COMP 152: Probabilistic Robotics
for Human-Robot Interaction

Instructor: Jivko Sinapov
www.cs.tufts.edu/~jsinapov

http://www.cs.tufts.edu/~jsinapov

This week: Planning

Announcements

The Early Answer (1967): Sense-Plan-Act

3-Disk Hanol

S

Final Plan

3 DISKS
| ‘ ‘ {1) ‘ ‘ |
A B C A B C

{2} | {3) I {4} ‘ I ‘

A B C A B C A

B
(5) | ‘ ‘ (6 | ‘ ‘ (N ‘ |
B

A B C A B C A C

C

Block-stacking

Block-stacking domain and problem

(define (domain blocksworld) -
(:requirements :strips :equality) (define (problem pb3)
(:predicates (clear 7x) (:domain blocksworld)
{on-table 7x) (:objects a b c)
{arm-empty) (:init (on-table a) (on-table b) (on ¢ a)

(holding 7x)

{clear b) (clear c) (arm-empty))

(on 7x 2y)) (:goal (and (on a b) (on b ¢))))

= {raction pickup
sparameters (fob)
sprecondition {and {clear 7ob) (on-table Tob) (arm-empty))
ceffect (and (holding 7ob) (not (clear 7ob)) (not {(on-table ?ob))
(not {arm-empty)})))

= {raction putdown
sparameters [fob)
sprecondition {and (holding Zob))
reffect (and (clear Tob) (arm-empty) {on-table ?Tob)
{not (holding 7ob))))

= {raction stack
rparameters [fob Funderob)
Jl:precondition {and (clear 7underocbkb) (holding ?ob) {(not (= 7ob Funderob}})
rprecondition {and {clear Punderob) (holding ?abl})
reffect (and (arm-empty) (clear ?ob) (on ?ob Tunderob)
{not {clear Tunderob)) (not (holding 7ob)))})

= (:action unstack
:parameters {7ob Tunderob)
rprecondition {and {on 7ob Tunderob) {clear 7ob) (arm-empty))
:effect (and (holding ?ob) (clear ?underob)
{not (on Zob ?underob)) (not (clear Zob)) (not (arm-empty)))))

https://github.com/gerryai/PDDL4J/blob/master/pddl/blockworld/blocksworld.pddl

N
C
A

https://github.com/gerryai/PDDL4J/blob/master/pddl/blockworld/blocksworld.pddl

Block-stacking domain and problem

(define {domain blocksworld)
(:requirements :strips :equality)
{:predicates (clear 7x)

(on-table 7x)

(arm-empty)

(holding 7x)

(on Tx Tv))

raction pickup

sparameters (fob)

sprecondition {and {clear 7ob) (on-table Tob) (arm-empty))

ceffect (and (holding 7ob) (not (clear 7ob)) (not [(on-table 7ob))
(not {arm-empty)})))

raction putdown

sparameters [fob)

sprecondition {and (holding Zob))

reffect (and (clear 7ob) (arm-empty) (on-table
{not (holding 7ob))))

Tob)

raction stack

rparameters
Jl:precondition {and
rprecondition {and

{*ob Funderob)

{clear Tunderob) (holding 7ob))
reffect (and (arm-empty) (clear ?ob) {on ?ob Funderob)
{not {clear Tunderob)) (not (holding 7ob)))})

;action unstack

rparameters {7ob Tunderob)

rprecondition {and {on 7ob Funderob) {(clear 7ob) (arm-empty))
reffect (and (holding 7ob) {(clear Tunderob}

{not {on 7ob ?undercb)) (not (clear 7ob)) (not (arm-empty)))))

{clear 7underob) (holding 7ob) (not {= 7ob Tunderob}})

{define (problem pb3)
(:domain blocksworld)
(:objects a b c)
(:init (on-table a) (on-table b) (on c a)
{clear b) (clear c) (arm-empty))
{:goal (and (on a b) (on b c))))

How many possible states are there?

Can we simplify the domain a little?

L = R T, TR A T IY L

3l
32

Block-stacking domain and problem

(define (demain blocksworld)
(:requirements :strips :equality)
{:predicates (clear 7x)

(on-table 7x)

(arm-empty)

(holding 7x)

{define (problem pb3)

(:domain blocksworld)

(:objects a b c)

{:init (on-table a) (on-table b) (on ¢ a)
{clear b) (clear c) (arm-empty))

{on 7x 7v)) {:goal (and (on a b) (on b c))))

= {raction pickup
sparameters (fob)
sprecondition {and {clear 7ob) (on-table Tob) (arm-empty))
ceffect (and (holding 7ob) (not (clear 7ob)) (not [(on-table 7ob))

{not (arm-empty))))

= {raction putdown
sparameters [fob)
sprecondition {and (holding Zob))
reffect (and (clear ?ob) (arm-empty) {on-table ?ob)
{not (holding 7ob))))

= {:action stack
rparameters [fob Funderob)

ff:precondition {and {clear Fundercb) (helding 7ob) (not (= ?ob Zunderob)))

:precondition (and (clear ?underob) (holding Tob))
reffect (and (a

Send me the simpler
= (:action unstac

Sareatact PDDL domain and problem for

:precondition extra credit!
reffect (and
{not {on Zob Tundelo®

How many possible states are there?

Can we simplify the domain a little?

Classical Planning Model

Planning with deterministic actions under complete knowledge

Characterized by:
e 2 finite state space S
 a finite set of actions A; A(s) are actions executable at s

e deterministic transition function f : S x A — S such that
f(s,a) is state after applying action a € A(s) in state s

e known initial state s;,,;;
e subset G C 5 of goal states

e positive costs ¢(s,a) of applying action a in state s
(often, ¢(s,a) only depends on a)

Classical Planning Model

Since the initial state is known and the effects of the actions can be
predicted, a controller is a fixed action sequence ™ = (ag, a1, ...,a,)

The sequence defines a state trajectory (sg, s1, ..., Sn+1) Where:

® 50 = S;nit IS the initial state

e a; € A(s;) is an applicable action at state s;, ¢ =0,...,n

e sit1 = f(si,a;) is the result of applying action a; at state s;

The controller is valid (i.e., solution) iff s, is a goal state
Its cost is c¢(7) = c(sg,ap) + c(s1,a1) + -+ + c(Sn, an)

It is optimal if its cost is minimum among all solutions

Fully
Observable

Perfect

Classical Planning

Static

Percepts R

What action

Actions

Deterministic

Instantaneous

Sequential

Classical Planning

Static

Fully
Observable
What action Deterministic
Instantaneous
Perfect
Sequential
Percepts Actions

What do we mean by each of these words?

Classical Planning

Static

Fully
Observable
What action Deterministic
Instantaneous
Perfect
Sequential
Percepts Actions

What are some alternatives to these assumptions?

Fully
VS.
Partially
Observable

Perfect
VS.
Noisy

Percepts
C——

Planning

Static vs. Dynamic

What action

Actions

Deterministic
VS.
Stochastic

Sequential
VS.
Concurrent

Instantaneous
VS.
Durative

Fully
VS.
Partially
Observable

Perfect
VS.
Noisy

Percepts
C——

Planning

Static vs. Dynamic

What action

Actions

Deterministic
VS.
Stochastic

Sequential
VS.
Concurrent

Instantaneous
VS.
Durative

Actions with Uncertain Effects

e (Certain problems have actions whose behaviour is
non-deterministic

E.g., tossing a coin or rolling a dice are actions whose outcomes
cannot be predicted with certainty

e |n other cases, uncertainty is the result of a coarse model
that doesn’t include all the information required to predict
the outcomes of actions

In both cases, it is necessary to consider problems with
non-deterministic actions

Mathematical Models of Probabilistic Planning

e A finite state space S
e a finite set of actions A; A(s) are actions executable at sS

» stochastic transitions given by distributions p(-|s, a) where
p(s'|s,a) is the probability of reaching s’ when a is executed at s

e initial state s;nit
e subset G C S of goal states

e positive costs c¢(s,a) of applying action a in state s

States are assumed to be fully observable

A simple problem

e 4 states; S = {sg,...,83} e p(s9|sp,ay) = 1.0
e 2 actions; A = {ag,a;} o plsglsy,ap) = 0.7

e 1 gcal: G = {-'-?3} L j‘]l[.?g|-‘i;:_r,ﬂ.1:] = 0.4

Relation to Markov Decision
Processed (MDPs)

Continue on to ICAPS tutorial...

Credits

Andrey Kolobov Alan Fern
Microsoft Research Oregon State EECS

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

