COMP 138: Reinforcement Learning

Instructor: Jivko Sinapov

Announcements

Reading Assignment

• Chapters 4 and 5 of Sutton and Barto

Homework 1

- Introduction
- Part 1: Programming Ex. as in the book: You can use subsections
- Part 2: Additional Question and Experiment
- Summary and Conclusion
- Extra Credit
- Submit: 1 PDF file of your report; 1 ZIP file containing all code + README.txt

Research Article Topics

- Transfer learning
- Learning with human demonstrations and/or advice
- Approximating q-functions with neural networks
- Neurosymbolic Methods

Discussion: What makes a good project?

Example Project Video

https://www.youtube.com/watch?v=VMp6pq6_Q jl

Policies and Value Functions

(exercise on board with L-shaped world)

Policies and Value Functions

Start state

Dynamic Programming

Dynamic Programming

"Dynamic Programming refers to simplifying a complicated problem by breaking it down into simpler sub-problems in a recursive manner.

While some decision problems cannot be taken apart this way, decisions that span several points in time do often break apart recursively.

Likewise, in computer science, if a problem can be solved optimally by breaking it into sub-problems and then recursively finding the optimal solutions to the sub-problems, then it is said to have optimal substructure."

- wikipedia

Policy Evaluation

Iterative policy evaluation

Input π , the policy to be evaluated Initialize an array V(s) = 0, for all $s \in S^+$ Repeat

$$\begin{array}{l} \Delta \leftarrow 0\\ \text{For each } s \in \mathbb{S}:\\ v \leftarrow V(s)\\ V(s) \leftarrow \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) \big[r + \gamma V(s')\big]\\ \Delta \leftarrow \max(\Delta, |v - V(s)|)\\ \text{until } \Delta < \theta \text{ (a small positive number)}\\ \text{Output } V \approx v_{\pi} \end{array}$$

$$V_0$$
 V_1 V_2 V_3 V_4 V_5 A 0 0 $x/24$ 1 1 1 B 0 0 $x/12$ 1 1 1 C 0 $x/3$ 1 1 1 1 D 0 $x/6$ 1 1 1 1

At each state, the agent has 1 or more actions allowing it to move to neighboring states. Moving in the direction of a wall is not allowed

$$v_{k+1}(s) \doteq \mathbb{E}_{\pi}[R_{t+1} + \gamma v_k(S_{t+1}) \mid S_t = s]$$
$$= \sum_a \pi(a|s) \sum_{s',r} p(s',r|s,a) \Big[r + \gamma v_k(s') \Big]$$

WORKING TEXT AREA: ¹/₂ * (0) + ¹/₂ * (1/2* x/3)

	V_0	V_1	V_2	V_3	V_4	V_5
A	0	0	0	X/24		
В	0	0	X/12			
С	0	X/3	3X/8			
D	0	X/6	3X/ 16			

$$v_{k+1}(s) \doteq \mathbb{E}_{\pi}[R_{t+1} + \gamma v_k(S_{t+1}) \mid S_t = s]$$
$$= \sum_a \pi(a|s) \sum_{s',r} p(s',r|s,a) \Big[r + \gamma v_k(s') \Big]$$

Working area: 3x/16

$$v_{k+1}(s) \doteq \mathbb{E}_{\pi}[R_{t+1} + \gamma v_k(S_{t+1}) \mid S_t = s]$$
$$= \sum_a \pi(a|s) \sum_{s',r} p(s',r|s,a) \left[r + \gamma v_k(s')\right]$$

Policy Improvement

 Main idea: if for a particular state s, we can do better than following the current policy by taking a different action, then the current policy is not optimal and changing it to follow the different action at state s improves it

Policy Iteration

• evaluate \rightarrow improve \rightarrow evaluate \rightarrow improve \rightarrow

.

Value Iteration

- Main idea:
 - Do one sweep of policy evaluation under the current greedy policy
 - Repeat until values stop changing (relative to some small $\Delta)$

Policy iteration (using iterative policy evaluation)

1. Initialization

 $V(s) \in \mathbb{R}$ and $\pi(s) \in \mathcal{A}(s)$ arbitrarily for all $s \in S$

- 2. Policy Evaluation
 - Repeat $\Delta \leftarrow 0$ For each $s \in S$: $v \leftarrow V(s)$ $V(s) \leftarrow \sum_{s',r} p(s', r | s, \pi(s)) [r + \gamma V(s')]$ $\Delta \leftarrow \max(\Delta, |v - V(s)|)$ until $\Delta < \theta$ (a small positive number)
- 3. Policy Improvement policy-stable \leftarrow true For each $s \in S$: old-action $\leftarrow \pi(s)$ $\pi(s) \leftarrow \arg\max_a \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]$ If old-action $\neq \pi(s)$, then policy-stable \leftarrow false If policy-stable, then stop and return $V \approx v_*$ and $\pi \approx \pi_*$; else go to 2

Monte Carlo MDP Demo

https://colab.research.google.com/drive/1A9Ce 6vJApuIZnHmrv98W6wTb8WFI5eWi?usp=shari ng

THE END