# **COMP 138: Reinforcement Learning**



Instructor: Jivko Sinapov Webpage: https://www.eecs.tufts.edu/~jsinapov/teaching/comp150\_RL\_Fall2020/

#### Announcements

# **Reading Assignment**

- Chapter 12 of SB
- Research Article see canvas
- Responses should discuss both readings
- You get extra credit for answering others' questions!

## **Reading Assignment**

Sutton, Richard S., Doina Precup, and Satinder Singh.

"Between MDPs and semi-MDPs: A framework for temporal abstraction in reinforcement learning."

Artificial intelligence 112.1-2 (1999): 181-211.

#### **Project Proposal**

• Due this Friday

# We're hiring!

- Project Title: "Science of Artificial Intelligence and Learning for Open-world Novelty"
- TLDR: how can AI agents deal with dynamically changing ("open") worlds?
- Project expected to run for 2+ years, involves 3+ PhD students, several MS and undergraduates + partners at ASU
- If interested, send me an email with resume and we'll start the conversation







#### Midterm Evaluations

• At end of class

#### Today: Control with Function Approximation



### The limitations of Tabular Methods



+ 100 reward for getting to S6 0 for all other transitions

Update rule upon executing action a, ending up in state s' and observing reward  ${\bf r}$  :

Q(s , a)=r + $\gamma$  max a' Q(s' ,a ' )

 $\gamma$  = 0.5 (discount factor)

#### Q-Table

| S1 | right | 25   |
|----|-------|------|
| S1 | down  | 25   |
| S2 | right | 50   |
| S2 | left  | 12.5 |
| S2 | down  | 50   |
| S3 | left  | 25   |
| S3 | down  | 100  |
| S4 | up    | 12.5 |
| S4 | right | 50   |
| S5 | left  | 25   |
| S5 | up    | 25   |
| S5 | right | 100  |



Q-Table

| S1                                | right                                     | 25                            |
|-----------------------------------|-------------------------------------------|-------------------------------|
| S1                                | down                                      | 25                            |
| S2                                | right                                     | 50                            |
| S2                                | left                                      | 12.5                          |
| S2                                | down                                      | 50                            |
| S3                                | left                                      | 25                            |
|                                   |                                           |                               |
| 0.5, -0.7                         | 7, 0.2,, 0.9                              | 100                           |
| 0.5, -0.7<br>S4                   | 7, 0.2,, 0.9<br>up                        | 100<br>12.5                   |
| 0.5, -0.7<br>S4<br>S4             | 7, 0.2,, 0.9<br>up<br>right               | 100<br>12.5<br>50             |
| 0.5, -0.7<br>S4<br>S4<br>S5       | 7, 0.2,, 0.9<br>up<br>right<br>left       | 100<br>12.5<br>50<br>25       |
| 0.5, -0.7<br>S4<br>S4<br>S5<br>S5 | 7, 0.2,, 0.9<br>up<br>right<br>left<br>up | 100<br>12.5<br>50<br>25<br>25 |

 $\gamma = 0.5$  (discount factor)

 $Q(s, a)=r + \gamma \max a' Q(s', a')$ 

and observing reward r :

#### **Connection to Supervised ML**

Classification

Regression



[https://cdn-images-1.medium.com/max/1600/1\*ASYpFfDh7XnreU-ygqXonw.png]

#### Linear Q-Function Approximation

 $Q^*(s,a) = \mathcal{R}(s,a) + \gamma \sum_{i} \mathcal{P}(s'|s,a) \max_{a'} Q^*(s',a')$  $W_1 * X_1 + W_2 * X_2 + ... + W_n * X_n$  $Q(s,a) = \sum f_i(s,a)w_i$ i=1

#### Example: Ms. Pac-man



The problem: for a given action and the current configuration, compute a fixed-length feature vector

Each feature must have some semantic "meaning"

#### **Example Configurations**



#### Small group activity: feature engineering



Be the feature engineer: given a configuration and a cardinal direction, design the feature types that describe how the world "looks like" in that direction; assume you have access to the underlying game simulator; the board itself is a graph with nodes and edges and for each node, you know whether there is a pill, power, pill, a ghost, and its state (edible or not, direction of movement)

Example feature:  $x_{ghost-k} = 0.0$  if no ghost is present up to K nodes towards the action's direction and 1.0 otherwise

Be as precise as possible!

Assume linear q-function approximation – can you come up with an initial set of weights given the semantics of the features you designed?

#### Discussion – what did you come up with?



Be the feature engineer: given a configuration and a cardinal direction, design the feature types that describe how the world "looks like" in that direction; assume you have access to the underlying game simulator; the board itself is a graph with nodes and edges and for each node, you know whether there is a pill, power, pill, a ghost, and its state (edible or not, direction of movement)

Example feature:  $x_{ghost-k} = 0.0$  if no ghost is present up to K nodes towards the direction and 1.0 otherwise

Be as precise as possible!

Assume linear q-function approximation – can you come up with an initial set of weights given the semantics of the features you designed?

## Example Q-Learning Update with Function Approximation

### **Non-linear Function Approximation**

"I was a little confused about how the replay memory works with the agent as the deep Qlearning runs. What is the difference between this and bootstrapping?"

- Noah

"How would CNN architecture complexity compare to modern games where there is alot more things going on visually than in the atari games?"

- Frederick

"A question that I have about the paper is that since a state is defined by a sequence of actions and observations, how do we determine the length of such a sequence? Does it make more sense to set the length to a fixed value or to have it vary dynamically?"

- Martin

"I guess the next step is then how far can we take the model-free model, and whether this sort of neural network could surpass the performance of RL algorithms in any other problems?"

- Jonathan

"Q: This paper has been written in 2013, what have been the changes in the state-of-the-art methods that take as input only the raw pixels?"

- Camelia

"... so does being able to see n-steps ahead allow for the algorithm to be less likely to get stuck in the local minimums?"

- Courtney

"Q: Could you explain a bit more in detail how they use grid-tilings in example 10.1?

Q: Could you go over the concepts of quality of a policy,  $r(\pi)$ , and ergodicity? The way the authors explain them in section 10.3 is quite confusing for me."

- Camelia

"Could you go a bit more in depth on differential semi-gradient sarsa and how it's different from regular sarsa? The book is very brief on this algorithm."

- James

# **Project Breakout**

- Finalize domain / problem you want to address
- Decide on individual responsibilities
- Write questions for me

#### Midterm Evaluations

#### THE END