
A Framework for Creative Problem Solving
Through Action Discovery

Evana Gizzi, Mateo Guaman Castro, Wo Wei Lin, Jivko Sinapov
Department of Computer Science

Tufts University
Medford, Massachusetts 02155

{Evana.Gizzi, Mateo.Guaman, Wo Wei.Lin, Jivko.Sinapov}@tufts.edu

Abstract—Creative problem solving (CPS) is a process through
which an agent discovers previously unknown information about
itself and its environment in order to achieve an unsolvable
task. In this paper, we introduce a unified framework for
CPS through action discovery. We describe two methods which
enable action discovery at a declarative and neurosymbolic level,
namely through action primitive segmentation, and behavior
babbling, respectively. We review experimental evaluations of our
framework, and end with a discussion on limitations and future
work considerations for CPS.

I. CREATIVE PROBLEM SOLVING FRAMEWORK

Recent advances in the learning community have enabled
complex robotic behaviors to be learned from scratch, such
as manipulating textiles [10] and solving a Rubik’s cube [7].
Yet, the ability for a robot to creatively act and improvise in
unstructured environments, much like humans and animals do
on a daily basis [1, 2], remains one of the key challenges of
modern robotics. Moreover, learning these behavior policies
tabula-rasa usually results in learned actions that are neither
easily explainable nor flexible. We propose a framework for
creative problem that addresses the issues of explainability and
policy inflexibility by combining declarative representations of
the world with methods for exploring the agent’s environment
and updating its knowledge base.

We begin with a description of a creative problem solving
task, describing its differences to a general problem solving
(GPS) task. In the context of GPS, a planning agent, given an
accurate depiction of its world and its own capabilities, is able
to act in its environment to accomplish goals. In an encounter
with novelty, however, the agent may no longer contain an
accurate description of its world, e.g., the underlying dynamics
of the world may have changed, or the agent has incurred an
unforeseen scenario. For example, a robot may encounter a
door knob which requires twisting, as opposed to its previously
known “pull-down” action. In either case, the agent is unable
to use its world representation to plan and act successfully
as in GPS. This presents the case of CPS, where the agent
must somehow update its world model at both a declarative
and neurosymbolic level, for planning and execution respec-
tively, in order to successfully problem solve. Thus, a key
distinguishing factor between a GPS problem, and one which
necessitates CPS is that the latter requires knowledge base
updating in order to accomplish a goal task [5].

Fig. 1. System diagram of the Action Primitive Discovery Framework

We depict a high level description of the CPS framework
in Figure 1, where the agent first reasons about a problem at
a fully symbolic level. Given a desired goal state, the agent
is able to generate a plan for reaching the desired goal state.
At the time of plan execution, if the agent encounters either
an execution failure during plan execution, or a failure to
accomplish the desired goal after plan execution, it enters into
a sub-symbolic action primitive discovery mode. Any novel
actions discovered in this mode are then added back into its
knowledge base, where the cycle continues until the agent is
successful in accomplishing its goal.

We describe two methods for autonomous knowledge ac-
quisition for CPS in the context of action discovery at both a
symbolic and sub-symbolic level. In both methods, candidate
actions are generated, and subsequently evaluated based on
their effects on the environment. In the action primitive
segmentation method, the trajectories of known actions are
segmented using change point detection, and used as candidate
actions. In the behavior babbling method, candidate actions are
generated by varying the low level action parameters of known
actions, employing a behavior babbling technique. In both
cases, those candidate actions which produce novel effects,
or those which succeed in obtaining the desired effects of the
original action are added back into the knowledge base of the
agent, and used in re-planning.

A. Notation

We describe the two knowledge abstraction levels of our
framework, namely those corresponding to high level symbolic

planning, and the low level sub-symbolic action execution.
Following, we describe two action primitive discovery meth-
ods which bridge our two knowledge abstraction spaces.

1) Symbolic Knowledge Base: A symbolic knowledge base
Σ is defined as Σ = 〈E ,F ,S,A〉, where:
• E is a finite set of known entities in the environment such

that E = {e1, . . . , e|E|}
• F is a finite set of known predicate descriptors (and their

negations) about the world which operate over entities in
the world such that F = {f1(�), . . . , f|F|(�)},� ⊂ E .
It follows that for every predicate descriptor fi(�i), there
exists a negation of that predicate descriptor ¬fi(�),
where fi(�),¬fi(�) ∈ F .

• S is a set of possible world states such that S =
{si . . . s|S|}. Each si ∈ S is composed of a finite set
of predicate values Fi ⊂ F which hold true in the given
world state si.

• A is a set of known actions such that A = {a1, . . . a|A|}
where each action ai operates over a finite entity list Ei ⊂
E , such that each action takes the form ai(e

1
i , . . . , e

|Ei|
i)

= ai(Ei).
We assume a Planning Domain Definition Language

(PDDL) representation of actions, where for a given action
ai, we refer to the set Ei as the arguments of ai, and the sets
χi, ψi ∈ F as the preconditions and effects of ai, respectively.
Following, a problem in Σ is defined as φ = (Σ, s0, sg), where
s0 is an initial state, sg is a goal state, and s0, sg ∈ S. A plan
π = [a1, . . . a|π|] is a solution to a problem φ.

2) Sub-Symbolic Knowledge Base: We assume that our
agent has a set of action controllers MΣ = [m1, . . . ,m|AΣ|]
containing sub-symbolic information about the actions in Σ.
We denote the action and its associated controller as ai and
mi, respectively. Each controller encodes information about
the underlying parameter settings of its associated action.
The parameters could describe information about the agents’
end effectors relative to the entities being operated over in
actions, along with the velocities/force and magnitude of
motion execution (referred to explicitly as execution param-
eters). Additionally, the parameters could describe specific
trajectory points for starting and stopping action execution
(referred to explicitly as trajectory parameters). Thus, a given
action controller mi encodes a finite set of continuous action
parameters Pi = p1

i , . . . p
|Pi|
i , such that each controller takes

the form mi(p
1
i , . . . , p

|Pi|i) = mi(Pi).

B. Problem Formulation

An agent starts with a knowledge base K = (Σ,MΣ), and
given a problem φ, a planner generates a plan π to accomplish
a goal state sg . The planning agent, containing an accurate
representation of the world in its symbolic knowledge base
Σ, is able to successfully execute π, thereby achieving its
goal state sg . We refer to this case as the original scenario.
Suppose that in the context of novelty, something about the
world changes such that Σ is no longer sufficient, but needs
to be updated with new information such that Σ becomes
Σ′. The agent also must learn a new set of corresponding

action controllers MΣ′ . We refer to this scenario as the novel
scenario. In this novel context, the planner initially uses Σ to
plan for solving φ, once again generating π. Upon executing
π, a plan failure occurs for some action af ∈ π.

At this point, the agent needs to explore its world to
learn a new knowledge base Σ′, providing it with an updated
and accurate representation of the new world, along with its
corresponding set of action controllers MΣ′ . We define the
learning process L as the process in which an agent can learn
a new knowledge base K′ using exploration method ω, such
that L(K, ω) 7→ K′.

C. Action Discovery

The learning process is composed of two-part incubation
stage, where the agent attempts to find a viable candidate
action for CPS. In the first phase of incubation (passive
incubation), the agent generates a list of candidate actions
to vary. We refer to these variation candidates as action-
entity-parameter (AEP) combinations. This list of candidates
is generated as a subset of an exhaustive list of variation
combination options of K = (Σ,MΣ) denoted:

CK = C(a× e× p),∀a ∈ AΣ, e ∈ Ea, p ∈ Pa

where a given subset list of CK, generated under an explo-
ration method ω, is denoted CK,ω . The list CK denotes all
possible actions, paired with all possible entity arguments and
focus parameter selections to each given action, where the
focus parameter is the parameter which will be varied in the
exploration phase of a particular AEP execution. Next, the
agent scopes its AEP exploration space to prepare for action
discovery. We present two modes of de-scoping in passive
incubation, namely focused passive incubation and defocused
passive incubation. In the focused case, the agent prunes its
AEP generation to the specific plan involved in the failure. In
the defocused case, the agent instead relaxes its constraints to
allow for entities other than those included as arguments to
actions in the initial plan π. In this way, the agent is able to
explore the possibility of other entities as a means for problem
solving.

Next, the agent enters the second phase of incubation
(active incubation), the agent then begins evaluating candidate
actions, using a chosen discovery method ω, to determine their
utility toward solving φ. We introduce two action discovery
methods ω which enable action discovery, namely through
action segmentation and action parameter variation, unified
under the learning process L.

1) Segmentation: The agent attempts to discover novel ac-
tions by segmenting the trajectories of known action primitives
into reusable and significant substructure, such that the newly
discovered actions are useful in a stand-alone manner. As
such, the agent executes each action combination in c ∈ CK
which has a trajectory parameter as its focus parameter. From
each execution, the agent generates set of change points
∆i = [t1, . . . tk], t ∈ Z, where ∆ is a time series list of
ordered time stamps corresponding to change points. The input
to the change point detection algorithm is a set of time series

Fig. 2. (Left) Change point detection for press button(right gripper, left button). The plot shows the x-y-z location of the left gripper over time steps during
action execution, separated into three separate traces. All vertical lines represent change points in the motion data, grouped based on clustering, with a total
of 6 clusters. The black vertical lines show the change points that got used for segmentation, consisting of the min/max/mean of clusters that include more
than 10 change points. (Right) Setup for Experiment 1.

trajectories that represent motor data (e.g., joint efforts, or
end-effector position) for the arm that executed the action.
That is, for an action ai, a set of n trajectories d1, . . . dn are
represented by a matrix M ∈ Rn×di . These change points are
used to generate candidate action segmentations â1, . . . ˆak−1

where each âj corresponds to the limb trajectory from time
step tj to tj+1. Each candidate âj is executed, generating
effects ψâj . Finally, the preconditions of the failure action af
are refined to include the effects of the action that succeeded
to accomplish sg .

2) Parameter Variation: In this stage, the agent executes the
actions listed in the AEP list CK,ω , generated by one of the two
strategies mentioned. As such, the agent executes each action
combination in c ∈ CK which has a execution parameter as
its focus parameter. Execution of these combinations are less
straightforward, however, than the segmentation case. In the
case of parameter variation, the chosen parameter to vary pai is
first set to values ranging from its lower and upper bound, with
a chosen ∆n interval partition value, such that (pai − pai)÷
∆n = I , where I is the interval of execution. That is, for any
c(ai, Eai , pai), the action ai((E)ai) (ai for short) is executed
for the focus parameter pai from its lower bound to its upper
bound value, incrementing by the interval of execution. This
generates a secondary list of candidate variants, P ′ai , shown
below:

P ′ai = (pai), (pai + I), (pai + 2I), . . . (pai)

Therefore, for each AEP element, the elements of a corre-
sponding candidate variation list P ′ai are each executed.

3) Candidate Action Evaluation: For each parameter vari-
ation in the candidate list (pj ∈ P ′ai), the agent evaluates its
execution to determine whether it should be added into the
knowledge base for future use. There are two conditions by
which a given variant c(ai, Eai , pai) (call it c) with pai = pj

(call it ĉ) can be added to Σ – if ψĉ = ψc, or if ψc ⊂ ψĉ.
That is, a candidate can be added if it accomplishes precisely
the same end effects as its parent action, or if it accomplishes

the same end effects as its parent action, with additional novel
effects. We call these conditions the inheritance and novelty
condition, respectively. The inheritance condition holds in fo-
cused incubation, and the novelty condition holds in defocused
incubation.

It should be noted that some algorithmic components are
agnostic to our framework, including the choice of planner
used to find π, the change point detection algorithm used to
find ∆, and motion data collected in M .

II. EXPERIMENTAL EVALUATIONS

We ran a total of 4 experiments on a Baxter robot in a
Gazebo simulation environment. Each experiment presents a
manipulation task, where the Baxter is given objects sitting on
a table in front of its grippers. For our motion trajectory data,
we recorded the 3-dimensional coordinate (x-y-z) position of
the gripper performing the action. Using the data collected
during exploration, change points were generated using our
BCP/clustering algorithm, with motion trajectory matrix M as
input. We illustratively describe 2 of our 4 experiments below.
Additional information and full experimentation results can be
found at [4, 6].

A. Experiment 1

The environment of Experiment 1 is shown in Fig-
ure 2(right). Here, the agent has the goal of obtaining
the green block, located at the other side of the slid-
ing wall. In the original scenario, the wall is very short,
and the agent is able to reach over it to obtain the ob-
ject. In the novel scenario, the wall is much higher (de-
picted in Figure 2). Thus, upon generating and executing
π = [obtain_object(l_gripper, block)], a failure is
incurred due to the wall obstructing the path of the grippers
to the object. At this point, the agent enters focused passive
incubation, where it generates an AEP list comprised on
argument variants of obtain_object. It is consequently
unable to find a solution action from segmenting variants

Experiment 2

s0

at(cup, loc_a)
at(cover, loc_b)
at(burner, loc_c)
is_visible(cup)
is_visible(cover)
is_visible(burner)
covered(cup)

sg cook(cup)

π

push(cover)
uncover_obj(cup)
shake(cup)
prep_food(cup)
put_on_burner(cup)
cover_obj(cup)
cook(cup)

TABLE I
EXPERIMENT 2 SETUP

of the obtain_object action. Next, it enters a defocused
passive incubation stage, where it is able to successfully seg-
ment the press_button action to find a solution plan. This
process is illustrated in Figure 2, shown over the execution of
a = press_button(l_gripper, l_button), where nine
change points were detected [t1, . . . t9], resulting in eight
trajectories â1, . . . â8. Additionally, it can be seen that the
only sub-trajectory with non-empty state effects list is â2,
with ψâ2

= is_visible(block), pressed(l_button),
corresponding to the sub-trajectory from t2 to t3. In this
particular example, none of the other sub-trajectories produced
a change in state-based predicates in their effects lists. Thus,
the robot was able to use â2 to successfully obtain the object
by first holding the left button (via â2), and then using the
obtain_object action primitive to move the object with its
right gripper, generating a new plan, π′ = [â2(l_gripper,

l_button), obtain_object(r_gripper, block)].
A detailed description of an algorithm for discovering novel

actions based on segmentation is presented in [4]. Repeated
evaluations showed that the method was able to successfully
discover useful actions for accomplishing the task in the novel
scenario. The robot also discovered actions with consistent end
effects that were not used as part of the solution, suggesting
that CPS can be formulated as a life-long learning problem,
where actions discovered in one situation may become useful
in another, later scenario.

B. Experiment 2

The environment of Experiment 2 is shown in the figure
within Table I, describing the original scenario, where the
agent has the goal of “cooking” food. In the original scenario,
the agent is able to successfully execute the plan π shown
in Table I. In the novel scenario, the cover is lighter in
weight than the original scenario, resulting in a plan execution
failure when attempting cover_obj, since the light weight
cover is pushed off of the table when executing push, and is
therefore out of reach of the robot. This presents a peculiar
scenario, where the failure action af = cover_obj is not
responsible for the failed plan. Here, the agent executes an
full passive incubation cycle to discover that substituting push

with push_rate:3.0 will result in a successful scenario. In

Fig. 3. Success Actions discovered in Experiment 2.

this way, the agent has learned the equivalent of a nudge

action.
We examine the diversity of the discovered actions, where

we found interesting and unexpected results, shown in Figure
3. We had originally hypothesized that a decrease in the
rate parameter would be the only sufficient success action
(push-rate:3.0 did get utilized 4 times). We were surprised
to find that the most frequently utilized success action was
push-MM:1.0, which resulted in a decreased movement mag-
nitude of the push action. In this way, the agent was able to
“nudge” the cover off of the cup without fully pushing it off
of the table. Another surprise was that an increased rate also
resulted in the cover staying on the table. We believe this
is because of the trajectory of the robot’s arm, which would
hover higher up when moving across the table to push the
cover. As a result, the gripper simply “skimmed” the cover
just enough to knock it off the cup, without the leverage of
a full contact push, as was the case in the original scenario.
These results show that our framework can enable a robot to
find multiple solutions to a problem, some that are unforeseen
by the designers of the environment.

III. CONCLUSION AND FUTURE WORK

In this paper, we have presented a unified framework for
creative problem solving, with action discovery examples.
While recent work has considered using reinforcement learn-
ing for action controllers [3, 8], future work should consider
extending this approach to continuous robotic state spaces, and
integrating it into the framework. Additionally, future work
should implement methods for lifelong CPS, wherein the agent
is able to improve in its CPS over time.

We propose two research avenues for future work. The
first avenue is the development of action discovery methods
that minimize the destructiveness of the environment during
the incubation processes. This would allow agents to perform
CPS in situations in which the cost of exploration in the real
world is high, such as in space missions. The second avenue
is exploring the combination of a symbolic knowledge base
with a learned model of the world [9], which could be learned
prior to the CPS process or concurrently, to direct the CPS
process based on the model predictions.

REFERENCES

[1] Sarah R Beck, Ian A Apperly, Jackie Chappell, Carlie
Guthrie, and Nicola Cutting. Making tools isn’t child’s
play. Cognition, 119(2):301–306, 2011.

[2] Christophe Boesch and Hedwige Boesch. Tool use and
tool making in wild chimpanzees. Folia primatologica,
54(1-2):86–99, 1990.

[3] Rohan Chitnis, Tom Silver, Joshua Tenenbaum,
Leslie Pack Kaelbling, and Tomás Lozano-Pérez.
Glib: Efficient exploration for relational model-based
reinforcement learning via goal-literal babbling. In Proc.
AAAI, 2021.

[4] Evana Gizzi, Mateo Guaman Castro, and Jivko Sinapov.
Creative problem solving by robots using action primitive
discovery. In 2019 Joint IEEE 9th International Con-
ference on Development and Learning and Epigenetic
Robotics (ICDL-EpiRob), pages 228–233. IEEE, 2019.

[5] Evana Gizzi, Lakshmi Nair, Jivko Sinapov, and Sonia
Chernova. From computational creativity to creative
problem solving agents. In International Conference on
Computational Creativity (ICCC), 2020.

[6] Evana Gizzi, Amel Hassan, Wo-Wei Lin, Keenan Rhea,
and Jivko Sinapov. Toward creative problem solving
agents: Action discovery through behavior babbling. In
Accepted: The International Conference on Development
and Learning (ICDL). IEEE, 2021.

[7] OpenAI, Ilge Akkaya, Marcin Andrychowicz, Maciek
Chociej, Mateusz Litwin, Bob McGrew, Arthur Petron,
Alex Paino, Matthias Plappert, Glenn Powell, Raphael
Ribas, Jonas Schneider, Nikolas Tezak, Jerry Tworek,
Peter Welinder, Lilian Weng, Qiming Yuan, Wojciech
Zaremba, and Lei Zhang. Solving rubik’s cube with a
robot hand. arXiv preprint, 2019.

[8] Vasanth Sarathy, Daniel Kasenberg, Shivam Goel, Jivko
Sinapov, and Matthias Scheutz. Spotter: Extending sym-
bolic planning operators through targeted reinforcement
learning. arXiv preprint arXiv:2012.13037, 2020.

[9] Ramanan Sekar, Oleh Rybkin, Kostas Daniilidis, Pieter
Abbeel, Danijar Hafner, and Deepak Pathak. Planning
to explore via self-supervised world models. In Inter-
national Conference on Machine Learning, pages 8583–
8592. PMLR, 2020.

[10] Yilin Wu, Wilson Yan, Thanard Kurutach, Lerrel Pinto,
and Pieter Abbeel. Learning to manipulate deformable
objects without demonstrations. RSS, 2019.

	Creative Problem Solving Framework
	Notation
	Symbolic Knowledge Base
	Sub-Symbolic Knowledge Base

	Problem Formulation
	Action Discovery
	Segmentation
	Parameter Variation
	Candidate Action Evaluation

	Experimental Evaluations
	Experiment 1
	Experiment 2

	Conclusion and Future Work

