
An In-Depth Investigation Of The Effects Of

Feature Reduction On The Performance Of DQN

Atari Agents

Holt Spalding
Oliver Newland

11/8/18

1 Project Overview

In this paper, we would like to investigate the effects of image preprocessing
on the overall performance of various Atari agents. When training an RL agent
with a DQN, you are always faced with a tradeoff: to what extent should
I compress my training images in order to save computational time without
losing crucial aspects of the original image? Downsampling, frame skipping (not
image preprocessing, but in the same spirit), gray scaling, and image cropping
have all proven effective methods of dimensionality reduction in Atari DQN,
however no one has seemed to study these methods in any significant depth.
We would like to study these preprocessing techniques at their most extreme
in order to answer the question...how compressed can we get? For example,
while reducing image resolution to an almost unrecognizable extent may result
in more timesteps to convergence for a Pacman agent, is there a chance that wall
clock time to convergence would be reduced? By comparing the performance
of agents across these two measures (number of time steps and real time to
convergence), we would like to develop a method by which other researchers can
quickly determine the optimal level of image preprocessing for their given task.
Furthermore, we would like to rank these different preprocessing techniques
in terms of effectiveness. For example in the context of Pacman, gray scaling
probably has little negative effect on performance. Therefore, gray scaling could
be ranked as an essential aspect of image preprocessing when training a DQN
Atari agent. Other image preprocessing techniques however may pose more
tradeoffs.

We would like to conduct this experiment with something like the Pacman
environment because it is deterministic, and therefore could be learned com-
pletely blind. In this experiment we would like to compare the relative perfor-
mances of a blind agent, an agent that sees the state space in full resolution,
and agents with varying levels of state-space visibility in between. Performance
will be measured in terms of the two measures of time convergence mentioned

1



above, as well as susceptibility to environmental noise. Resilience to environ-
mental noise is a crucial aspect of training an effective RL agent. Since a blind
Pacman agent would learn to play the game the same way every time, it would
stand no chance of surviving if a new ghost NPC were to suddenly enter the
environment. By the end of our experiment, we would like to optimally rec-
oncile the various tradeoffs posed by image preprocessing in order to find the
agent that performs the best in terms of time steps to convergence, real time to
convergence, and resilience to environmental noise.

To summarize, these are our primary goals:

• Aim 1: Explicitly layout the costs and benefits of different image prepro-
cessing techniques on DQN Atari agent performance.

• Aim 2: Optimally reconcile the various tradeoffs posed by image prepro-
cessing in order to find the Pacman agent that performs the best in terms
of time steps to convergence, real time to convergence, and resilience to
environmental noise.

• Aim 3: Provide a framework by which other researchers can quickly de-
termine the optimal level of image preprocessing necessary for their ex-
periment.

2 Background and Related Work

The following articles, papers, and web sources provide information used in the
formation of our experiment, as well as guidance for executing the experiment
properly, particularly in designing it for a DQN.

2.1 “DQN: Does it scales?[sic]” by Harsh Satija [1]

McGill master’s student Harsh Satija provides a useful outline of employ-
ing a Deep Q-Network in reinforcement learning problems. DQN’s are at the
forefront of reinforcement learning as they highly powerful and more widely ap-
plicable than CNN, RNN, and LSTM methods, which are locked into certain
sample spaces and are liable to diverge. DQNs avoid these pitfalls by imple-
menting “experience replay,” which purges random correlations to smooth data
distribution, updating action values iteratively, and using a separate target net-
work that is updated every so often. They are limited in that they only act
upon that last four observed states, and require a great deal of computational
power. It is this tradeoff in performance and resource usage we are trying to
explore and optimize.

2



2.2 “Playing Atari with Deep Reinforcement Learning”
by Volodymyr Mnih et. al. [2]

Mnih and company present their groundbreaking model for learning con-
trol policies from “high-dimensional sensory input” in a reinforcement learning
setting. They use a DQN method to surpass previous RL performance in a
collection of seven Atari games, and surpass human performance in three of
them. This article provides a strong baseline to compare our results too, and
also briefly discusses pixel downsampling, one of the feature compressions we
want to explore.

2.3 “Dynamic Frame skip Deep Q Network” By Aravind
S. Lakshminarayanan et. al. [3]

Lakshminarayanan and company explore the possibilities of varying the
frame skip rate when learning Atari 2600 games with a DQN algorithm. In
their words: “A frame skip value of k allows the agent to repeat a selected ac-
tion k number of times.” More specifically, the learning agent only receives the
state every k frames, and its actions are carried out for intervals of k frames. For
states that resemble images, such as the ones from Atari 2600 games, this helps
save computational resources if done well. Lakshminarayanan et. al. found that
values of k can be varied to affect outcome, and this variation can be performed
by the a learning algorithm itself. Although we will not mimic this dynamic
tuning, the paper is nevertheless helpful in implementing k as an experimental
variable.

2.4 “Frame Skipping and Pre-Processing for Deep Q-Networks
on Atari 2600 Games” by Daniel Seita [4]

Seita provides a detailed guide to working with the Arcade Learning Envi-
ronment library [5] and the open-source DQN deep q rl [6] used by Mnih and
company in their aforementioned article. He includes several of his pitfalls and
how he overcame them, which is particularly useful for getting started.

2.5 deep q rl by Nathan Sprague [6]

An open source DQN based on Google’s open-source, but harder to use and
understand, DQN. It seems to provide identical functionality, with the addition
of easier parameter tuning.

2.6 Open AIGym [7]

One possible source for emulating Atari 2600 games.

3



2.7 Arcade-Learning-Environment by Marc Bellemare [5]

Another possible source for emulating Atari 2600 games, built on top of the
Stella emulator. Very similar to Open AIGym, to the point where we do not
currently know which to use.

3 Problem Formulation and Technical Approach

As described above, (aside from the blind agent) we would like to vary our
DQN agents in terms of 4 features: grayscale or not, level of downsampling,
number of frames skipped between each analyzed frame, and the level of crop-
ping. We plan to test our agents on different games provided by the Open AI
Atari environment, Pacman being our main focus. We also plan to use a CUDA
card that will allow us to effectively measure the real time GPU performance of
our different agents. We would like to use tensorflow for this project since we
are relatively familiar with it and we think it will give us effective control of the
underlying hardware.

Other than variations in these 4 features, all agents will be designed
based almost entirely on the agents described in the 2013 Deep Mind paper we
read in class. The blind agent will be an MDP designed similarly to these other
agents, however it will have a significantly reduced state space in which actions
are chosen on the basis of position relative to its starting position. It will know
its position relative to its starting position and the number of steps it is into
the game by incremental update after each action it performs.

4 Evaluation and Expected Outcomes

Our experiment will measure the performance of the agents with differing
“visibilities” by measuring GPU cycles and wall clock time to capture both
computational resources used by the DQN and overall time to convergence.
Following those results, we are interested in the agents performances in response
to noise. In other words, having learned on a deterministic game (Pac-Man),
what resolution is required to make the adjustments needed to win?

We expect that the less an agent can see, the less resources it will use, and
that we will discover an optimal compression level. We postulate that the totally
blind agent will be able to learn the game relatively quickly by simply learning
and memorizing the optimal path, taking more episodes, but doing so without
running a DQN iteration every action. Following the introduction of noise, we
expect that optimal compression level agent will still perform well, but the more
blind agents will perform significantly worse.

We extend this expectation to other games in that the more randomness
involved in the games rewards and obstacles, the more visibility is necessary to
train an effective and adaptable agent.

4



5 Stretch Goals

We would like to discuss with you potential ways to make this project more
interesting. For example, are there ways an image could be affected that improve
performance than no one has tried before? One thing we wanted to look into
potentially was using partial convolutions of an image to speed up DQN.

References

[1] Harsh Satija. Dqn: Does it scales? Unpublished paper.

[2] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin A. Riedmiller. Playing atari with
deep reinforcement learning. CoRR, abs/1312.5602, 2013.

[3] Aravind S. Lakshminarayanan, Sahil Sharma, and Balaraman Ravindran.
Dynamic frame skip deep Q network. CoRR, abs/1605.05365, 2016.

[4] Daniel Seita. Frame skipping and pre-processing for deep q-networks on
atari 2600 games, 2016.

[5] Marc G. Bellemare. Arcade-learning-environment.
https://github.com/mgbellemare/Arcade-Learning-Environment, 2018.

[6] Nathan Sprague. deep q rl. https://github.com/spragunr/deep q rl, 2016.

[7] Open aigym.

5


