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Abstract

Intelligent robots frequently need to explore the objects in
their working environments. Modern sensors have enabled
robots to learn object properties via perception of multiple
modalities. However, object exploration in the real world
poses a challenging trade-off between information gains and
exploration action costs. Mixed observability Markov deci-
sion process (MOMDP) is a framework for planning un-
der uncertainty, while accounting for both fully and partially
observable components of the state. Robot perception fre-
quently has to face such mixed observability. This work en-
ables a robot equipped with an arm to dynamically construct
query-oriented MOMDPs for object exploration. The robot’s
behavioral policy is learned from two datasets collected using
real robots. Our approach enables a robot to explore object
properties in a way that is significantly faster while improv-
ing accuracies in comparison to existing methods that rely on
hand-coded exploration strategies.

1 Introduction

Service robots are increasingly present in everyday environ-
ments, such as homes, offices, airports, and hospitals, where
a common task is to retrieve an object for a user. Consider
the request, “Please fetch me the red, empty bottle” A key
problem for the robot is to decide whether a particular can-
didate object matches the properties in the query. For cer-
tain words (e.g., heavy, soft, etc.), visual classification of
the object is insufficient as the robot would need to per-
form an action (e.g., lift the object to determine whether it is
heavy or not). Multi-modal perception research has focused
on combining information arising from such multiple sen-
sory modalities.

Given multi-modal perception capabilities, a robot needs
to decide which actions (possibly out of many) to perform
on an object, i.e., generate a behavioral policy for a given
request. For instance, to obtain an object’s color, a robot
simply needs to adjust the pose of its camera, whereas sens-
ing the content of a container requires two actions: grasp-
ing and shaking. The robot needs to select actions in such
a way that the information gain about object properties is
maximized while the cost of actions is minimized. It should
be noted that the robot needs to use sequential reasoning in
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this action selection process, e.g., a shaking action would
make sense only if a grasping action has been (successfully)
executed. Also, robot perception capabilities are imperfect,
so the robot sometimes needs to take the same action more
than once. Probabilistic planning algorithms aim at comput-
ing action policies to help select actions toward maximiz-
ing long-term utility (information gain in our case), while
considering the uncertainty in non-deterministic action out-
comes.

Markov decision processes (MDPs) (Puterman 1994) and
partially observable MDPs (POMDPs) (Kaelbling, Littman,
and Cassandra 1998) enable an agent to plan under uncer-
tainty with full and partial observability respectively. How-
ever, the observability of real-world domains is frequently
mixed: some components of the current state can be fully ob-
servable while others are not. A mixed observability Markov
decision process (MOMDP) is a special form of POMDP
that accounts for both fully and partially observable compo-
nents of the state (Ong et al. 2010). In this work, we model
robot multi-modal perception problems using MOMDPs be-
cause of the mixed observability of the world that the robot
interacts with (e.g., whether an object is in hand or not is
fully observable, but object properties such as color and
weight are not). Referring to our model as a MOMDP (as
opposed to a POMDP) is not of practical importance in this
paper. It is mainly for ease of describing the domain.

Robot behavioral exploration policies are learned from
the experience of a robot interacting with objects in the
real world. We use datasets that include tens of objects
and nearly one hundred properties. In such domains, it fre-
quently takes a prohibitively long time to compute effective
behavioral exploration policies. To tackle this issue, we dy-
namically construct MOMDP-based controllers to model a
minimum set of domain variables that are relevant to cur-
rent user queries (e.g. “red, empty bottle”). This strategy
ensures a small state set and enables us to generate high-
quality robot action policies in a reasonable time (e.g., < 2
seconds). Our experiments show that the policies of the con-
structed controllers improve recognition accuracy and re-
duce exploration cost when compared to baseline strategies
that deterministically or randomly use predefined sequences
of actions.



2 Related Work

Recent research in robotics has shown that robots can learn
to classify objects using computer vision methods as well
as non-visual perception coupled with actions performed on
the objects (Hogman, Bjorkman, and Kragic 2013; Sinapov
et al. 2014; Thomason et al. 2016). For example, a robot can
learn to determine whether a container is full or not based on
the sounds produced when shaking the container (Sinapov
and Stoytchev 2009); or learn whether an object is soft or
hard based on the haptic sensations produced when pressing
it (Chu et al. 2015). Past work has shown that robots can
associate (or ground) these sensory perceptions with human
language predicates in vision space (Alomari et al. 2017;
Whitney et al. 2016; Krishnamurthy and Kollar 2013; Ma-
tuszek et al. 2012) and joint visual and haptic spaces (Gao et
al. 2016).

Nevertheless, there has been relatively little emphasis on
enabling a robot to efficiently select actions at test time
when it is tasked with classifying a new object. The few ap-
proaches for tackling action selection, e.g., (Rebguns, Ford,
and Fasel 2011; Fishel and Loeb 2012; Sinapov et al. 2014),
assume that only one target property needs to be identified
(e.g., the object’s identity in the case of object recognition).
In contrast, we address the problem where a robot needs to
recognize multiple properties about an object, e.g., “is the
object a red empty bottle?”.

Sequential decision-making frameworks, such as MDPs,
POMDPs and MOMDPs, can be used for probabilistic plan-
ning toward achieving long-term goals, while accounting for
non-deterministic action outcomes and different observabil-
ities (Kaelbling, Littman, and Cassandra 1998; Ong et al.
2010). As a result, these frameworks have been applied to
object exploration in robotics. For instance, POMDPs were
used for suggesting visual operators and regions of interests
for exploring multiple objects on a tabletop scenario (Srid-
haran, Wyatt, and Dearden 2010), and more recent work
used a robotic arm to move objects enabling better visual
analysis (Pajarinen and Kyrki 2015). However, interaction
with objects in these lines of research relies heavily on robot
vision while other sensing modalities, such as audio and
haptics, are not considered.

Behavioral policies of multi-modal object exploration
have been learned in simulation using deep reinforcement
learning methods (Denil et al. 2017), where force was di-
rectly used in the interactions with objects. The simulation
environment used in that work makes it possible to run large
numbers of trials, but limits its applicability on real robots.

3 Theoretical Framework

Next, we describe the theoretical framework used by the
robot to learn predicate recognition models and generate ef-
ficient policies when tasked with identifying whether a set
of predicates hold true for a new object.

3.1 Multi-Modal Predicate Learning

In this work, the robot learns predicate recognition mod-
els using the methodology described in (Sinapov, Schenck,
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and Stoytchev 2014; Thomason et al. 2016), briefly sum-
marized here. In this methodology, the robot uses behaviors
(e.g., look, grasp, lift) coupled with sensory modalities (e.g.,
color, haptics, audio) to identify whether a predicate (i.e., a
word that a human may use to describe an object) holds true
for an object.

Let P be the set of predicates, let B be the set of be-
haviors (i.e., actions), and let C be the set of sensorimotor
contexts, where each context ¢ € C corresponds to a combi-
nation of a behavior and sensory modality (e.g., look-color,
lift-haptics). For each predicate p, and context c, the robot
learns a classifier using data points [x{,y;], where x{ is the

i observation feature vector in context ¢, and y; = true if
the predicate p holds true for the object in trial i, and false
otherwise.

Let C;, C C be the set of sensorimotor contexts associated
with behavior b € B. When executing action b, the robot
queries the classifiers associated with contexts C;, and com-
bines their outputs to estimate a score (normalized in the
range of 0.0 to 1.0) for each predicate p € P. In other words,
each behavior acts as a classifier itself. At the end of the
training stage, the robot performs internal cross-validation
and stores the confusion matrix C € R>*2 for predicate p
and behavior b. Next, we describe the problem of generating
an action policy when identifying whether a set of predicates
hold true for an object that was not present during training.

3.2 MOMDP-based Controllers

Behaviors (or actions'), such as look and drop, have dif-
ferent costs and different accuracies in predicate recogni-
tion. At each step, the robot has to decide whether more
exploration behaviors are needed, and, if so, select the ex-
ploration behavior that produces the most information. In
order to sequence these behaviors toward maximizing infor-
mation gain, subject to the cost of each behavior (e.g., the
time it takes to execute it), it is necessary to further con-
sider preconditions and non-deterministic outcomes of the
actions. For instance, shaking and dropping actions make
sense only if a preceding grasping action succeeds; and, in
practice, grasping actions are unreliable and succeed with
probability.

In this work, we assume action outcomes are fully ob-
servable and object properties are not. For instance, a robot
can reliably sense whether a grasping action is success-
ful, but it cannot reliably sense the color of a bottle or
whether that bottle is full. Due to this mixed observability
and unreliable action outcomes, we use mixed observability
MDPs (MOMDPs) (Ong et al. 2010) to model the sequential
decision-making problem for object exploration. We next
present how we formalize our object exploration problem
within the MOMDP framework.

A MOMDRP is fundamentally a factored POMDP with
mixed state variables. The fully observable state components
are represented as a single state variable x (in our case, the
robot-object status, e.g., the object is in hand or not), while
the partially observable components are represented as state

I The terms of “behavior” and “action” are used interchangeably
in this paper.
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Figure 1: A simplified version of the transition diagram in
space A" for object exploration. This figure only shows the
probabilistic transitions led by exploration actions. Report
actions that deterministically lead transitions from x; € X’ to
the term state are not included.

variable y (in our case, the object properties, e.g., the object
is heavy or not). As a result, (x,y) specifies the complete
system state, and the state space is factored as S = &X' x ),
where X is the space for fully observable variables and ) is
the space for partially observable variables.

Formally, a MOMDP model is specified as a tuple,

(Xa y7 A7 TXa Tya Ra 27 Ov ,}/)7

where A is the action set, Ty and 7y are the transition
functions for fully and partially observable variables respec-
tively, R is the reward function, Z is the observation set, O
is the observation function, and v is the discount factor.

The definitions of A, R, Z, O, and y of a MOMDP are
identical to these of POMDPs (Kaelbling, Littman, and Cas-
sandra 1998), except that Z and O are only applicable to ),
the partially observable components of the state space. ¥ is
the discount factor that specifies the planning horizon. We
formalize our object exploration problem as a MOMDP (as
a special form of POMDP) mainly for ease of describing the
fully and partially observable variables in our domain.

Next, we present how each component of our MOMDP
model is specified for our object exploration problem.

3.3 State Space Specification

The state space of our MOMDP-based controllers has two
components of X and ). The global state space S includes a
Cartesian product of X’ and ),

S={(x,y)|xe X andy € YV}

X 1is the state set specified by fully observable do-
main variables. In our case, X includes a set of six states
{x0,---,x5}, as shown in Figure 1, and a terminal state
term € X that identifies the end of an episode. x € X is
fully observable, and the robot knows the current state of
the robot-object system, e.g., whether grasping and dropping
actions are successful or not.

Y is the state set specified by partially observable domain
variables. In our case, these variables correspond to N object
properties that are queried about, {vo, vi, -+, vy_; }, Where
the value of v; is either true or false. Thus, || = 2".

For instance, given an object description that includes
three properties (e.g., “a red empty bottle”), ) includes
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grasp (22.0s) lift (11.1s)

Fa

lower (10.6s)

drop (9.8s) push (22.0s)

press (22.0s)

Figure 2: The behaviors, and their durations in seconds
(behaviors are from the Thomasonl6 dataset detailed in
Sec. 4). In addition, the hold (1.0s) behavior was performed
by holding the object in place. The look (0.5s) behavior was
also performed by taking a visual snapshot of the object us-
ing the robot’s sensors prior to exploration.

23 = 8 states. Since y € ) is partially observable, it needs
to be estimated through observations. It should be noted that
there is no state transition in the space of )/, as we assume
object properties do not change over the course of robot ac-
tion.

3.4 Actions and Transition System

We present the transition system of our MOMDP-based con-
trollers by first introducing the action set and then the tran-
sition probabilities. A : A UA" is the action set. A includes
the object exploration actions pulled from the literature of
robot exploration, as shown in Figure 1, and A" includes the
reporting actions used for object property identification.

Exploration actions: Figure 1 shows all exploration ac-
tions except for action ask that is allowed in any state x € X.
Among the actions, tap, poke, and shake are only available
in the dataset of (Sinapov, Schenck, and Stoytchev 2014)
and hold is only available in the dataset of (Thomason et
al. 2016). As one of the main contributions, our approach
enables a robot to automatically figure out what actions are
useful given a user query by learning from the datasets. Pic-
tures of a robot executing some of the exploration actions
are shown in Figure 2.

Reporting actions: A’ includes a set of actions that are
used for reporting the object’s properties and can determin-
istically lead the state transition to term (terminal state). For
instance, if a user queries about “a blue, heavy can”, there
will be three binary variables specifying each of properties
is true or false. As a result, there will be eight reporting ac-
tions. For a € A", we use s ©®a (or y ® a) to represent that the
report of a matches the underlying values of object proper-
ties (i.e., a correct report) and use s @ a (or y © a) otherwise.



Ty : X X Ax X — [0,1] is the state transition func-
tion in the fully observable component of the current state.
Ty includes a set of conditional probabilities of transitions
from x € X—the fully observable component of the current
state—to x’ € X', the component of the next state, given a € A
the current action. Reporting actions and illegal exploration
actions (e.g., dropping an object in state x;—before a suc-
cessful grasp) lead state transitions to term with 1.0 proba-
bility.

Most exploration actions are unreliable and succeed prob-
abilistically. For instance, p(xs4, drop, xs5) = 0.95 in our
case, indicating there is small probability the object is stuck
in the robot’s hand. The success rate of action look is 1.0 in
our case, since without changing positions of either the cam-
era or the object it does not make sense to keep running the
same vision algorithms and hence it is not allowed.

Ty : Y xAx Y — [0,1] is the state transition function in
the partially observable component of the current state. It is
an identity matrix in our case, (we assume) because object
properties do not change during the process of the robot’s
exploration actions.

3.5 Reward Function and Discount Factor

R : S5 x A — R is the reward function. Each exploration ac-
tion, a® € A, has a cost that is determined by the time re-
quired to complete the action. These costs are empirically
assigned according to the datasets used in this research. The
costs of reporting actions depend on whether the report is
correct.

rm, ifseS acA” s0a

R(s,a) = {r*, ifseS, acA”, sGa

where r~ (or r) is negative (or positive) given an incorrect
(or correct) report. Unless otherwise specified, r~ = —500
and " =500 in this paper.

Costs of other exploration actions are within the range
of [0.5,22.0] (corresponding reward is negative), except that
action ask has the cost of 100.0. y is a discount factor, and
Y= 0.99 in our case. This setting gives the robot a relatively
long planning horizon.

3.6 Observations and Observation Function

Z :Z"U0 is a set of observations. Elements in Z" include
all possible combinations of object properties and have one-
one correspondence to elements in A” and ). For instance,
when the query is about “a red empty bottle”, there exists
an observation z € Z" that represents “the object’s color is
red; it is not empty, and it is a bottle.” Actions that produce
no information gain (reinitialize, in our case), and reporting
actions in A” result in a @ (none) observation.
O:SxAxZ—0,1] is the observation function that spec-
ifies the probability of observing z € Z when action a is ex-
ecuted in state s: O(s,a,z). In this work, the probabilities
are learned from performing cross-validation on the robot’s
training data. As described in Section 3.1, predicate learn-
ing produces confusion matrix C5 € R**? for each predicate
p and each behavior b, where b corresponds to one of the
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exploration actions shown in Figure 1.
O(s,a,z) = Pr(p’, b, p°)
b b b
= Cpo (P(S)apf)) 'Cpl (pshpz]) o 'CpN,l (stvfl 7]7?\/,1)

where behavior b corresponds to action a; p* and p* are the
vectors of true and observed values (0 or 1) of the predicates;
p;} (or p7) is the true (or observed) value of the i"" predicate;
and N is the total number of predicates in the query.

3.7 Dynamically Constructed Controllers

State set ) can be very large, due to the large number of
predicates and the exponentially increasing number of their
combinations. For example, one of the datasets in our ex-
periments contains 81 predicates, resulting in 28! possible
states. Due to limited computational resources, it would be
intractable for a robot to generate a far-sighted policy for
identifying an object according to all 81 predicates.

Recent research decomposes a sequential decision-
making problem into two tractable subproblems that respec-
tively focus on high-dimensional reasoning (e.g., objects
with many properties) and long-horizon planning (e.g., tasks
that require many actions) (Zhang, Khandelwal, and Stone
2017). Based on that approach, we dynamically construct
controllers that include a minimum set of predicates, instead
of modeling all of them, in the )V component. In addition to
Y, the following components depend on the user query: re-
porting actions A", object property combinations Z", and the
reward and observation functions (due to the involvement
of )). As a result, our query-oriented, MOMDP-based con-
trollers are relatively very small, and typically include fewer
than 100 states at runtime.

It should be noted that we use MOMDP, as a special form
of POMDP, to model our domain mainly for the ease of de-
scribing the mixed observability over X and ) (Section 3.3).
Our approach enables automatic generation of complete
MOMDP models. One can encode such MOMDP models in
such a way that existing POMDP solvers (e.g., (Kurniawati,
Hsu, and Lee 2009)) can be used to generate policies, as we
do in this work.

4 Experimental Results

We evaluate the proposed method using two datasets in
which a robot explored a set of objects using a variety of
exploratory behaviors and sensory modalities, and show that
for both our proposed MOMDP model outperforms baseline
models in exploration accuracy and overall exploration cost.
Two datasets of Sinapovl4 and Thomasonl6 have been
used in the experiments, where Thomason16 has a much
more diverse set of household objects and a larger number
of predicates that arose naturally during human-robot inter-
action gameplay.

Sinapov14 Dataset: In this dataset, the robot explored 36
different objects using 11 prototypical exploratory behav-
iors: look, grasp, lift, shake, shake-fast, lower, drop, push,
poke, tap, and press 10 different times per object. The ob-
jects are lidded containers with the same shape and varied



Figure 3: Objects in the Thomason16 dataset (Left) and the
one used in the illustrative example in Section 4.1 (Right).

along 3 different attributes: 1) color: red, green, blue; 2)
weight: light, medium, heavy; and 3) contents: beans, rice,
glass, screws. These variations result in the 3 x 3 x4 =36
objects bearing combinations of these attributes in the set P
that the robot is tasked with learning. It should be noted that
costs of actions in the two datasets are different, because the
datasets were collected using different robots.

Thomason16 Dataset: In this dataset, the robot explored
32 common household objects using 8 exploratory actions:
look, grasp, lift, hold, lower, drop, push, and press. Each
behavior was performed 5 times on each object. The dataset
was originally produced for the task of learning how sets of
objects can be ordered and is described in greater detail by
(Sinapov et al. 2016).

For the look behavior, color, shape, and deep features (the
penultimate layer of the trained VGG network (Simonyan
and Zisserman 2014)) are available. For the remaining be-
haviors, the robot recorded audio, proprioceptive (finger po-
sitions for grasp), and haptic (i.e., joint forces) features pro-
duced by the interaction with the object. These modalities
result in |C| =7 x 2+ 1 x 3 = 17 sensorimotor contexts.

The set of predicates P consisted of 81 words used by
human participants to describe objects in this dataset during
an interactive gameplay scenario described by (Thomason et
al. 2016). Example predicates include the words red, heavy,
empty, full, cylindrical, round, etc. Unlike the Sinapov14
dataset, here the objects vary greatly, and the predicate
recognition problem is much more difficult.

4.1 Illustrative Example

We now describe an example in which a robot is tasked with
identifying properties of a given object. We randomly se-
lected an object from the Thomason16 dataset: a blue and
red bottle full of water (Figure 3). We then randomly se-
lected properties, in this case “yellow” and “metallic,” and
asked the robot to identify whether the object has each of
the properties or not. The selected object was not part of
the robot’s training set used to learn the predicate recogni-
tion models and the MOMDP observation model. The robot
should report negative to both properties while minimizing
the overall cost of exploration actions.

Given this user query, we generate a MOMDP model that
includes 25 states. We then generate an action policy us-
ing past work’s methods (Kurniawati, Hsu, and Lee 2009).
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D yellow-metallic: 2 properties relevant to the example query
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. || \ ‘ . pos-pos
|

‘ ‘ pos-neg

. neg-pos
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TO: T1: T2: T3: T4: T5: T6:
look push reinit look push push report
(failed) neg-neg

Belief

Figure 4: Action selection and belief change in the explo-
ration of a red and blue bottle full of water, given a query of
yellow and metallic.

Currently, building the model takes almost no time, and we
uniformly gave two seconds for policy generation using the
model (same in all experiments). The time for computing
the policy is insignificant relative to the time for exploratory
behaviors (which is what we are really trying to minimize).
Figure 4 shows the belief change in this process. The
initial distributions over X and Y are [1.0,0.0,---] and
[0.25,0.25,0.25,0.25] respectively. The policy suggests
“look”™ first. We queried the dataset to make an observa-
tion, neg-neg in this case. The belief over ) is updated
based on this observation: [0.41,0.28,0.19,0.13], where
the entries represent neg-neg, neg-pos, pos-neg, and pos-
pos respectively. There is a (fully observable) state transi-
tion in X, from xp to xj, so the belief over X becomes
[0.0,1.0,0.0,---]. Based on the updated beliefs, the pol-
icy suggests taking the “push” action, which results in an-
other neg-neg observation. Accordingly, the belief over Y
is updated to [0.60,0.13,0.22,0.05], which indicates that
the robot is more confident that the object is neither “yel-
low” nor “metallic”. After actions of reinitialize, look, push,
and push (this first push action was unsuccessful, and
produced the @ observation), the belief over ) becomes
[0.84,0.04,0.12,0.01]. The policy finally suggests reporting
neg-neg, making it a successful trial with an overall cost of
167 seconds, which results in a reward of 500 — 167 = 333
(an incorrect report would have resulted in —667 reward).

Remarks: It should be noted that the classifiers associ-
ated with each behavior and word will produce an output
even in cases where the sensory signals from that behavior
are irrelevant to the word. For instance, although the sen-
sory signals relevant to “push” are haptics and audio, the
first “push” action results in an observation of “yellow”. It
was “yellow:neg”, because the training set prior of most ob-
jects are not yellow. The robot favors actions that distinguish
‘easy’ predicates (look distinguishes yellow well in this case)
because there is the discount factor (0.99): If an action is use-
ful, the robot will prefer taking it early. The more the action
is delayed, the more the expected reward is discounted.

4.2 Results

Next, we describe the experiments we conducted to eval-
uate the proposed MOMDP-based multi-modal perception
strategy for object exploration. The goal was to increase the



Table 1: Performances of MOMDP-based and two baseline
planners in cost (second) and accuracy on the Sinapov14
dataset. Numbers in parenthesis denote the Standard Devia-
tions over 400 trials.

l Properties [ Method [ Overall cost (std) [ Accuracy l
Random Plus 17.56 (30) 0.245
Two Predefined Plus 37.10 (0.00) 0.583
MOMDP (Ours) 29.85 (12.87) 0.860
Random Plus 10.12 (21.77) 0.130
Three Predefined Plus 37.10 (0.00) 0.373
MOMDP (Ours) 33.87 (8.78) 0.903

accuracy in identifying properties of a novel object while re-
ducing the overall action costs required in this process. In all
evaluation runs, the object that needs to be identified was not
part of the robot’s training set when learning the predicate
recognition models or the MOMDP parameters. The follow-
ing baseline action strategies are used in experiments, where
belief is updated using Bayes’ rule except for Random:

e Random: Actions are randomly selected from A that in-
cludes both reporting and legal exploration actions. A trial
is terminated any of the reporting actions.

e Random Plus: Actions are randomly selected from legal
exploration actions. Under an exploration budget, one se-
lects the reporting action that makes the best sense (i.e.,
that corresponding to y with the highest belief).

e Predefined: An action sequence is strictly followed: ask,
look, press, grasp, lift, lower and drop.” Under an explo-
ration budget or in early terminations caused by illegal
actions, the robot selects the reporting action that makes
the best sense.

o Predefined Plus: The same as Predefined except that un-
successful actions are repeated until achieving the desired
result(s).

Sinapov14 Dataset: In each trial, we place an object that
has three attributes (color, weight and content) on a table and
then generate an object description that includes the values
of two or three attributes. This description matches the ob-
ject in only half of the trials. When two (or three) attributes
are queried, ) includes four (or eight) states plus ferm state,
resulting in S that includes 25 (or 49) states. The other com-
ponents of the dynamically constructed MOMDPs grow ac-
cordingly, given an increasing number of queried attributes.

Experimental results are reported in Table 1. Not sur-
prisingly, randomly selecting actions produces low accu-
racy. The overall cost is smaller in more challenging trials
(all three properties are questioned), because in these trials
there are relatively fewer exploration actions (more proper-
ties produce more reporting actions), making the agent more
likely to take a reporting action. Our MOMDP-based multi-
modal perception strategy reduces the overall action cost

% Action ask was used only in the Thomasonl6 experiments,
because other exploration actions are not as effective as in
Sinapov14.
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Figure 5: Evaluations of five actions strategies on the
Thomason16 dataset. Comparisons are made in three cat-
egories of overall reward (Left), exploration cost (Middle),
and success rate (Right).

while significantly improving the reporting accuracy. Our
performance improvement is achieved by repeating actions
as needed, selecting legal actions (e.g., lift is legal only if
the current state is x) that produce the most information or
have the potential of doing so in the future, and even arbi-
trarily reporting without “wasting” exploration actions given
queries where the exploration actions are not effective.

Thomason16 Dataset: In this set of experiments, a user
query is specified by randomly selecting one object and N
properties (1 <N <3), on which the robot is questioned.
Each data point is an average over 200 trials, where we con-
ducted pairwise comparisons over the five strategies, i.e., the
strategies were evaluated using the same set of user queries.
A trial is successful only if the robot reports correctly on
all properties. It should be noted that most of the contexts
are misleading in this dataset due to the large number of ob-
ject properties, so it happens that more exploration actions
confuse the robot more if the actions are not carefully se-
lected. Figure 5 shows the experimental results. Overall re-
ward is computed by subtracting overall action cost from the
reward yielded by the reporting action (either a big bonus or
a big penalty). We do not compute standard deviations in this
dataset, because the diversity of the tasks results in problems
of very different difficulties.

We can see our MOMDP-based strategy consistently per-
forms the best in terms of the overall reward and overall
accuracy. When more properties are queried, the MOMDP-
based controllers enable the robot to take more exploration
actions (Middle subfigure), whereas the baselines could not
adjust their question-asking strategy accordingly.

The last experiment aims to experimentally evaluate the
need of dynamically constructed controllers. We constructed
MOMDP controllers including two relevant and an increas-
ing number of irrelevant properties (i.e., the ones that are
not queried). Results are shown in Figure 6. We can see, the
quality of the generated action policies decreases soon (from
higher than 150 to lower than 25 in reward), when more ir-
relevant properties are included in the MOMDPs. We did not
include six or more irrelevant properties, because the solver
cannot produce any policy in one and a half minutes.
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Figure 6: A “super” MOMDP that models two relevant and
(an increasing number of) irrelevant properties, in compari-
son to dynamically constructed controllers used in this work.

5 Conclusions and Future Work

We investigate using mixed observability Markov decision
processes (MOMDPs) to help robots select actions for multi-
modal perception in object exploration tasks. Our approach
can dynamically construct a MOMDP model given an object
description from a human user (e.g., “a blue heavy bottle”),
compute a high-quality policy for this model, and use the
policy to guide robot behaviors (such as “look™ and “shake’)
toward maximizing information gain. The dynamically built
controllers enable the robot to focus on a minimum set of
domain variables that are relevant to the current object and
query. The MOMDP models are constructed using two exist-
ing datasets collected with robots interacting with objects in
the real world. Experimental results show that our object ex-
ploration approach enables the robot to identify object prop-
erties more accurately without introducing extra cost from
exploration actions compared to a baseline that suggests ac-
tions following a predefined action sequence.

This research primarily focuses on a robot exploring ob-
jects in a tabletop scenario. In future work, we plan to in-
vestigate applying this approach to tasks that involve more
human-robot interaction and mobile robot platforms, where
exploration would require navigation actions and perceptual
modalities such as human-robot dialog. Finally, in the two
datasets used in this paper, the robot’s manipulation actions
were always successful but that would not always be the
case in a real-world scenario; therefore we plan to extend our
framework to situations in which the robot’s actions may fail
(in terms of manipulation) or cause undesirable outcomes
(e.g., dropping an object may break it).
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