COMP 152: Probabilistic Robotics
for Human-Robot Interaction

Instructor: Jivko Sinapov
www.cs.tufts.edu/~jsinapov


http://www.cs.tufts.edu/~jsinapov

This week: Planning




Announcements



The Early Answer (1967): Sense-Plan-Act
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Block-stacking




Block-stacking domain and problem

(define (domain blocksworld) -
(:requirements :strips :equality) (define (problem pb3)
(:predicates (clear 7x) ( :domain blocksworld)
{on-table 7x) (:objects a b c)
{arm-empty) (:init (on-table a) (on-table b) (on ¢ a)

(holding 7x)

{clear b) (clear c) (arm-empty))

(on 7x 2y)) (:goal (and (on a b) (on b ¢))))

= {raction pickup
sparameters (fob)
sprecondition {and {clear 7ob) (on-table Tob) (arm-empty))
ceffect (and (holding 7ob) (not (clear 7ob)) (not {(on-table ?ob))
(not {arm-empty)})))

= {raction putdown
sparameters [ fob)
sprecondition {and (holding Zob))
reffect (and (clear Tob) (arm-empty) {on-table ?Tob)
{not (holding 7ob))))

= {raction stack
rparameters [ fob Funderob)
Jl:precondition {and (clear 7underocbkb) (holding ?ob) {(not (= 7ob Funderob}} )
rprecondition {and {clear Punderob) (holding ?abl})
reffect (and (arm-empty) (clear ?ob) (on ?ob Tunderob)
{not {clear Tunderob)) (not (holding 7ob)))})

= (:action unstack
:parameters {7ob Tunderob)
rprecondition {and {on 7ob Tunderob) {clear 7ob) (arm-empty))
:effect (and (holding ?ob) (clear ?underob)
{not (on Zob ?underob)) (not (clear Zob)) (not (arm-empty)))))

https://github.com/gerryai/PDDL4J/blob/master/pddl/blockworld/blocksworld.pddl
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https://github.com/gerryai/PDDL4J/blob/master/pddl/blockworld/blocksworld.pddl

Block-stacking domain and problem

(define {domain blocksworld)
(:requirements :strips :equality)
{:predicates (clear 7x)

(on-table 7x)

(arm-empty)

(holding 7x)

(on Tx Tv))

raction pickup

sparameters (fob)

sprecondition {and {clear 7ob) (on-table Tob) (arm-empty))

ceffect (and (holding 7ob) (not (clear 7ob)) (not [(on-table 7ob))
(not {arm-empty)})))

raction putdown

sparameters [ fob)

sprecondition {and (holding Zob))

reffect (and (clear 7ob) (arm-empty) (on-table
{not (holding 7ob))))

Tob)

raction stack

rparameters
Jl:precondition {and
rprecondition {and

{*ob Funderob)

{clear Tunderob) (holding 7ob))
reffect (and (arm-empty) (clear ?ob) {on ?ob Funderob)
{not {clear Tunderob)) (not (holding 7ob)))})

;action unstack

rparameters {7ob Tunderob)

rprecondition {and {on 7ob Funderob) {(clear 7ob) (arm-empty))
reffect (and (holding 7ob) {(clear Tunderob}

{not {on 7ob ?undercb)) (not (clear 7ob)) (not (arm-empty)))))

{clear 7underob) (holding 7ob) (not {= 7ob Tunderob}} )

{define (problem pb3)
( :domain blocksworld)
(:objects a b c)
(:init (on-table a) (on-table b) (on c a)
{clear b) (clear c) (arm-empty))
{:goal (and (on a b) (on b c))))

How many possible states are there?

Can we simplify the domain a little?
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Block-stacking domain and problem

(define (demain blocksworld)
(:requirements :strips :equality)
{:predicates (clear 7x)

(on-table 7x)

(arm-empty)

(holding 7x)

{define (problem pb3)

( :domain blocksworld)

(:objects a b c)

{:init (on-table a) (on-table b) (on ¢ a)
{clear b) (clear c) (arm-empty))

{on 7x 7v)) {:goal (and (on a b) (on b c))))

= {raction pickup
sparameters (fob)
sprecondition {and {clear 7ob) (on-table Tob) (arm-empty))
ceffect (and (holding 7ob) (not (clear 7ob)) (not [(on-table 7ob))

{not (arm-empty))))

= {raction putdown
sparameters [ fob)
sprecondition {and (holding Zob))
reffect (and (clear ?ob) (arm-empty) {on-table ?ob)
{not (holding 7ob))))

= {:action stack
rparameters [ fob Funderob)

ff:precondition {and {clear Fundercb) (helding 7ob) (not (= ?ob Zunderob)) )

:precondition (and (clear ?underob) (holding Tob))
reffect (and (a

Send me the simpler
= (:action unstac

Sareatact PDDL domain and problem for

:precondition extra credit!
reffect (and
{not {on Zob Tundelo®

How many possible states are there?

Can we simplify the domain a little?









Classical Planning Model

Planning with deterministic actions under complete knowledge

Characterized by:
e 2 finite state space S
 a finite set of actions A; A(s) are actions executable at s

e deterministic transition function f : S x A — S such that
f(s,a) is state after applying action a € A(s) in state s

e known initial state s;,,;;
e subset G C 5 of goal states

e positive costs ¢(s,a) of applying action a in state s
(often, ¢(s,a) only depends on a)



Classical Planning Model

Since the initial state is known and the effects of the actions can be
predicted, a controller is a fixed action sequence ™ = (ag, a1, ...,a,)

The sequence defines a state trajectory (sg, s1, ..., Sn+1) Where:

® 50 = S;nit IS the initial state

e a; € A(s;) is an applicable action at state s;, ¢ =0,...,n

e sit1 = f(si,a;) is the result of applying action a; at state s;

The controller is valid (i.e., solution) iff s, is a goal state
Its cost is c¢(7) = c(sg,ap) + c(s1,a1) + -+ + c(Sn, an)

It is optimal if its cost is minimum among all solutions
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What do we mean by each of these words?



Classical Planning

Static

Fully
Observable
What action Deterministic
Instantaneous
Perfect
Sequential
Percepts Actions

What are some alternatives to these assumptions?
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Actions with Uncertain Effects

e (Certain problems have actions whose behaviour is
non-deterministic

E.g., tossing a coin or rolling a dice are actions whose outcomes
cannot be predicted with certainty

e |n other cases, uncertainty is the result of a coarse model
that doesn’t include all the information required to predict
the outcomes of actions

In both cases, it is necessary to consider problems with
non-deterministic actions



Mathematical Models of Probabilistic Planning

e A finite state space S
e a finite set of actions A; A(s) are actions executable at sS

» stochastic transitions given by distributions p(-|s, a) where
p(s'|s,a) is the probability of reaching s’ when a is executed at s

e initial state s;nit
e subset G C S of goal states

e positive costs c¢(s,a) of applying action a in state s

States are assumed to be fully observable



A simple problem

e 4 states; S = {sg,...,83} e p(s9|sp,ay) = 1.0
e 2 actions; A = {ag,a;} o plsglsy,ap) = 0.7

e 1 gcal: G = {-'-?3} L j‘]l[.?g|-‘i;:_r,ﬂ.1:] = 0.4



Relation to Markov Decision
Processed (MDPs)




Continue on to ICAPS tutorial...



Credits

Andrey Kolobov Alan Fern
Microsoft Research Oregon State EECS
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