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Abstract

Emerging AI applications like self-driving cars and warehouse robots con-
tinuously interact with their environment to learn policies in order to
meet meta-objectives. These applications impose processing and storage
requirements. In this work, we posit the use of the cloud to host per-
formance critical learning algorithms for such agents. We propose CARL,
a framework, that decouples learning policies from an agent’s interaction
with the environment; delegating the latter to the cloud while retaining
the former at the agent. To kickstart the discussion, we propose a first cut
programming interface that shows support for a variety of reinforcement
learning algorithms. We place key emphasis on algorithmic durability to
network impairments and show that by making hyper-parameters (e.g.,
greediness) of an agent adaptive to network conditions, CARL can work
well over challenging scenarios where the network is a bottleneck (e.g.,
lossy, slow). Our preliminary results show that CARL can maintain good
performance in face of network impairments.

1 Introduction

For the past several years, the extensive use of data coupled with supervised and
unsupervised Machine Learning (ML) has become ubiquitous. This interest in
using big-data to aid decision making has catalysed innovation across multiple
fields: i) Programming abstractions ([3, 8, 14, 6, 2]) and ii) Hardware ([12, 13]).
There also has been prior work ([4]) aimed at harnessing the power of the
cloud to support complex ML systems, with a strong focus on the performance
requirements imposed by these systems (e.g., low latency, high computational
prowess).

Even more recently, the incapability of typical ML approaches in handling
stochastic and unpredictable environments has been highlighted - where in or-
der to reach a target, an agent must perform a long sequence of actions and
there is no notion of a “label” as in ML [9]. Towards this end, Reinforcement
Learning (RL) has shown promise and is becoming increasingly important for
next generation applications (e.g., self-driving cars [5]). While its benefits in
dealing with problems requiring dynamic control under stochastic settings has
been shown, there exists a lot of ground to cover before RL can become the
defacto tool for the industry.
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RL applications typically have three main components: i) interaction with
the environment, ii) following a policy, and iii) policy evaluation and improve-
ment. Interacting with the environment requires agents to often make mechani-
cal movements to navigate in the state-space and gather sensory data such as a
video stream of its surroundings. Following a policy enables the agent to decide
what actions to take based on the state of the environment. Lastly, policy eval-
uation and improvement is a cyclical process of running extensive simulations
to generate a variety of trajectories and using them to learn and improve the
policy.

These components translate to different system level requirements. For in-
stance, interacting with the environment imposes a need for mechanical robust-
ness and elongated battery life. Following a policy is the equivalent of “inference
serving” in the ML world, and often requires low latency while policy improve-
ment and evaluation requires storage and processing prowess.

With the cloud now offering scalable and inexpensive compute and storage
power ([1, 11]), there is hope for applications dependent on RL to see deployment
success. However, existing cloud-based learning frameworks ([6, 14, 7, 4]) are
optimized for big-data workloads or for supervised learning problems where
there is little communication between an agent and the cloud. On the contrary,
RL agents will need to periodically communicate with the cloud and thus the
network becomes a critical resource.

We argue that offloading computation and storage to the cloud does not
come for free: the fidelity of the network in between the RL agent and the
backend RL framework running at the cloud becomes the key. If the network is
poor, then the performance of an RL agent can degrade. This is especially true
for thin RL agents designed to rely almost completely on the cloud and expend
most of their efforts in collecting and reporting sensory data.

In this work, we look at the performance of a specific RL agent with a
computationally intensive code-path offloaded to the cloud - we call this system
CARL. In particular, our focus will be on learning and planning methods, with
the planning phase offloaded to the cloud.

In total, we make the following contributions:

• We propose a first-cut programming interface that shows promise to sup-
port a variety of RL algorithms in a cloud assisted framework (§4). We
show a specific instance of this interface in the context of planning and
learning methods.

• We show that by adapting the level of greediness of an RL agent based
on hints from the network (loss rate, delay), CARL can work well over a
challenged network (§6.3).

2 Background and Related Work

Cloud based applications have been around for years now. A broad category of
current and next-generation applications are deemed to be reliant on inference
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Figure 1: Harnessing the power of the cloud, by outsourcing planning.

(ML) and sequential decision making (RL) systems. With the cloud, the per-
formance bottleneck has shifted from computation and memory to the network
which connects the end-points (RL agents) with the cloud. While the power
of the cloud is well understood, the question of building algorithmic robust-
ness within RL agents to work well over a variety of networks has been largely
unexplored.

While cross-layer optimizations (enriching the interface between applications
and the network stack) have existed for a while in the mobile community for
traditional applications such as web search and audio/video streaming, no such
parallel exists for applications reliant on ML and RL. These techniques work
on adapting application logic based on network feedback. For instance, graceful
degradation of a mobile application on a clumsy network. This is analogous to
the agenda of this project; adapting RL algorithms based on network feedback.

Complementary to the agenda of this project, RL has been extensively used
in network engineering. However, these efforts have largely focused on how RL
can be used to solve network resource management problems. Instead, we take
a look at the problem from the other end; how can we use network feedback to
intelligently manage RL algorithms.

3 Motivation

We begin by considering the basic requirements of an RL algorithm. There are
three main steps involved. An agent repeatedly interacts with the environment,
and makes important observations about the state and reward. It uses these to
update its version of the model of the environment. Extensive simulations can
then be run on the model to learn a policy and improve it.

Thus, CARL must provide efficient infrastructure for interactions, updates,
and simulations; next we describe these.

Interaction typically requires the agent to navigate through the environment.
As part of this interaction, the agent collects observations about the environ-
ment. For instance, its GPS location. Additionally, this interaction also collects
the rewards present in the environment. This step often requires mechanical
movements and the cost per interaction is high.
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Updates transform the observations to a model. In RL, this is typically
represented as a Markov-chain. Additionally, depending on the exact learning
algorithm, the manifestation of the model maybe a table containing state-action
values or a neural network that approximates such a table.

Simulations are then run on the model to learn a policy or improve it further.
This is critical as most RL applications are not sample efficient and their hunger
for data requires them to reuse the modest set of observations in an intelligent
fashion.

We take the specific case of learning and planning methods and show how
these requirements are orchestrated under CARL. We see in Figure 1, that the
first step is the interaction step where an agent interfaces with the environment
by exploring and exploiting it (direct RL). In the second step, the agent offloads
the environment observations (State, Action, Next state, Reward) to the cloud,
allowing the cloud to update the existing model. The third step involves the
cloud running multiple planning passes (simulations in general) to improve and
evaluate the policy. The policy is then pushed to the agent so it can perform
indirect RL.

Notice that the agent maintains very little state and the local policy gen-
erated by doing direct RL is not sufficient alone and is very basic. The bulk
of the computation and storage is offloaded to the cloud. The cloud then runs
the computationally intensive planning step using its processing prowess and re-
turns updates to the agent which it can use to improve its local policy (indirect
RL).

Since the network conditions between the agent and the cloud play a crucial
role in the performance of the RL task, we induce network awareness in the
modules running on the agent. In particular, when the network reports to be
degraded (lossy, slow), the agent adapts its greediness in exploring the envi-
ronment and prioritizing the updates that need to be sent to the cloud. We
elaborate more on this in §5.

Summary. By decoupling decisions: interactions from simulations and
designing a suitable interface to support updates, we can satisfy the requirements
of each module. By creating network awareness in RL applications running on
agnets, we can also maintain good performance on heterogeneous networks.

4 Programming interface

To kick start a discussion on a cloud assisted reinforcement learning framework,
as in CARL, we present the following simple and flexible API that can be used
by RL agents to “talk” to the cloud running RL algorithms (e.g., Q-learning,
SARSA):

updateModel(State,Action,Next State,Reward)->(context)

syncPolicy()->(Policy)

egreedy(State,Epsilon)->(Action)

batchObservations(State,Action,Next State,Reward,criteria)->(context)

4



Algorithm 1 CARL enabled Dyna-Q

1: Do Forever:
2: S ← currentstate
3: A← cloud.egreedy(S,E)
4: Execute A; Observe reward R and State S′

5: Q← Q+ α× [error] . direct RL
6: cloud.updateModel(S,A, S′, R)
7: if S == Terminal State then
8: Q← cloud.syncPolicy() . Download Q values from cloud

The API has four functions. The first enables the agent to offload environ-
ment observations to the cloud and depending on the exact implementation,
the returned context could denote whether the update was successful. The
second provisions for the case where the agent wants to inherit the superior
policy learned by the cloud. This is useful in episodic tasks, where the agent
can expend some time “downloading” the policy from the cloud at the end of
each episode and the beginning of the next. The third function is to invoke a
cloud hosted epsilon-greedy policy, where the greediness can be specified by the
agent and the cloud will return the appropriate action based on the policy it
has currently learned. The fourth is to enable batched updates to be sent to
the cloud. The inputs are the observations and a criteria which denotes some
condition that the agent desires should be met before the updates are pushed
to the cloud. For example, the criteria could be a timer which when expires,
triggers the updates to be automatically dispatched to the cloud.

Our choice of starting with this simple interface is motivated by the consid-
eration that often, the agent will not be able to host complicated state-action
tables and powerful RL algorithms. Thus a suitable way of offloading observa-
tions to the cloud is a key requirement. Similarly, the need to have a flexible
way to batch updates is important because the agent may not be able to send
updates as they become available, perhaps because it doesn’t temporarily have
internet connectivity.

We now show how this interface can be used by an RL application. Algo-
rithm 1 shows the Dyna-Q algorithm running at the agent connected to the
cloud. We assume that the agent is capable of direct RL however it doesn’t ex-
ecute the planning step which is computationally intensive. The agent offloads
environment observations using the cloud.updateModel() function call. It also
updates its local Q table, as is necessary to do direct RL. The agent however
doesn’t use the local Q table and in this code snippet, it always invokes the
cloud.egreedy() method which returns the best action to take. Lastly, once
an episode is completed, the agent “downloads” the clouds version of the Q
table using cloud.syncPolicy(). Here, policy loosely refers to the information
base (Q-table) used to come up with actions.
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5 A case for network awareness in CARL

Given the emphasis of harnessing the power of the cloud to improve the perfor-
mance of RL applications, special attention needs to be given to the network
that connects the agent to the cloud. Network impairments, like outages and
loss can have performance implications and if not handled, may fizzle out the
benefits of using CARL. For example if the network between the agent and the
cloud is temporarily congested, then the cloud.egreedy() call may take a long
time to be executed, increasing the latency of completing the learning task.

Inspired by cross-layer optimizations, especially in the mobile community,
we investigate the possibility of instilling network awareness in RL algorithms;
making them more durable to impairments like outages, delays and losses. More
concretely, we see if the choice of exploration-exploitation can be viewed as
a function of network hints. Additionally, we see if prioritized sweeping - a
technique used to prune state updates that have low utility - can be extended
to judiciously select updates that need to be sent to the cloud if the network
cannot handle all of them. We now elaborate both these strategies in the context
of planning and learning methods.
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Figure 2: Motivational experiment showing that exploration can be made a
function of network conditions. The agent runs Dyna-Q on the maze with and
without planning (indirect RL). Learning curves are plotted as a function of the
first 12 steps. Number of iterations to reach the goal state are on the vertical
axis, while episodes elapsed are on the horizontal axis. Three curves of different
exploration rates (E) are plotted. We see that E=0.8 is best when planning is
unavailable while it is poor when the agent can perform planning.

Adapting greediness. Suppose the agent receives the feedback that the net-
work is causing large delays in transmitting new experience to the cloud. In-
stead of relying on planning to improve convergence, it could try exploring more
states. Therefore once the network is less-busy again, more of the state-space
would have been explored which the cloud can use to enhance the realism of the
model it hosts.
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We show why this is a good idea on a simple maze solving task, using the
Dyna-Q algorithm. For this experiment, the Dyna-Q algorithm runs on a single
machine, and follows the exact semantics as described in chapter 8 of [9]. Figure
2 shows how the Dyna-Q learning agent performs on the maze solving task (2a)
with no planning (2b) and 50 steps of planning in each iteration (2c). We can see
that planning improves performance however the interesting observation is that
a lower exploration rate (ε = 0.1) performs best when the agent can perform
planning steps but a higher exploration rate (ε = 0.8) is best if the agent cannot
perform planning. In CARL, we envision that planning will be offloaded to the
cloud, hence in epochs where the network to the cloud is degraded, the agent
can use a higher exploration rate on its local state.

Prioritized offloading. If the network to the cloud is congested and only a
few updates can be pushed to the cloud, the agent could prioritize among the
set of all updates that need to be sent so that only the most useful observations
are transmitted over the network. The process of fine tuning the threshold that
defines which updates are high priority and low priority can be made network
aware.

6 Evaluation

Our preliminary evaluation aims to verify that indeed the programming interface
works, can support CARL enabled Dyna-Q, and show promise of network aware
RL algorithms. We first describe our setup then move onto the key results.

6.1 Setup

For our evaluation we use a python based prototype which uses RPC calls. We
use two d430 nodes with 10Gbps network interfaces on the Emulab testbed [10].
One node runs the agent code while the other runs in server mode. We assume
that network hints can be communicated to the agents running the thin RL
application.

Network outage. To model an impaired network, we induce an emulated net-
work outage at strategic points during task learning. During the network outage,
the agent cannot use the programming interface except the batchObservations()
call; the criteria is set such that updates are pushed to the server whenever the
emulated outage ends (see §4).

Lossy network. To model a loss, we cap the maximum number of observa-
tions that can be offloaded to the cloud at a given time. This is configurable in
the code script.
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Task and metrics. The agent attempts to solve the Dyna-Q maze (§2a). It
follows Algorithm 1. We are interested in the first few episodes of the task where
most of the learning happens. Thus our primary metric is the learning curve.

Parameters. The agent running the CARL enabled Dyna-Q algorithm uses
the following parameters: εcloud = 0.1, α = 1, γ = 0.95. Additionally, it uses a
network dependent local exploration rate: εlocal.
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Figure 3: Comparison of learning curves for the CARL enabled version of Dyna-Q
(§1) and the traditional implementation. Both algorithms have similar learning
curves.

6.2 Comparison with baseline

We compare CARL enabled version of Dyna-Q versus the traditional implemen-
tation that runs on a single node. Figure 3 shows the learning curves for both
implementations. While both implementations have similar learning curves and
converge to the the optimal policy (17 iterations), we observe that CARL enabled
Dyna-Q takes 2× more time. However, we posit that on bigger and complex
tasks, computation will become the bottleneck and CARL will be able to offer
lower mean task completion times as well.

6.3 CARL over challenged networks

We evaluate two network impairments: outages and losses. We induce outages
by disconnecting the agent from the cloud for episodes, or within an episode
for several iterations. For loss, we cap the maximum number of updates (Max
Burst) that can be pushed to the cloud.

Outages lasting episodes. Figure 4a shows the learning curves when an
outage is induced at the third training episode and lasts four episodes. During
this time the agent can only rely on direct RL. We can see that having a higher
exploration rate (εlocal = 0.4, 0.8) during the network outage leads to the maze
being solved in fewer iterations. We also see that as soon as the network outage
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Figure 4: Performance of different strategies to cope with network impairments
(outages, loss).

ends, the agent resumes using the cloud.egreedy(S,0.1). Another insight is
that if the length of the outage can be determined apriori, then modulating the
exploration rate based on this could prove useful. As we can see that εlocal = 0.4
slightly improves over εlocal = 0.8 for the last two episodes of the network outage.

Intra-episode outages. Figure 4b shows the number of iterations it takes the
agent to solve the maze when the cloud is not available for 30 iterations during
the third episode. This is different from the previous case where the cloud is
unavailable for 4 episodes. We can see that when there is no outage, the CARL
enabled Dyna-Q agent can solve the maze in ≈ 55 iterations. However, for the
case when the network outage is reported to the agent, a higher exploration
rate, εlocal = 0.8, can result in better performance (59 iterations) versus the
case when nothing is done i.e. the agent continues using εlocal = εcloud = 0.1
(65 iterations).

Intra-episode loss. Figure 4c shows the number of iterations it takes the
agent to solve the maze under the following induced impairments: a 200 iter-
ation network outage during episode 3, followed by a limited number of up-
dates that can be pushed to the cloud. While the network is unavailable, the
agent uses εlocal = 0.1. This is to rule out any gains due to the higher ex-
ploration as discussed in the previous case. Instead, the agent relies on the
batchObservations() API and prioritizing updates. We see that if 100 obser-
vations are allowed to go through the network, the agent can solve the maze
in 162 iterations at episode 3. As the Maximum Burst (MB) is reduced, the
iterations required to solve the maze increases. With an MB limited to 10 (only
10 observations out of the 200 are allowed to be offloaded to the cloud), the
agent takes 20 more iterations to solve the maze! However, by using prioritized
sweeping even with MB=10, the agent can improve its performance and achieve
comparable performance to the case when MB=100.
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7 Conclusion

We presented a case for Cloud Assisted Reinforcement Learning to facilitate the
deployment of mission critical AI applications like self-driving cars and ware-
house robots. We distilled key requirements that such applications have: i)
interacting with the environment, ii) updating model and iii) learning a policy.
By delegating these to the agents and the cloud respectively, and designing a
suitable programming interface to support model updates, we showed that a
cloud assisted performance efficient framework could be designed, as in CARL.
We addressed the issue when the network becomes the bottleneck and showed
that RL algorithms could intelligently use feedback about the networks state
to maintain good performance. Our evaluation results showed promise of our
first-cut interface and network awareness in RL algorithms.
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