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Abstract—Creative problem solving (CPS) is the process by
which an agent discovers unknown information about itself and
its environment, allowing it to accomplish a previously impossible
goal. We propose a framework for CPS by robots for discovering
novel actions via behavior babbling, capable of learning a
representation of novel actions at both a symbolic planning
level, and a sub-symbolic action controller level. Our framework
employs two modes of discovery – a focused incubation method
that scopes its search to the actions and entities composing the
failed plan, and a defocused incubation method which enables
exploration of actions and entities outside of the failed plan. We
implemented and tested our framework using a Baxter robot in
a 3D physics-based simulation environment, where we ran three
proof-of-concept object manipulation scenarios. Results suggest
that it is possible to use behavior babbling as a method for the
autonomous discovery of flexible and reusable actions.

Index Terms—Cognitive Robotics, Creative Problem Solving,
Novelty

I. INTRODUCTION

Creative problem solving (CPS) has often been described
as the hallmark of intelligence and cognition [1]. When
faced with challenging problems, both humans and non-human
species have demonstrated the use of CPS for deriving novel
and/or innovative solutions. In one interesting study in 2012,
CPS abilities were shown to be present in great apes in a
simple improvisation experiment using a puzzle box problem
[2]. The apes, when presented with a clear horizontal tube
containing a food reward, first attempted to retrieve the out-
of-reach reward using their fingers. Through successful impro-
visation, the apes were eventually able to figure out how to
push a stick that was pre-inserted inside the tube to displace
the food outside of the tube, thereby attaining the reward.

This ability to adapt to unforeseen situations has been
referred to as MacGyvering in recent cognitive robotics liter-
ature, in which an agent synthesizes a solution to a seemingly
unsolvable problem by using a non-trivial combination of
resources from its environment [3]. These resources can be
physical, as in the case of Tool MacGyvering [4], or non-
physical, where the agent learns new skills or previously un-
known information about its environment to derive a problem
solution. In this work, we explore the synthesis of non-physical
resources through action learning. Problem solving improvisa-
tion through action learning remains a challenge in robotics,
where problem solving often takes place through planning, by

sequencing over symbolically represented actions. To this end,
we propose a framework which enables the discovery of new
actions at both a sub-symbolic action execution level, and a
symbolic planning level, generating representations for use in
CPS planning tasks. We test our framework across 3 scenarios
in a robotic simulation environment, and provide evaluation
toward our proof-of-concept1.

II. RELATED WORK

Behavior babbling has been researched in robotics as a
method for action discovery. In many cases, behavior bab-
bling takes place in the form of motor babbling, where the
goal is to learn a model of self (sometimes referred to as
emergent behavior or self-organization). Examples of such
models are forward models and kinematic models, which use
body dynamics to learn possibilities and constraints of robot
movement [5]–[7]. Model of self techniques vary in their
babbling validation approaches. For example, babbling can be
reinforced proprioceptively on a sensorimotor level [8], [9],
or by demonstrative measures [10], [11]. Other examples of
validation techniques include “motionese,” where the start and
end states of actions are emphasized by adult teachers as a
way to delineate important action stages [12], [13]. Bottom-up
attention models use the detection of significant environmental
changes as a way to learn new actions [14].

In addition to general purpose action discovery, models for
computational creative problem solving have been developed,
implemented and tested. Colin et al. formalize and implement
a computational solution for the CPS process which utilizes
hierarchical reinforcement learning (HRL), demonstrating that
successful CPS is more likely to occur with prior relevant
experiences [15]. Lieto et al. propose a logic-based method for
CPS through conceptual blending, where features of objects
are evaluated and combined in order to re-frame and re-
formulate CPS problems to converge on a solution [16].
Kralik et al. develops a model of CPS using a Q-Tree
learning algorithm to yield a hierarchical structure for problem
representations, which was tested on empirical data from a
reverse-reward problem run on rhesus monkeys [17]. Other
CPS approaches have investigated methods for learning action

1Code and results available at https://github.com/tufts-ai-robotics-
group/RAPDR babble



transition models (via action operators) through model-based
reinforcement learning [18] and bottom up relational learning
in a task and motion planning (TAMP) domain [19].

Recent work in cognitive robotics has demonstrated success
in creative problem solving implementations in robots and
intelligent agent systems [20]. Nair et al. [4] proposed a
framework for tool construction for CPS. Using a reference
tool, and a set of available parts, the robot is able to reason
about geometric properties to construct substitution tools in
object manipulation tasks. More recently, autonomous tool
construction for problem solving is explored by Yang et al.
[21], which use gated graph neural networks to model rela-
tionships between tool parts in order to intelligently construct
tools with appropriate contextual considerations. While related
to these recent works which explore CPS in the context of tool
construction, we focus our research on CPS in the context of
general action discovery.

This work develops a method for action discovery through
behavior babbling. The motivation for our approach is in
inspired from human action discovery, where seemingly dis-
parate high level actions can actually be considered coarse
grained behavior parameterizations of one another. For exam-
ple, consider the actions shake and pour. These two actions,
when performed with a side grasp on a cup, have drastically
different outcomes. Where shaking a cup of fluids will result
in mixing its contents into a consistent mixture, pour the same
cup will result in emptying the cup of its contents. Yet even
so, these actions can be seen as parameter variations of one
another in terms of the parameter movementMagnitude. This
research is an extension of our previous work in action dis-
covery through segmentation [22]. Both works use a common
overarching framework for CPS, but differ in their method for
action discovery.

III. THEORETICAL FRAMEWORK

Next, we define the symbolic level of abstraction that
describes information known to the planning agent, and the
sub-symbolic level which describes information encoded for
action execution, responsible for action babbling and parame-
ter variation. We then define the problem formulation, and the
action discovery method employed by the agent.

A. Symbolic Planning Representation

Knowledge Base: We assume that the robot has a symbolic
knowledge base Σ, defined as Σ = 〈E ,F ,S,A, γ〉, where:
• E is a finite set of known entities in the environment such

that E = {e1, . . . e|E|}
• F is a finite set of known predicate descriptors (and their

negations) about the world which operate over entities in
the world such that F = {f1(�), . . . f|F|(�)},� ⊂ E . It
follows that for every predicate descriptor fi(�i), there
exists a negation of that predicate descriptor ¬fi(�),
where fi(�),¬fi(�) ∈ F .

• S is a set of possible world states such that S =
{si . . . s|S|}. Each si ∈ S is composed of a finite set

of predicate values Fi ⊂ F which hold true in the given
world state si.

• A is a set of known actions such that A = {a1, . . . a|A|}
where each action ai operates over a finite entity list Ei ⊂
E , such that each action takes the form ai(e

1
i , . . . , e

|Ei|
i )

= ai(Ei).
• γ is a transition function which contains known transi-

tions between a finite set of states of the system S using
A, such that γ(S,A) 7→ S ′

In addition to the action notation described above, we
assume a Planning Domain Definition Language (PDDL)
representation of actions. We refer to the set Ei of a particular
action ai as the arguments of ai. Each action is assumed to
have a set of preconditions and effects, denoted χi, ψi ∈ F .
The preconditions χi of ai indicate the predicate descriptors
which must hold true before executing ai, and the effects
ψi of ai indicate the predicate descriptors which will be
assumed to hold true after successful execution of ai. The
predicate descriptors composing both χi and ψi may also
include negations, indicating predicate descriptors which must
be false before and after execution, respectively.
Problem: A problem in Σ is defined as φ = (Σ, s0, sg), where
s0 is an initial state, sg is a goal state, and s0, sg ∈ S. A plan
π = [a1, . . . a|π|] is a solution to a problem φ.

B. Sub-Symbolic Action Controllers

In addition to the symbolic knowledge base Σ, we as-
sume that our agent has a set of action controllers MΣ =
[m1, . . . ,m|AΣ|] containing sub-symbolic information about
the actions in Σ. We denote the action and its associated
controller as ai and mi, respectively. Each controller encodes
information about the underlying parameter settings of its
associated action. Therefore, we define the symbolic and sub-
symbolic information of the agent as the tuple K = (Σ,MΣ),
where |AΣ| = |MΣ|. A given action controller mi encodes a
finite set of continuous action parameters Pi = p1

i , . . . p
|Pi|
i ,

such that each controller takes the form mi(p
1
i , . . . , p

|Pi|i) =
mi(Pi). Each individual parameter pji encodes three values
- a set default value, a set upper bound value, and a set
lower bound value, denoted ∗pji , pij , and pji , respectively.
Presumably, the parameters could describe information about
the agents’ end effectors relative to the entities being operated
over in actions. Additionally, the parameters could describe
the velocities/force and magnitude of motion execution. While
focused on continuous parameters, this methodology can be
modified to consider discrete and/or non-numerical parame-
terizations, discussed later in the context of our framework.
Example: Consider the action a = push, with a controller ma

and parameters, p1
a = rate, p2

a = movementMagnitude, and
p3
a = orientation. Each parameter has a set value, an upper

bound, and a lower bound for a, encoded in ma. For example,
the rate parameter, which controls the rate of motion when
pushing an object, may have the following encoding: p1

a = 3,
p1
a = 100, and a set value of ∗p1

a = 20. In this case, the push

symbolic action will move at the rate of 20, as is specified by



∗p1
a in its associated controller ma. This particular parameter

instantiation of ma is what connects the symbolic and sub-
symbolic levels of knowledge representation.

C. Problem Formulation

An agent starts with a knowledge base K = (Σ,MΣ), and
given a problem φ, a planner generates a plan π to accomplish
a goal state sg . The planning agent, containing an accurate
representation of the world in its symbolic knowledge base Σ,
is able to successfully execute π, thereby achieving its goal
state sg . We refer to this case as the original scenario.

Suppose that in the context of novelty, something about the
world changes such that Σ is no longer sufficient, but needs
to be updated with new information such that Σ becomes
Σ′. The agent also must learn a new set of corresponding
action controllers MΣ′ . We refer to this scenario as the novel
scenario. In this novel context, the planner initially uses Σ to
plan for solving φ, once again generating π. Upon executing
π, a plan failure occurs for some action af ∈ π. We assume
that for each action in the domain, there is an action executor
model which can determine whether its action has succeeded
or failed. These failures can happen throughout execution, or
by checking if the end effects of the action have been fulfilled.

At this point, the agent needs to explore its world to
learn a new knowledge base Σ′, providing it with an updated
and accurate representation of the new world, along with its
corresponding set of action controllers MΣ′ . We define the
learning process L as the process in which an agent can learn
a new knowledge base K′ using exploration method ω, such
that L(K, ω) 7→ K′.

D. Action Discovery

1) Passive Incubation: Focused and Defocused Generation:
In the first stage of incubation, passive incubation (Algorithm
2), the agent generates a list of candidate actions to vary
through behavior babbling. We refer to these variation can-
didates as action-entity-parameter (AEP) combinations. This
list of candidates is generated as a subset of an exhaustive list
of variation combination options of K = (Σ,MΣ) denoted:

CK = C(a× e× p),∀a ∈ AΣ, e ∈ Ea, p ∈ Pa

where a given subset list of CK, generated under an exploration
method ω, is denoted CK,ω . The list CK denotes all possible
actions, paired with all possible entity arguments and focus
parameter selections to each given action, where the focus pa-
rameter is the parameter which will be varied in the exploration
phase of a particular AEP. We denote any given AEP combi-
nation of CK as c(a, Ea, p) where a ∈ AΣ, Ea ⊂ E , p ∈ Pa.

We propose two modes of AEP generation, focused and de-
focused, inspired by concept development proposed by Sarathy
[23]. In this work, focused mode is described as one where the
agent utilizes goal-directed problem solving, and defocused
mode as one where the agent utilizes exploration-directed
problem solving. We modify this notion to instead consider
both focused and defocused passive incubation stages as a
part of the creative problem solving process [24]. We refer to

Algorithm 1 Action Primitive Discovery Framework

1: procedure PLANEXECUTOR(sg,K,∆n, sC)
2: sg : predicates needed to accomplish goal; K :

knowledge base; ∆n : interval partition parameter; sC :
predicates which are currently true

3: e← 1 : episode number
4: ω ← focused : AEP generation mode
5: Ψ← ∅ : newly added actions
6: CK ← ∅ : AEP list
7: while sg 6⊂ sC do
8: π ← generateP lan(sc, sg,K,Ψ)
9: Ψ← Ψ \ π

10: for a ∈ π do
11: if execute(a) = FAIL then
12: af ← a; break
13: if sg ⊂ sC then
14: break
15: if CK = ∅ then
16: CK ← genAEPlist(π, af , ω, EΣ)
17: if e > 1 then
18: ω ← defocused

19: if Ψ = ∅ then
20: c← pop(CΣ)
21: Pc ← getParamV ariants(c,∆n)
22: for ĉ ∈ Pc do
23: execute(ĉ)
24: Eĉ ← sC
25: switch ω do
26: case ω = focused

27: if Eĉ = Ec then
28: Ψ← Ψ ∪ {ĉ}
29: case ω = defocused

30: if Eĉ 6= ∅ and Eĉ 6= Ec then
31: Ψ← Ψ ∪ {ĉ}
32: AΣ ← AΣ ∪Ψ

33: e← e+ 1

34: return K

these stages as focused incubation and defocused incubation,
respectively. Unlike Sarathy [23], the distinction between these
two phases is not drawn from goal vs. exploration affixed
behavior. Instead, goal affixed behavior is utilized in both
focused and defocused incubation. The distinction between
the two modes, in this case, is between the scope of the
problem solving search space, described in the following
section. Additionally, unlike traditional ε-greedy algorithms,
there is no notion of policy exploitation. Both focused and
defocused incubation are exploration based, wherein focused
incubation exploration is scoped toward actions involved in
the initial plan, and defocused incubation exploration allows
for a broadened search beyond those actions.

In focused passive incubation (shown on lines 8 - 11 of
Algorithm 2), the agent scopes its AEP generation to the
specific plan involved in the failure. We employ an Informed



Probabilistic Strategy (IPS), where AEP’s are stochasticly
chosen from a Half-normal distribution of the reverse of
the actions in a plan π starting from af and ending at a0

(Algorithm 2, line 6). For example, given π = [a1, a2, a3, a4]
and af = a3, the chosen AEP will be sampled from a1, a2, a3,
with a3 having the highest likelihood of being selected, and
a1 having the lowest likelihood of being selected. We assume
that in most cases, the action that needs to be modified is more
likely to occur closer to af , as opposed to other actions in π.

In defocused passive incubation (lines 12-15 of Algorithm
2), the agent again uses IPS where π is used for AEP gener-
ation, but instead relaxes its constraints to allow for entities
other than those included as arguments to actions in the initial
plan π. In this way, the agent is able to explore the possibility
of other entities as a means for problem solving. For example,
given an environment with entity list E = [cup1, cup2,

cover] and π = [push(cup1), drop_object(cover)], an
agent may explore push(cup2).

2) Active Incubation: Parameter Variation: In the second
stage of incubation, which we refer to as active incubation, the
agent then begins evaluating candidate actions to determine
their utility toward solving φ (line 20 of Algorithm 1). In
this stage, the agent executes the actions listed in the AEP
list CK,ω , generated by one of the two strategies mentioned.
That is, for any given AEP element c(ai, Eai , pai), the agent
executes the element in a parameter variation mode (Algo-
rithm 3), in which action ai is executed with specified entity
arguments Eai , with pai as its chosen focus parameter to vary.
As a first step, the chosen parameter to vary pai is set to values
ranging from its lower and upper bound, with a chosen ∆n

interval partition value, such that (pai−pai)÷∆n = I , where
I is the interval of execution. That is, for any c(ai, Eai , pai),
the action ai((E)ai) (ai for short) is executed for the focus
parameter pai from its lower bound to its upper bound value,
incrementing by the interval of execution. This generates a list
of candidate variants, P ′ai , shown below:

P ′ai = (pai), (pai + I), (pai + 2I), . . . (pai)

In the case of discrete parameters (denoted p̂), this strategy can
be modified to consider two cases – in the case that the finite
set of variant choices for a discrete parameter (denoted {p̂})
is less than the interval partition value ∆n, then the candidate
variants list assumes the form P̂ ′ai = {p̂ai}. In the case that
∆n < |{p̂}|, the parameter variants list instead assumes the
following form:

P̂ ′ai =

(
{p̂ai}
∆n

)
That is, ∆n randomly chosen elements of the discrete set

are chosen for variation. In this way, both numerical and non-
numerical discrete parameters can be utilized.
Candidate AEP Evaluation: For each parameter variation in
the candidate list (pj ∈ P ′ai ), the agent evaluates its execution
to determine whether it should be added into the knowledge
base for future use (Algorithm 1, lines 22 - 32). There are
two conditions by which a given variant c(ai, Eai , pai) (call

Algorithm 2 AEP Combination Generation

1: procedure GENAEPLIST(π, af , ω, EΣ)
2: π : plan to be explored; af : failure action; ω :

exploration strategy; EΣ : entity list
3: ζ ← ∅
4: π′ ← π[0 : af ]
5: while π′ 6= ∅ do
6: i ∼ H(σ) : Half-normal distribution
7: switch ω do
8: case ω = focused

9: a← π′[i]
10: ζ ← ζ ∪ {a}
11: π′ ← π′ \ a
12: case ω = defocused

13: E ′ ← shuffle(EΣ)
14: for Ea ⊂ E ′ do
15: ζ ← ζ ∪ {a(Ea)}
16: return ζ

Algorithm 3 Generate Parameter Variations

1: procedure GETPARAMVARIANTS(c,∆n)
2: c : AEP combination to vary
3: ∆n : interval partition parameter
4: δ ← ∅ : variants
5: for p ∈ Pa do
6: I ← (puppera − plowera )÷∆n

7: i← 0
8: while i ≤ ∆n do
9: p′ ← plowera + (i · I)

10: a′ ← a(p = p′)
11: δ ← δ ∪ {a′}
12: i = i+ 1

13: return δ

it c) with pai = pj (call it ĉ) can be added to Σ – if
ψĉ = ψc, or if ψc ⊂ ψĉ. That is, a candidate can be
added if it accomplishes precisely the same end effects as
its parent action, or if it accomplishes the same end effects as
its parent action, with additional novel effects. We call these
conditions the inheritance and novelty condition, respectively.
The inheritance condition holds in focused incubation, and the
novelty condition holds in defocused incubation.

IV. EXPERIMENTAL RESULTS

We ran our experiments using a Baxter robot simulated in
Gazebo. We used a PDDL planner which required specifying
an initial state (si) and goal state (sg), where it could find
a plan π for attaining sg . Actions in the knowledge base
were either parameterizable, or not (see Table III). For any
parameterizable action a, the corresponding parameter set Pa
of its controller ma consists of the following parameters: p1

a =
rate (dictating the rate of motion of the agent during action
execution), p2

a = orientation (denoted orient dictating
the orientation of the end effector of the robot in single



Experiment 1

s0

at(cup, loc_a)
at(cover, loc_b)
is_visible(cup)
is_visible(cover)
covered(cup)

sg not(at(cover,
loc_a))

π push(cover)

TABLE I: (left) Initial state s0, goal state sg , and resulting plan π in
both the original and novel scenarios of Experiment 1 shown. (right)
Setup shows the Baxter robot in Experiment 1 manipulation task.

degree rotation along a chosen plane, relative to the entity
argument of the action), and p3

a = movementMagnitude

(denoted MM, dictating the range of movement in the action).
Any variant added K is named in the following format
– actionName-parameterVaried:defaultSetting, e.g.,
push-rate:10.

A. Performance Measures

Execution phases refer to any event in which the robot
is executing an action as a part of a plan to attain a goal.
Exploration phases refer to any event in which the robot is
executing actions toward behavior babbling. An episode refers
to any attempt of the agent to accomplish its goal. Some
episodes include an exploratory phase (where it must generate
more novel actions to experiment with), whereas others do not
(where the agent is using a stored candidate action to attempt
to accomplish its goal). A trial refers to a full run of the
CPS framework from start to finish, where the agent is able
to accomplish its initial goal. We considered 3 performance
metrics: The action cost per episode is the sum of the total
simulation time of the execution phase and exploration phase
of an episode. The total action cost (TAC) per trial is the sum
of the total action costs of all episodes in a trial. The total
number of episodes (NOE) for each trial indicates how many
re-plan/behavior babbling cycles the robot need to perform to
accomplish its goal. This accounted for all simulation time
that the robot was in motion executing actions, but explicitly
excluded planning time, and simulation reset time, which
introduces an additional cost to the framework.

B. Experiment 1: Simple Scenario

The environment and problem setup of our first experiment
is shown in Table I. The initial state s0 is composed of a
cup and a cover, both sitting on the table, where the cover
is placed on the cup. The goal of the planning agent is to
remove the cover from the cup. Given this goal state sg =
[not(at(cover loc_a))], the agent generates a plan π =
[push(cover)]. The action controller of this action is shown
as mpush in Table III. In this original scenario of Experiment
1, the agent is able to successfully accomplish its goal using
π. In the novel scenario, the cover is heavier than it was in
the original scenario. In this case, although the agent is able
to plan toward the same goal, it fails upon execution, because
the rate of motion of the push action controller (rate = 7.0)
is no longer sufficient toward moving the cover.

Fig. 1: Baxter robot is shown prior to manipulation of entities on
the table. The blue block represents cup entity, the green block
represents a cover entity, the red flat square represents burner1
entity, and the white squares represent l_btn (left button) and
r_btn (right button) entities (relative to the robot).

Experiment 2 Experiment 3

s0

at(cup, loc_a)
at(cover, loc_b)
at(burner, loc_c)
is_visible(cup)
is_visible(cover)
is_visible(burner)
covered(cup)

at(cup, loc_a)
at(cover, loc_b)
at(burner, loc_c)
at(l_btn, loc_d)
at(r_btn, loc_e)
is_visible(cup)
is_visible(cover)
is_visible(burner)
is_visible(l_btn)
is_visible(r_btn)
covered(cup)

sg cook(cup) cook(cup)

π

push(cover)
uncover_obj(cup)
shake(cup)
prep_food(cup)
put_on_burner(cup)
cover_obj(cup)
cook(cup)

push(cover)
uncover_obj(cup)
shake(cup)
prep_food(cup)
put_on_burner(cup)
cover_obj(cup)
cook(cup)

TABLE II: Initial state s0, goal state sg , and resulting plan π in both
the original and novel scenarios of Experiment 1(left) and Experiment
2(right) shown.

The agent enters passive incubation, where it generates AEP
list C = [c(push, [cover], rate), c(push, [cover],

orient), c(push, [cover], MM)], using the focused gen-
eration method. During active incubation, the agent varies the
focus parameter of each c ∈ C, attempting to find variants to
add to its knowledge base, where it discovers that executing
push-rate:75.0 will result in attaining sg

C. Experiment 2: Focused Passive Incubation

The environment of Experiment 2 is shown in Figure 1, with
its corresponding problem setup in Table II, describing the
original scenario. In the novel scenario of Experiment 2, the
cover is lighter in weight than the original scenario, resulting
in a plan execution failure when attempting cover_obj, since
the light weight cover is pushed off of the table when executing
push, and is therefore out of reach of the robot. This presents a
peculiar scenario, where the failure action af = cover_obj is
not responsible for the failed plan. Here, the agent executes an
full incubation cycle (similar to that described in Experiment
1) to discover that substituting push with push_rate:3.0

will result in a successful scenario. In this way, the agent has
learned the equivalent of a nudge action.

D. Experiment 3: Defocused Passive Incubation

The environment of Experiment 3 is shown in Figure 1, with
its corresponding problem setup in Table II, which describes



Parameterizable Actions
action param min max maction

push rate 1.0 150.0 7.0
orientation 0 180 0

movementMagnitude 0.01 0.3 0.13
shake rate 1.0 150.0 7.0

orientation 0 180 90
movementMagnitude 0.01 0.3 0.13

Non-Parameterizable Actions
uncover_obj, cover_obj, prep_food,

put_on_burner, cook

TABLE III: Actions comprising the initial knowledge base of the
agent in all experiments

Exp # # trails aNOE aTAC (s)
1 60 1.23 83.09
2 60 3.32 578.63
3 10 13.90 2098.71

TABLE IV: Quantitative summary data of all 3 experiments

the original scenario. In the novel scenario, unknown to the
planning agent, the burner is required to be turned on by
pressing the right button, in order for the cooking(cup)

predicate to hold. In this case, a focused incubation strategy
is not sufficient since the right button is not an entity present
in π. Once the planning agent exhausts all AEP’s generated
by the focused passive incubation strategy, it attempts to find
a solution through a defocused strategy. Through this explo-
ration, the agent discovers that executing push-orient:90

successfully actuates the button (equivalent of a press action),
turning on the burner and thus attaining sg . This experiment
demonstrates the case described earlier where two seemingly
distinct actions can be derived from one another using param-
eter variations.

E. Results

Summary results (Table IV) suggest that the size of the
AEP list (|CK|) and length of the action plan (|π|) affect the
average number of episodes (aNOE) and average total action
cost (aTAC), respectively. The aNOE of Experiment 2 is 2.7
times that of Experiment 1, and the aNOE of Experiment 3
is 4.2 times that of Experiment 2. Both of these values are
roughly equivalent to 1.37 times the ratio of the respective
|CK| values. The aTAC of Experiment 2 was 7 times that
of Experiment 1, and the aTAC of Experiment 3 was only
4.2 times that of Experiment 2. We believe this is due to
the difference in their corresponding |π| values, since, in any
episode which included an exploration phase, π must be fully
executed. Experiment 1 had a significantly smaller |π| than
Experiment 2 and 3, which had equal |π| values.
Interval Partition Value (∆n): We evaluated the effect of the
∆n parameter on both Experiment 1 and 2. We ran 3 sets of
20 trials on each scenario, at ∆n = 3, 5, 7, with results shown
in Figure 2. It can be seen that the overall variance of the
simple scenario trials are less than the complex scenario trials.
This is due to their differing |CK| sizes. With ∆n intervals,
Experiment 1 could find a success scenario within 1 to ∆n

episodes, whereas Experiment 2 could take anywhere from 1 to
6 times ∆n episodes. This phenomenon is largely responsible
for the variations seen across ∆n values for each experiment.

Fig. 2: Total Action Cost vs. ∆n value for Experiment 1 & 2.

While Experiment 1 shows only a slight increase in variance,
Experiment 2 shows a much more significant increase.
Success Action Discovery: Next, we examine the diversity
of the discovered actions, where we found interesting and
unexpected results, shown in Figure 3. We had originally
hypothesized that a decrease in the rate parameter would
be the only sufficient success action (push-rate:3.0 did
get utilized 4 times). We were surprised to find that the
most frequently utilized success action was push-MM:1.0,
which resulted in a decreased movement magnitude of the
push action. In this way, the agent was able to “nudge” the
cover off of the cup without fully pushing it off of the table.
Another surprise was that an increased rate also resulted in
the cover staying on the table. We believe this is because of
the trajectory of the robot’s arm, which would hover higher
up when moving across the table to push the cover. As a
result, the gripper simply “skimmed” the cover just enough
to knock it off the cup, without the leverage of a full contact
push, as was the case in the original scenario. Lastly, in a
preliminary trial for Experiment 1, there was one case where
the agent was unable to find a solution in its first round
of focused incubation, thereby entering a second round of
exploration. Here, the agent found a two-parameter variation
solution, where the agent both increased its rate and movement
magnitude in order to successfully push the heavy block off
of the table (push-MM:1.0-rate:3.0). The implications of
this discovery will be discussed in Section V. These results
show that our framework can enable a robot to find multiple
solutions to a problem, some that are unforeseen by the
designers of the environment.
Defocused Incubation Case: Experiment 3 was meant to
demonstrate the defocused passive incubation strategy. We ran
10 trials with a ∆n value of 3. Experiment 3 had a significantly
longer total action cost than Experiment 2, requiring more
episodes for success action discovery (See Table IV). We
had originally expected that the push-orient:90 variant
(equivalent to a press action) would be the sole success
action, due to its ability to press the button to turn on the
burner. Results show that in addition to push-orient:90,
there were 4 variants of shake that were able to successfully
actuate the button in the 10 trials. Actuation occurs in shake

variant cases in the following manner – when the agent



Fig. 3: Success Actions discovered in Experiment 2.

attempted to pick up the object to shake it, its grippers closed
around nothing, lifted nothing, and then placed the ungrasped
button back down in its place. In doing so, the agent performed
the equivalent press action described above, pressing down
on the button with closed grippers.

V. CONCLUSIONS AND FUTURE WORK

We presented a novel framework for action discovery
through behavior babbling, which we have demonstrated on
3 creative problem solving scenarios of varying complexities.
Our framework utilizes 2 novel CPS incubation strategies,
focused and defocused, which we tested in a robotics envi-
ronment to demonstrate their usefulness in CPS tasks.

A limitation of this work is that it does not guarantee con-
vergence on the action needed for a given CPS solution. It is
possible that, given a selected interval partition value, a correct
parameterization selection for the needed success action may
be missed. Future work should consider exploration strategies
for parameter selection which guarantee this convergence. An
additional limitation of this work is that it relies on previously
learned action controllers to execute novel actions, and thus, if
CPS solutions necessitate new controllers, this method would
fall short. In this case, future work should consider integrating
developed methods in reinforcement learning to handle these
cases [25]. Additionally, we encourage investigation into meth-
ods which differentiate context-dependant use of discovered
action variants. Intelligent methods for action sequencing may
include object predicate discovery, which could be used as a
precondition to discovered actions. Lastly, future work should
consider tractability through informed incubation search.
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