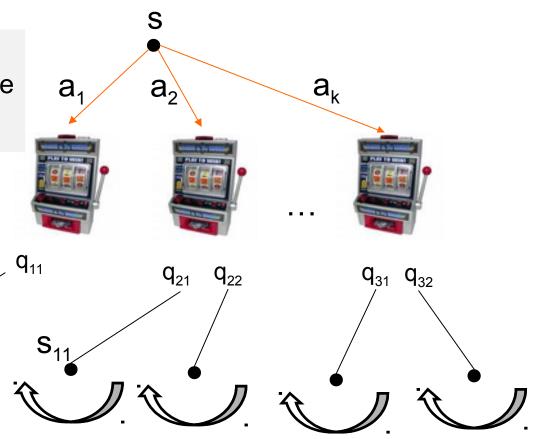
 a_k

 $SimQ^*(s_1,a_k,h-1)$

Non-uniform allocation

a

 $SimQ^{*}(s_{11},a_{1},h-1)$



But each q_{ij} sample requires
 waiting for an entire recursive
 h-1 level tree search

• Better but still very expensive!

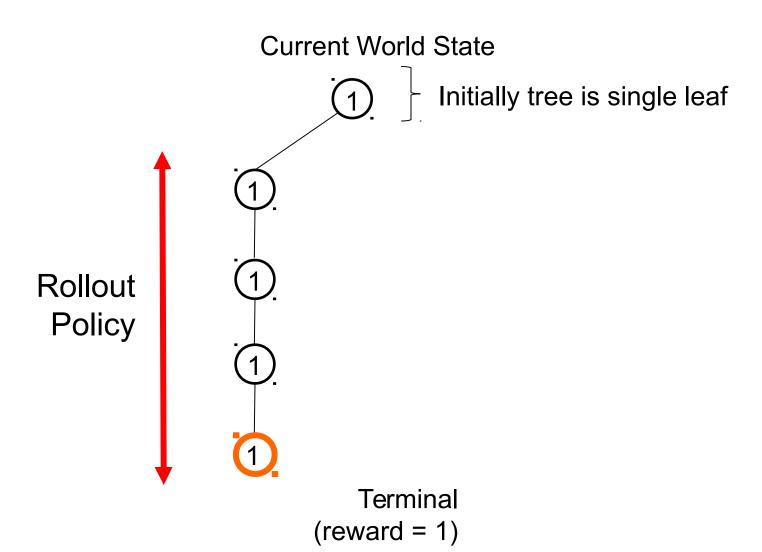
Outline

- Preliminaries: Markov Decision Processes
- What is Monte-Carlo Planning?
- Uniform Monte-Carlo
 - Single State Case (UniformBandit)
 - Policy rollout
 - Sparse Sampling
- Adaptive Monte-Carlo
 - Single State Case (UCB Bandit)
 - UCT Monte-Carlo Tree Search

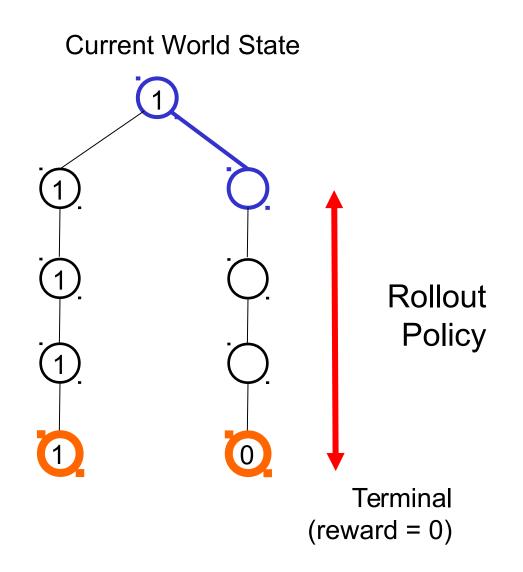
UCT Algorithm [Kocsis & Szepesvari, 2006]

- Instance of Monte-Carlo Tree Search
 - Applies principle of UCB
 - Some nice theoretical properties
 - Much better anytime behavior than sparse sampling
 - Major advance in computer Go
- Monte-Carlo Tree Search
 - Repeated Monte Carlo simulation of a rollout policy
 - Each rollout adds one or more nodes to search tree
- Rollout policy depends on nodes already in tree

At a leaf node perform a random rollout

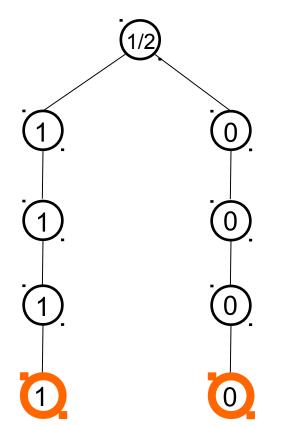


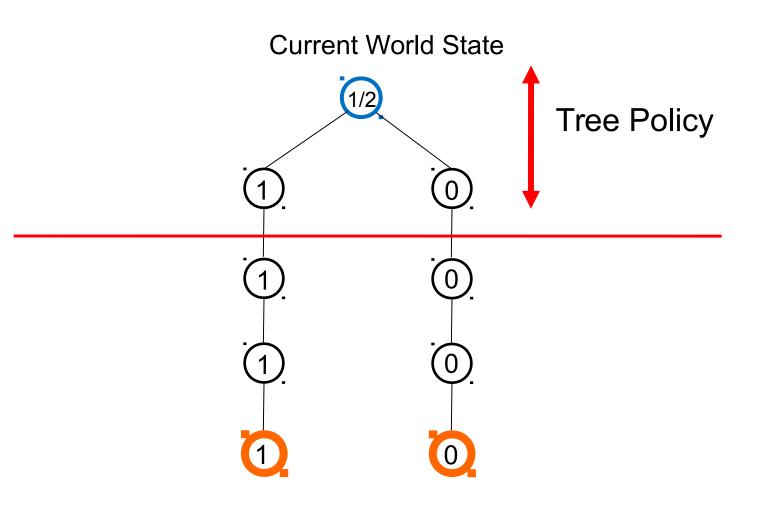
Must select each action at a node at least once

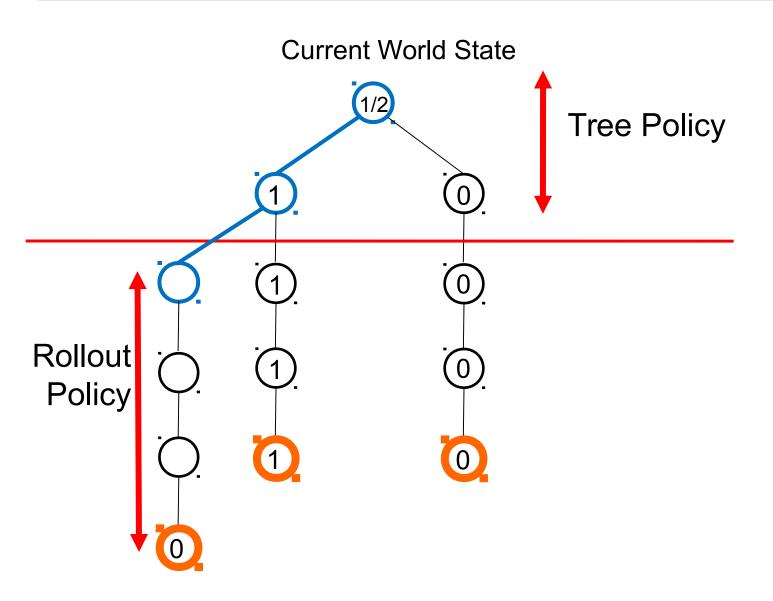


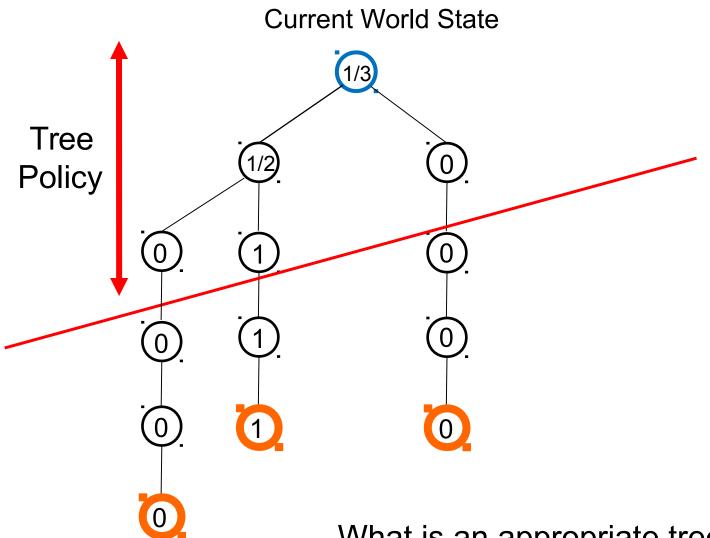
Must select each action at a node at least once

Current World State









What is an appropriate tree policy? Rollout policy?

UCT Algorithm [Kocsis & Szepesvari, 2006]

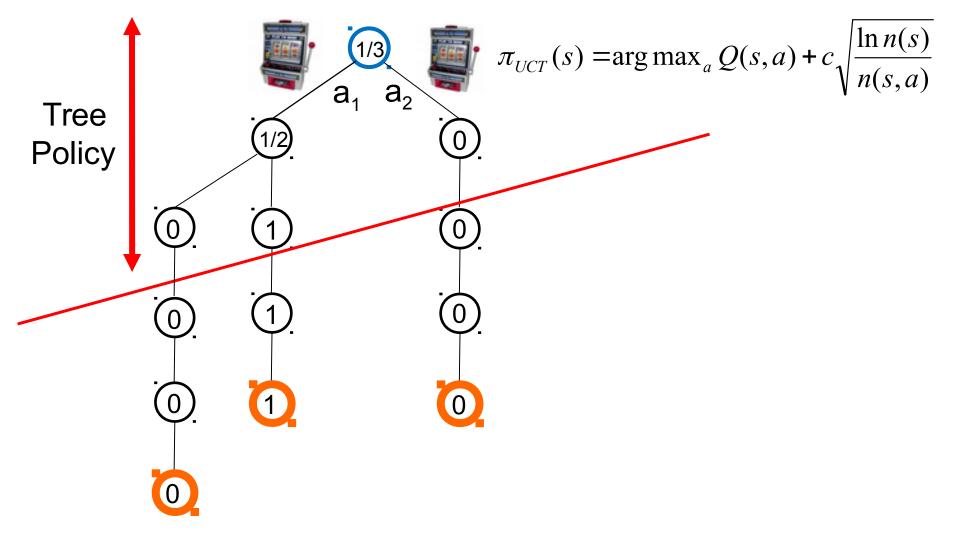
Basic UCT uses random rollout policy

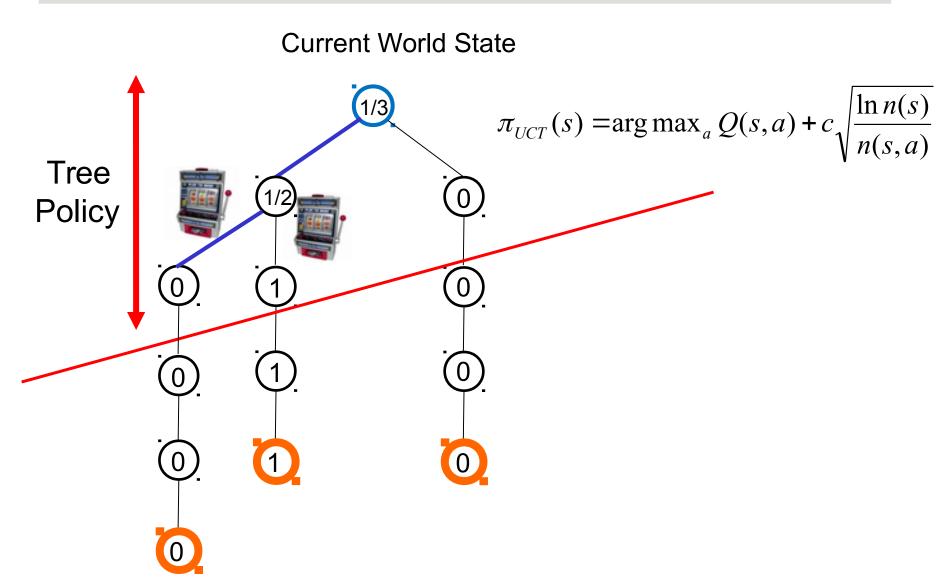
- Tree policy is based on UCB:
 - Q(s,a) : average reward received in current trajectories after taking action a in state s
 - n(s,a) : number of times action a taken in s
 - n(s) : number of times state s encountered

$$\pi_{UCT}(s) = \arg\max_{a} Q(s,a) + c \sqrt{\frac{\ln n(s)}{n(s,a)}}$$

Theoretical constant that must be selected empirically in practice

Current World State

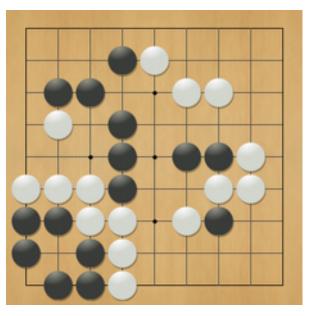




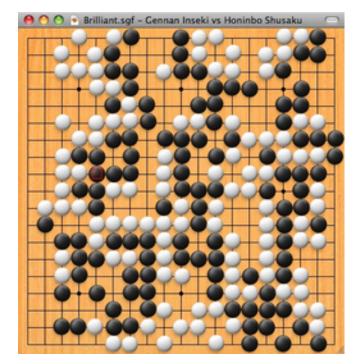
UCT Recap

- To select an action at a state s
 - Build a tree using N iterations of monte-carlo tree search
 - Default policy is uniform random
 - Tree policy is based on UCB rule
 - Select action that maximizes Q(s,a) (note that this final action selection does not take the exploration term into account, just the Q-value estimate)
- The more simulations the more accurate

Computer Go



9x9 (smallest board)



19x19 (largest board)

- [•] "Task Par Excellence for AI" (Hans Berliner)
- "New Drosophila of Al" (John McCarthy)
- Grand Challenge Task" (David Mechner)

A Brief History of Computer Go

- 2005: Computer Go is impossible!
- 2006: UCT invented and applied to 9x9 Go (Kocsis, Szepesvari; Gelly et al.)
- 2007: Human master level achieved at 9x9 Go (Gelly, Silver; Coulom)
- 2008: Human grandmaster level achieved at 9x9 Go (Teytaud et al.)

Computer GO Server: 1800 ELO \rightarrow 2600 ELO

Other Successes

- Klondike Solitaire (wins 40% of games)
- General Game Playing Competition
- Real-Time Strategy Games
- Combinatorial Optimization

List is growing

Usually extend UCT is some ways

Some Improvements

- Use domain knowledge to handcraft a more intelligent default policy than random
 - E.g. don't choose obviously stupid actions
- Learn a heuristic function to evaluate positions
 - Use the heuristic function to initialize leaf nodes (otherwise initialized to zero)

Summary

- When you have a tough planning problem and a simulator
 - Try Monte-Carlo planning
- Basic principles derive from the multi-arm bandit
- Policy Rollout is a great way to exploit existing policies and make them better
- If a good heuristic exists, then shallow sparse sampling can give good gains
- UCT is often quite effective especially when combined with domain knowledge