

COMP 152: Probabilistic Robotics for Human-Robot Interaction

Instructor: Jivko Sinapov www.cs.tufts.edu/~jsinapov

Image Features and Optical Flow

Research Article Presentation

Sign-up for research article presentation

Reading Assignment

Khandelwal, P., Zhang, S., Sinapov, J., Leonetti, M., Thomason, J., Yang, F., Gori, I., Svetlik, M., Khante, P., Lifschitz, V., Aggarwal, J.K., Mooney, R., and Stone, P. (2017)

BWIBots: A platform for bridging the gap between AI and Human-Robot Interaction research

International Journal of Robotics Research, Vol. 36, No.5-7, pp. 635-659, 2017.

Visual Registration and Recognition

Visual Registration and Recognition

Registration

Registration

[http://vihari.github.io/personal_website/images/3dregistration.png]

Registration

Interest Point Registration

Interest Point Detection

- Look for image regions that are unusual
 - Leads to unambiguous matches in other images
 - How do we define unusual?

Suppose we only consider a small window of pixels

What defines whether a feature is a good or bad candidate?

Slide adapted from Darya Frolova, Denis Simakov, Weizmann Institute.

Local measure of feature uniqueness

- How does the window change when you shift it?
- Shifting the window in any direction causes a big change

"flat" region: no change in all directions

"edge": no change along the edge direction "corner": significant change in all directions

Slide adapted from Darya Frolova, Denis Simakov, Weizmann Institute.

Consider shifting the window W by (u,v)

- how do the pixels in W change?
- compare each pixel before and after by summing up the squared differences (SSD)

• this defines an SSD "error" of *E(u,v)*:

Harris Detector: Mathematics

Change of intensity for the shift [*u*,*v*]:

Eliminate small responses.

Find local maxima of the remaining.

OpenCV: finding features

cv::cornerHarris(...)

http://docs.opencv.org/2.4/doc/tutorials/features2d/trackingmotio n/harris_detector/harris_detector.html

OpenCV: finding features

Shi and Tomasi '94: cv::goodFeaturesToTrack(...)

http://docs.opencv.org/2.4/modules/imgproc/doc/feature_detection.html

Harris Detector: Some Properties

Rotation invariance

Corner response R is invariant to image rotation

Harris Detector: Some Properties

Partial invariance to affine intensity change

✓ Only derivatives are used => invariance to intensity shift $I \rightarrow I + b$

Harris Detector: Some Properties

But: non-invariant to *image scale*!

All points will be classified as edges

Corner !

Achieving Scale Invariance

How do we choose scale?

Difference-of-Gaussians

Gaussian Blur

3x3 Gaussian Kernel

Computation of the Output Image

Gaussian Blur Kernels

Finding Keypoints - Scale, Location

Interest Point Descriptors

Now that we can find interest points, how do we compare them?

Interest Point Descriptors

- Now that we can find interest points, how do we compare them?
- Answer: compute a numerical feature descriptor describing the orientation, and scale of the interest point

Basic idea:

- Take 16x16 square window around detected feature
- Compute edge orientation (angle of the gradient 90°) for each pixel
- Create histogram of edge orientations

Adapted from slide by David Lowe

Full version

- Divide the 16x16 window into a 4x4 grid of cells (2x2 case shown below)
- Compute an orientation histogram for each cell
- 16 cells * 8 orientations = 128 dimensional descriptor

Adapted from slide by David Lowe

Keypoint location = extrema location
Keypoint scale is scale of the DOG image

Computing Angle of Gradient

Angle and magnitude of gradient are computed using 1 and 2-side edge filters:

Patch

The problem with SIFT...

- Slow...
- Copyrighted!
 - Alternatives: SURF
 - OpenSURF:
 - <u>http://opensurf1.googlecode.com/files/OpenSURF.pdf</u>
 - Included in OpenCV 2.0+
 - OpenCV Tutorial:
 - http://achuwilson.wordpress.com/2011/08/05/object-detection-using-surf-in-opency-part-1/

SURF

Achieves quicker computation by scaling the filter rather than the image:

To summarize...

Feature detectors:

- Find interest points in image (e.g., using difference of Gaussians, Harris corner detection, etc.)
- Feature descriptors
 - Each detected feature can be represented by a numerical descriptor encoding orientation, scale, etc.

Applications

Object Detection

[https://www.youtube.com/watch?v=zQSFzmzR-is]

Marker-less tracking

https://www.youtube.com/watch?v=caFHvamMUTw

SURF feature tracking during Curiosity Landing

https://www.youtube.com/watch?v=Dgz0U4iWW_E

Visual-odometry

Stream	ming - VLC media player		🛓 📄 🗰 🕒 🥑 🖘 🖇 🖾 🗊 (30%) 💷 17:31 🔅 viki			
0	Screen capture					Search
	Playlist [00:24]	Title	Duration	Album		
-	Media Library	S Desktop				
Χ.	My Computer	Applications				
	My Videos					
	My Music					
101	My Pictures					
	Devices					
	😅 Video capture					
0	Ø Discs					
11	📁 Audio capture					
-	MTP devices	/				
1	Screen capture					
商	Local Network					
	Sonjour services					
	St Network streams					
IEX	Muniversal Plug'n'P					
-						
K 0						
T						
-						
DL.						
<u> </u>						
3						
9	00:00	3				00:00
		x Q = 4				0 100

https://www.youtube.com/watch?v=kNy7ruXnWTo

Image Registration in ROS

http://wiki.ros.org/find_object_2d

Optical Flow

- Interest key points and feature descriptors are great but suffer from one limitation:
 - They ignore time

- B.

- B.
- F. 1

Optical Flow Video

https://www.youtube.com/watch?v=o8NOabnZPIY

What is Optical Flow?

"Optical flow is the distribution of apparent velocities of movement of brightness patterns in an image" - Horn and Schunk, 1981

Motion Fields

The motion field is the projection of the 3D scene motion into the image

Motion Fields and Camera Movement

Visual-odometry for Drones

https://www.youtube.com/watch?v=V4r2HXGA8jw

Computing Optical Flow

- Given a set of points in an image, find those same points in another image
- Or, given point $[u_x, u_y]^T$ in image I_1 find the point $[u_x + \delta_x, u_y + \delta_y]^T$ in image I_2 that minimizes ε :

$$\varepsilon(\delta_{x},\delta_{y}) = \sum_{x=u_{x}-w_{x}}^{u_{x}+w_{x}} \sum_{y=u_{y}-w_{y}}^{u_{y}+w_{y}} \left(I_{1}(x,y) - I_{2}(x+\delta_{x},y+\delta_{y})\right)$$

Optical Flow Assumptions

Assumption

Image measurements (e.g. brightness) in a small region remain the same although their location may change.

$$I(x+u, y+v, t+1) = I(x, y, t)$$

(assumption)

Assumption

- * Neighboring points in the scene typically belong to the same surface and hence typically have similar motions.
- * Since they also project to nearby points in the image, we expect spatial coherence in image flow.

Temporal Persistence

The image motion of a surface patch changes gradually over time.

* Slide from Michael Black, CS143 2003

Dense vs. Sparse Optical Flow

Code

MATLAB:

Iterative Pyramidal LK Optical Flow

http://www.mathworks.com/matlabcentral/fileexchange/23142-iterative-pyramidal-lk-optical-flow

OpenCV

http://robots.stanford.edu/cs223b05/notes/optical_flow_demo.cpp

To summarize...

Feature detectors:

- Find interest points in image (e.g., using difference of Gaussians, Harris corner detection, etc.)
- Feature descriptors
 - Each detected feature can be represented by a numerical descriptor encoding orientation, scale, etc.

To summarize...

Optical Flow

- Computes how pixels (or features) move from frame to frame
- Dense optical flow computes a movement vector for each pixel
- Sparse optical flow computes a movement vector only for a subset of pixels (e.g., the pixels that are interest points)
- Optical flow can be used to infer movement of objects as well as movement of the camera

Project Breakout

- How does computer vision relate to your project?
- Will your robot need to process visual data if so, what are some of the tasks and functions you will need?

THE END