
1

Monte-Carlo Planning: Monte-Carlo Planning:
Basic Principles and Recent ProgressBasic Principles and Recent Progress

Alan Fern

School of EECS
Oregon State University

Announcements
 Title: Developing Robot

Teammates that Enhance
Social Dynamics and
Performance in Human-
Robot

 Speaker: Sarah Sebo

 Time: 3 pm today

3

Outline

 Preliminaries: Markov Decision Processes

 What is Monte-Carlo Planning?

 Uniform Monte-Carlo
 Single State Case (PAC Bandit)
 Policy rollout
 Sparse Sampling

 Adaptive Monte-Carlo
 Single State Case (UCB Bandit)
 UCT Monte-Carlo Tree Search

4

State + Reward Actions
(possibly stochastic)

????

World

Stochastic/Probabilistic Planning:
Markov Decision Process (MDP) Model

We will model the world
as an MDP.

5

Markov Decision Processes

 An MDP has four components: S, A, PR, PT:

 finite state set S

 finite action set A

 Transition distribution PT(s’ | s, a)
 Probability of going to state s’ after taking action a in state s
 First-order Markov model

 Bounded reward distribution PR(r | s, a)
 Probability of receiving immediate reward r after taking

action a in state s
 First-order Markov model

6

Graphical View of MDP

St

Rt

St+1

At

Rt+1

St+2

At+1

Rt+2

 First-Order Markovian dynamics (history independence)
 Next state only depends on current state and current action

 First-Order Markovian reward process
 Reward only depends on current state and action

At+2

7

Policies (“plans” for MDPs)

 Given an MDP we wish to compute a policy
 Could be computed offline or online.

 A policy is a possibly stochastic mapping from states to actions
 π:S → A
 π(s) is action to do at state s
 specifies a continuously reactive controller π(s)

How to measure goodness of a policy?

8

Value Function of a Policy
 We consider finite-horizon discounted reward,

discount factor 0 ≤ β < 1

 Vπ(s,h) denotes expected h-horizon discounted total reward of policy π at
state s

 Each run of π for h steps produces a random reward sequence: R1 R2 R3 … Rh

 Vπ(s,h) is the expected discounted sum of this sequence

 Optimal policy π* is policy that achieves maximum value across all states









 



sREhsV
h

t

t
t ,|),(

0



9

Relation to Infinite Horizon Setting

 Often value function Vπ(s) is defined over infinite horizons
for a discount factor 0 ≤ β < 1

 It is easy to show that difference between Vπ(s,h) and Vπ(s)
shrinks exponentially fast as h grows

 h-horizon results apply to infinite horizon setting

],|[)(
0

sREsV
t

tt  






hR
hsVsV 


 












1
),()(max

10

Computing a Policy

 Optimal policy maximizes value at each state

 Optimal policies guaranteed to exist [Howard, 1960]

 When state and action spaces are small and MDP is

known we find optimal policy in poly-time via LP
 Can also use value iteration or policy Iteration

 We are interested in the case of exponentially large
state spaces.

11

Large Worlds: Model-Based Approach

1. Define a language for compactly describing MDP

model, for example:
 Dynamic Bayesian Networks

 Probabilistic STRIPS/PDDL

2. Design a planning algorithm for that language

Problem: more often than not, the selected language

is inadequate for a particular problem, e.g.
 Problem size blows up

 Fundamental representational shortcoming

12

Large Worlds: Monte-Carlo Approach

 Often a simulator of a planning domain is available
or can be learned from data
 Even when domain can’t be expressed via MDP language

12

Klondike Solitaire
Fire & Emergency Response

13

Large Worlds: Monte-Carlo Approach

 Often a simulator of a planning domain is available
or can be learned from data
 Even when domain can’t be expressed via MDP language

 Monte-Carlo Planning: compute a good policy for
an MDP by interacting with an MDP simulator

13

World
Simulato

r Real
World

action

State + reward

14

Example Domains with Simulators

 Traffic simulators

 Robotics simulators

 Military campaign simulators

 Computer network simulators

 Emergency planning simulators
 large-scale disaster and municipal

 Sports domains (Madden Football)

 Board games / Video games
 Go / RTS

In many cases Monte-Carlo techniques yield state-of-the-art
performance. Even in domains where model-based planner
is applicable.

15

MDP: Simulation-Based Representation

 A simulation-based representation gives: S, A, R, T:
 finite state set S (generally very large)
 finite action set A

 Stochastic, real-valued, bounded reward function R(s,a) = r
 Stochastically returns a reward r given input s and a
 Can be implemented in arbitrary programming language

 Stochastic transition function T(s,a) = s’ (i.e. a simulator)
 Stochastically returns a state s’ given input s and a
 Probability of returning s’ is dictated by Pr(s’ | s,a) of MDP
 T can be implemented in an arbitrary programming language

16

Outline

 Preliminaries: Markov Decision Processes

 What is Monte-Carlo Planning?

 Uniform Monte-Carlo
 Single State Case (Uniform Bandit)
 Policy rollout
 Sparse Sampling

 Adaptive Monte-Carlo
 Single State Case (UCB Bandit)
 UCT Monte-Carlo Tree Search

17

Single State Monte-Carlo Planning
 Suppose MDP has a single state and k actions

 Figure out which action has best expected reward
 Can sample rewards of actions using calls to simulator
 Sampling a is like pulling slot machine arm with random payoff function R(s,a)

s

a1 a2 ak

R(s,a1) R(s,a2) R(s,ak)

Multi-Armed Bandit Problem

…

…

18

PAC Bandit Objective

 Probably Approximately Correct (PAC)
 Select an arm that probably (w/ high probability) has approximately the

best expected reward
 Use as few simulator calls (or pulls) as possible

s

a1 a2 ak

R(s,a1) R(s,a2) R(s,ak)

Multi-Armed Bandit Problem

…

…

19

UniformBandit Algorithm
NaiveBandit from [Even-Dar et. al., 2002]

1. Pull each arm w times (uniform pulling).

2. Return arm with best average reward.

How large must w be to provide a PAC guarantee?

s

a1 a2 ak

…

…r11 r12 … r1w r21 r22 … r2w rk1 rk2 … rkw

20

Aside: Additive Chernoff Bound

• Let R be a random variable with maximum absolute value Z.
 An let ri i=1,…,w be i.i.d. samples of R

• The Chernoff bound gives a bound on the probability that the
 average of the ri are far from E[R]


11

1

1 ln][w

w

i
iw ZrRE  



With probability at least we have that, 1

Chernoff
Bound

Equivalently:

21

UniformBandit Algorithm
NaiveBandit from [Even-Dar et. al., 2002]

1. Pull each arm w times (uniform pulling).

2. Return arm with best average reward.

How large must w be to provide a PAC guarantee?

s

a1 a2 ak

…

…r11 r12 … r1w r21 r22 … r2w rk1 rk2 … rkw

22

UniformBandit PAC Bound

With a bit of algebra and Chernoff bound we get:

 That is, estimates of all actions are ε – accurate
with probability at least 1-

 Thus selecting estimate with highest value is
approximately optimal with high probability, or PAC



23

Simulator Calls for UniformBandit
s

a1 a2 ak

R(s,a1) R(s,a2) R(s,ak)

…

…

 Total simulator calls for PAC:

 Can get rid of ln(k) term with more complex
algorithm [Even-Dar et. al., 2002].

24

Outline

 Preliminaries: Markov Decision Processes

 What is Monte-Carlo Planning?

 Non-Adaptive Monte-Carlo
 Single State Case (PAC Bandit)
 Policy rollout
 Sparse Sampling

 Adaptive Monte-Carlo
 Single State Case (UCB Bandit)
 UCT Monte-Carlo Tree Search

Policy Improvement via Monte-Carlo

 Now consider a multi-state MDP.

 Suppose we have a simulator and a non-optimal policy
 E.g. policy could be a standard heuristic or based on intuition

 Can we somehow compute an improved policy?

25

World
Simulator

+
Base Policy

Real
World

action

State + reward

26

Policy Improvement Theorem

 The h-horizon Q-function Qπ(s,a,h) is defined as:
expected total discounted reward of starting in state s, taking
action a, and then following policy π for h-1 steps

 Define:

 Theorem [Howard, 1960]: For any non-optimal policy π the
policy π’ a strict improvement over π.

 Computing π’ amounts to finding the action that maximizes
the Q-function
 Can we use the bandit idea to solve this?

π ' (s)=argmaxaQπ (s , a ,h)

27

Policy Improvement via Bandits
s

a1 a2 ak

SimQ(s,a1,π,h) SimQ(s,a2,π,h) SimQ(s,ak,π,h)

…

 Idea: define a stochastic function SimQ(s,a,π,h) that we
can implement and whose expected value is Qπ(s,a,h)

 Use Bandit algorithm to PAC select improved action

How to implement SimQ?

28

Policy Improvement via Bandits

SimQ(s,a,π,h)
 r = R(s,a) simulate a in s

 s = T(s,a)

 for i = 1 to h-1
 r = r + βi R(s, π(s)) simulate h-1 steps

 s = T(s, π(s)) of policy

 Return r

 Simply simulate taking a in s and following policy for h-1
steps, returning discounted sum of rewards

 Expected value of SimQ(s,a,π,h) is Qπ(s,a,h)

29

Policy Improvement via Bandits

SimQ(s,a,π,h)
 r = R(s,a) simulate a in s

 s = T(s,a)

 for i = 1 to h-1
 r = r + βi R(s, π(s)) simulate h-1 steps

 s = T(s, π(s)) of policy

 Return r

s …

…

…

…

a1

a2

Trajectory under 

Sum of rewards = SimQ(s,a1,π,h)

ak

Sum of rewards = SimQ(s,a2,π,h)

Sum of rewards = SimQ(s,ak,π,h)

30

Policy Rollout Algorithm

1. For each ai run SimQ(s,ai,π,h) w times

2. Return action with best average of SimQ results
s

a1 a2
ak

…

q11 q12 … q1w q21 q22 … q2w qk1 qk2 … qkw

… … … … … … … … …

SimQ(s,ai,π,h) trajectories

Each simulates taking
action ai then following
π for h-1 steps.

Samples of SimQ(s,ai,π,h)

31

Policy Rollout: # of Simulator Calls

• For each action w calls to SimQ, each using h sim calls

• Total of khw calls to the simulator

a1 a2
ak

…

… … … … … … … … …

SimQ(s,ai,π,h) trajectories

Each simulates taking
action ai then following
π for h-1 steps.

s

32

Multi-Stage Rollout

a1 a2
ak

…

… … … … … … … … …

Trajectories of
SimQ(s,ai,Rollout(π),h)

Each step requires
khw simulator calls

• Two stage: compute rollout policy of rollout policy of π

• Requires (khw)2 calls to the simulator for 2 stages

• In general exponential in the number of stages

s

33

Rollout Summary
 We often are able to write simple, mediocre policies

 Network routing policy
 Policy for card game of Hearts
 Policy for game of Backgammon
 Solitaire playing policy

 Policy rollout is a general and easy way to improve
upon such policies

 Often observe substantial improvement, e.g.
 Compiler instruction scheduling
 Backgammon
 Network routing
 Combinatorial optimization
 Game of GO
 Solitaire

35

Outline

 Preliminaries: Markov Decision Processes

 What is Monte-Carlo Planning?

 Uniform Monte-Carlo
 Single State Case (UniformBandit)
 Policy rollout
 Sparse Sampling

 Adaptive Monte-Carlo
 Single State Case (UCB Bandit)
 UCT Monte-Carlo Tree Search

36

Sparse Sampling

 Rollout does not guarantee optimality or near optimality

 Can we develop simulation-based methods that give us
near optimal policies?
 With computation that doesn’t depend on number of states!

 In deterministic games and problems it is common to build
a look-ahead tree at a state to determine best action
 Can we generalize this to general MDPs?

 Sparse Sampling is one such algorithm
 Strong theoretical guarantees of near optimality

MDP Basics
 Let V*(s,h) be the optimal value function of MDP

 Define Q*(s,a,h) = E[R(s,a) + V*(T(s,a),h-1)]
 Optimal h-horizon value of action a at state s.
 R(s,a) and T(s,a) return random reward and next state

 Optimal Policy: *(x) = argmaxa Q*(x,a,h)

 What if we knew V*?
 Can apply bandit algorithm to select action that approximately

maximizes Q*(s,a,h)

38

Bandit Approach Assuming V*
s

a1 a2 ak

SimQ*(s,a1,h) SimQ*(s,a2,h) SimQ*(s,ak,h)

…

SimQ*(s,a,h)
 s’ = T(s,a)

 r = R(s,a)

 Return r + V*(s’,h-1)

 Expected value of SimQ*(s,a,h) is Q*(s,a,h)
 Use UniformBandit to select approximately optimal action

SimQ*(s,ai,h) =

R(s, ai) + V*(T(s, ai),h-1)

But we don’t know V*

 To compute SimQ*(s,a,h) need V*(s’,h-1) for any s’

 Use recursive identity (Bellman’s equation):
 V*(s,h-1) = maxa Q*(s,a,h-1)

 Idea: Can recursively estimate V*(s,h-1) by running h-1
horizon bandit based on SimQ*

 Base Case: V*(s,0) = 0, for all s

40

Recursive UniformBandit
s

a1 a2 ak

SimQ*(s,a2,h) SimQ*(s,ak,h)

…

q11

a1 ak

…

SimQ*(s11,a1,h-1) SimQ*(s11,ak,h-1)

…

s11

a1 ak

…

SimQ*(s12,a1,h-1) SimQ*(s12,ak,h-1)

…

s12

SimQ(s,ai,h)

Recursively generate
samples of
R(s, ai) + V*(T(s, ai),h-1)

… q1wq12

Sparse Sampling [Kearns et. al. 2002]

SparseSampleTree(s,h,w)

For each action a in s

Q*(s,a,h) = 0

For i = 1 to w

 Simulate taking a in s resulting in si and reward ri

 [V*(si,h),a*] = SparseSample(si,h-1,w)

 Q*(s,a,h) = Q*(s,a,h) + ri + V*(si,h)

Q*(s,a,h) = Q*(s,a,h) / w ;; estimate of Q*(s,a,h)

V*(s,h) = maxa Q*(s,a,h) ;; estimate of V*(s,h)

a* = argmaxa Q*(s,a,h)

Return [V*(s,h), a*]

This recursive UniformBandit is called Sparse Sampling

Return value estimate V*(s,h) of state s and estimated optimal action a*

of Simulator Calls
s

a1 a2 ak

SimQ*(s,a2,h) SimQ*(s,ak,h)

…

q11

a1 ak

…

SimQ*(s11,a1,h-1) SimQ*(s11,ak,h-1)

…

s11

… q1wq12

• Can view as a tree with root s

• Each state generates kw new states
 (w states for each of k bandits)

• Total # of states in tree (kw)h

How large must w be?

Sparse Sampling
 For a given desired accuracy, how large

should sampling width and depth be?
 Answered: [Kearns et. al., 2002]

 Good news: can achieve near optimality for value
of w independent of state-space size!
 First near-optimal general MDP planning algorithm

whose runtime didn’t depend on size of state-space

 Bad news: the theoretical values are typically still
intractably large---also exponential in h

 In practice: use small h and use heuristic at leaves
(similar to minimax game-tree search)

44

Uniform vs. Adaptive Bandits

 Sparse sampling wastes time
on bad parts of tree
 Devotes equal resources to each

state encountered in the tree
 Would like to focus on most

promising parts of tree

 But how to control exploration
of new parts of tree vs.
exploiting promising parts?

 Need adaptive bandit algorithm
that explores more effectively

45

Outline

 Preliminaries: Markov Decision Processes

 What is Monte-Carlo Planning?

 Uniform Monte-Carlo
 Single State Case (UniformBandit)
 Policy rollout
 Sparse Sampling

 Adaptive Monte-Carlo
 Single State Case (UCB Bandit)
 UCT Monte-Carlo Tree Search

46

Regret Minimization Bandit Objective

s

a1 a2 ak

…

 Problem: find arm-pulling strategy such that the
expected total reward at time n is close to the best
possible (i.e. pulling the best arm always)

 UniformBandit is poor choice --- waste time on bad arms
 Must balance exploring machines to find good payoffs

and exploiting current knowledge

47

UCB Adaptive Bandit Algorithm
[Auer, Cesa-Bianchi, & Fischer, 2002]

 Q(a) : average payoff for action a based on
current experience

 n(a) : number of pulls of arm a

 Action choice by UCB after n pulls:

 Theorem: The expected regret after n arm pulls
compared to optimal behavior is bounded by
O(log n)

 No algorithm can achieve a better loss rate

)(

ln2
)(maxarg*

an

n
aQa a 

Assumes payoffs
in [0,1]

48

UCB Algorithm [Auer, Cesa-Bianchi, & Fischer, 2002]

)(

ln2
)(maxarg*

an

n
aQa a 

Value Term:
favors actions that looked
good historically

Exploration Term:
actions get an exploration
bonus that grows with ln(n)

Expected number of pulls of sub-optimal arm a is bounded by:

where is regret of arm a

n
a

ln
8
2

a

Doesn’t waste much time on sub-optimal arms unlike uniform!

49

UCB for Multi-State MDPs

 UCB-Based Policy Rollout:
 Use UCB to select actions instead of uniform

 UCB-Based Sparse Sampling
 Use UCB to make sampling decisions at internal

tree nodes

UCB-based Sparse Sampling [Chang et. al. 2005]

s

a1 a2 ak

…

q11

a1 ak

…

SimQ*(s11,a1,h-1) SimQ*(s11,ak,h-1)

…

s11

q32

• Use UCB instead of Uniform
to direct sampling at each state

• Non-uniform allocation

q21 q31

s11

q22

• But each qij sample requires
waiting for an entire recursive
h-1 level tree search

• Better but still very expensive!

51

Outline

 Preliminaries: Markov Decision Processes

 What is Monte-Carlo Planning?

 Uniform Monte-Carlo
 Single State Case (UniformBandit)
 Policy rollout
 Sparse Sampling

 Adaptive Monte-Carlo
 Single State Case (UCB Bandit)
 UCT Monte-Carlo Tree Search

 Instance of Monte-Carlo Tree Search
 Applies principle of UCB
 Some nice theoretical properties
 Much better anytime behavior than sparse sampling
 Major advance in computer Go

 Monte-Carlo Tree Search
 Repeated Monte Carlo simulation of a rollout policy
 Each rollout adds one or more nodes to search tree

 Rollout policy depends on nodes already in tree

UCT Algorithm [Kocsis & Szepesvari, 2006]

Current World State

Rollout
Policy

Terminal
(reward = 1)

1

1

1

1

1

At a leaf node perform a random rollout

Initially tree is single leaf

Current World State

1

1

1

1

1

Must select each action at a node at least once

0

Rollout
Policy

Terminal
(reward = 0)

Current World State

1

1

1

1

1/2

Must select each action at a node at least once

0

0

0

0

Current World State

1

1

1

1

1/2

0

0

0

0

When all node actions tried once, select action according to tree policy

Tree Policy

Current World State

1

1

1

1

1/2

When all node actions tried once, select action according to tree policy

0

0

0

0

Tree Policy

0

Rollout
Policy

Current World State

1

1

1

1/2

1/3

When all node actions tried once, select action according to tree policy

0

0

0

0
Tree

Policy

0

0

0

0

What is an appropriate tree policy?
Rollout policy?

59

 Basic UCT uses random rollout policy

 Tree policy is based on UCB:
 Q(s,a) : average reward received in current

trajectories after taking action a in state s
 n(s,a) : number of times action a taken in s
 n(s) : number of times state s encountered

),(

)(ln
),(maxarg)(

asn

sn
casQs aUCT 

Theoretical constant that must
be selected empirically in practice

UCT Algorithm [Kocsis & Szepesvari, 2006]

Current World State

1

1

1

1/2

1/3

When all node actions tried once, select action according to tree policy

0

0

0

0
Tree

Policy

0

0

0

0

a1 a2
),(

)(ln
),(maxarg)(

asn

sn
casQs aUCT 

Current World State

1

1

1

1/2

1/3

When all node actions tried once, select action according to tree policy

0

0

0

0
Tree

Policy

0

0

0

0

),(

)(ln
),(maxarg)(

asn

sn
casQs aUCT 

62

UCT Recap

 To select an action at a state s
 Build a tree using N iterations of monte-carlo tree

search
 Default policy is uniform random
 Tree policy is based on UCB rule

 Select action that maximizes Q(s,a)
(note that this final action selection does not take the
exploration term into account, just the Q-value
estimate)

 The more simulations the more accurate

Computer Go

 “Task Par Excellence for AI” (Hans Berliner)

 “New Drosophila of AI” (John McCarthy)

 “Grand Challenge Task” (David Mechner)

9x9 (smallest board) 19x19 (largest board)

A Brief History of Computer Go

2005: Computer Go is impossible!

2006: UCT invented and applied to 9x9 Go (Kocsis, Szepesvari; Gelly et al.)

2007: Human master level achieved at 9x9 Go (Gelly, Silver; Coulom)

2008: Human grandmaster level achieved at 9x9 Go (Teytaud et al.)

Computer GO Server: 1800 ELO  2600 ELO

Other Successes

Klondike Solitaire (wins 40% of games)

General Game Playing Competition

Real-Time Strategy Games

Combinatorial Optimization

List is growing

Usually extend UCT is some ways

Some Improvements
Use domain knowledge to handcraft a more
intelligent default policy than random

E.g. don’t choose obviously stupid actions

Learn a heuristic function to evaluate
positions

Use the heuristic function to initialize leaf nodes
(otherwise initialized to zero)

67

Summary

 When you have a tough planning problem and a
simulator
 Try Monte-Carlo planning

 Basic principles derive from the multi-arm bandit

 Policy Rollout is a great way to exploit existing
policies and make them better

 If a good heuristic exists, then shallow sparse
sampling can give good gains

 UCT is often quite effective especially when
combined with domain knowledge

	Slide 1
	Slide 2
	Outline
	Stochastic/Probabilistic Planning: Markov Decision Process (MDP) Model
	Markov Decision Processes
	Graphical View of MDP
	Policies (“plans” for MDPs)
	Value Function of a Policy
	Relation to Infinite Horizon Setting
	Computing a Policy
	Large Worlds: Model-Based Approach
	Large Worlds: Monte-Carlo Approach
	Slide 13
	Example Domains with Simulators
	MDP: Simulation-Based Representation
	Slide 16
	Single State Monte-Carlo Planning
	PAC Bandit Objective
	UniformBandit Algorithm NaiveBandit from [Even-Dar et. al., 2002]
	Aside: Additive Chernoff Bound
	Slide 21
	UniformBandit PAC Bound
	# Simulator Calls for UniformBandit
	Slide 24
	Policy Improvement via Monte-Carlo
	Policy Improvement Theorem
	Policy Improvement via Bandits
	Slide 28
	Slide 29
	Policy Rollout Algorithm
	Policy Rollout: # of Simulator Calls
	Multi-Stage Rollout
	Rollout Summary
	Slide 35
	Sparse Sampling
	MDP Basics
	Bandit Approach Assuming V*
	But we don’t know V*
	Recursive UniformBandit
	Sparse Sampling [Kearns et. al. 2002]
	# of Simulator Calls
	Slide 43
	Uniform vs. Adaptive Bandits
	Slide 45
	Regret Minimization Bandit Objective
	UCB Adaptive Bandit Algorithm [Auer, Cesa-Bianchi, & Fischer, 2002]
	UCB Algorithm [Auer, Cesa-Bianchi, & Fischer, 2002]
	UCB for Multi-State MDPs
	UCB-based Sparse Sampling [Chang et. al. 2005]
	Slide 51
	UCT Algorithm [Kocsis & Szepesvari, 2006]
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	UCT Recap
	Computer Go
	A Brief History of Computer Go
	Other Successes
	Some Improvements
	Summary

