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Abstract—Predicting future sensory states is crucial for learn-
ing agents such as robots, drones, and autonomous vehicles.
In this paper, we couple multiple sensory modalities with
exploratory actions and propose a predictive neural network
architecture to address this problem. Most existing approaches
rely on large, manually annotated datasets, or only use visual
data as a single modality. In contrast, the unsupervised method
presented here uses multi-modal perceptions for predicting future
visual frames. As a result, the proposed model is more compre-
hensive and can better capture the spatio-temporal dynamics
of the environment, leading to more accurate visual frame
prediction. The other novelty of our framework is the use of
sub-networks dedicated to anticipating future haptic, audio, and
tactile signals. The framework was tested and validated with
a dataset containing 4 sensory modalities (vision, haptic, audio,
and tactile) on a humanoid robot performing 9 behaviors multiple
times on a large set of objects. While the visual information is the
dominant modality, utilizing the additional non-visual modalities
improves the accuracy of predictions.

I. INTRODUCTION

For humans and many animals, the ability to anticipate the
future is a prerequisite for intelligent behavior. For robots,
predicting the future values of sensors can assist object ma-
nipulation (e.g. planning towards a desired sensory state),
anomaly and failure detection (e.g. by comparing predictions
to observed values), and sensorimotor learning (e.g. learning
how sensors change as a result of the robot’s actions). More
generally, if a robot can predict the future values of sensors
such as its cameras or haptic sensors, any perceptual routine
that is used to process the robot’s current sensory state would
also be applicable for predicted sensory states.

Early work in robotics focused on learning visual forward
models that anticipate the future trajectories of objects ma-
nipulated by the robot as well as movements by the robot
itself [1]. More recently, methods have been developed to
directly predict the future raw image frames that the robot
would observe in its camera stream over the course of object
manipulation [2]. One limitation of existing methods is that
they mostly deal solely in the visual domain. For many object
manipulation tasks, however, other sensory modalities, such
as haptic, audio and tactile, may be just as important. Non-
visual sensory modalities can also help in situations where
vision alone may be insufficient to resolve an ambiguity (e.g.
two objects may look identical but one may be much heavier
than the other). Indeed research conducted in cognitive science
[3], [4] and robotics [5], [6] has demonstrated the importance
of using multiple (and often, non-visual) sensory modalities
when learning about object properties and affordances.

§The first two authors contribute equally.

Motivated by these findings, we present a deep learning
methodology for multisensory foresight which uses feedback
from multiple sensory modalities produced over the course
of the robot’s interaction with objects in its environment. We
hypothesize that including more modalities can substantially
improve prediction performance. To present and evaluate our
proposed methodology, we used a publicly available dataset
[7], in which a robot performed 9 different types of exploratory
behaviors (e.g. push, press, etc.) on 100 objects multiple times.
The dataset includes vision, haptic, audio, and vibrotactile sen-
sory modalities. This paper introduces a modular deep neural
network architecture that can take advantage of any modalities
for performing the next-frame prediction task. Furthermore,
we extend the model to predict the next frame for modalities
other than vision, which leads to further improvements in the
robot’s prediction performance.

II. RELATED WORK

Multi-modal perception. A large volume of research has
shown that perception can benefit by relating information
from multiple sources [8], [9], [6], [10], [11]. To identify
the semantics of objects (e.g. empty, soft), visual information
alone may not be adequate as the objects could be identical in
the visual domain but different in other aspects (e.g. material,
internal state, compliance). To address this problem, several
lines of research have focused on how robots can use non-
visual sensory modalities of tasks that include grasping [12],
[13], object recognition [14], [15], [16], object categorization
[7], [17], [18] and language grounding [19], [20], [21], [22].
Inspired by these works, we propose an architecture that also
uses multiple sensory modalities for the sensorimotor learning
task of visual next-frame predication.

Frame prediction. This research aims to forecast future
frames in video sequences. Early studies have focused on
employing complex networks to directly generate pixel values
(e.g. [23]). However, these methods generally produce blurry
predictions, as it is hard to model the distribution of image
pixels, especially multiple steps into the future. Inspired by
language modeling, Ranzato et al. [24] applied a recurrent
neural network to anticipate future frames. Srivastava et al.
[25] adapted LSTM model to capture pixel dynamics. Mathieu
et al. [26] investigated different loss functions for sharper
frame predictions. In another effort, Oh et al. [27] proposed
an action-conditional autoencoder network for Atari Games.
Liang et al. [28] defined a dual motion Generative Adversarial
Net (GAN). Recently a few approaches have solved the issue
of blurriness of predictions multiple steps into the future
[29], [30], [31]. Despite the remarkable success, they have
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Fig. 1: The architecture of the proposed model, which consists of 4 feature encoders (left) and prediction heads (right) for 4
modalities, and 1 fusion module (middle) for merging representations of different modalities.

their own limitations. For example, [29] uses a hierarchical
method which enables it to make sharper images for a longer
period of time; however, it has the limitation that occasionally
predictions disappear which constraints its applicability in
safety critical settings. Two of the most successful models for
frame prediction are PredNet [32], and the work introduced
in [2]. ConvLSTM units are essential building blocks of these
two models. PredNet makes local predictions in each layer of
the network and only passes deviations from the predictions
to succeeding layers. The model presented in [2] uses a
pixel transformation function such as convolutional dynamic
neural advection (CDNA) to predict motion distribution for
the objects in videos. Despite the immense success, this model
considers only one modality (vision) alongside state and action
for forecasting future frames. In this paper, the proposed multi-
modal network draws on the model architecture from [2] for
the vision prediction branch. By integrating several modal-
ities to the network, the proposed model shows significant
improvement in performance compared to the single-modality
network.

III. LEARNING METHODOLOGY

Next, we describe our framework for multisensory fore-
sight, which uses multiple sensory modalities coupled with
exploratory actions performed on objects by the robot.

A. Notation and problem formulation

We used a dataset which contains N samples {Xn}, where
n = 1, 2, · · · , N , and each sample Xn is defined as a quadru-
ple Xn = {In,Hn,An,Vn}. The quadruple is consisted of
4 kinds of sequential data collected by different sensors: 1)
Visual data In = {in1 , in2 , · · · , inT }; 2) Haptic data Hn =
{hn1 , hn2 , · · · , hnT }; 3) Auditory data An = {an1 , an2 , · · · , anT };
and 4) Vibrotactile data Vn = {vn1 , vn2 , · · · , vnT }. Different
sensors of the robot execute at different frequency rate. As a

result, with regard to our primary task which is to predict the
following visual frames, all other modalities are processed to
be synchronized to the visual data in terms of time step. To
meet this end, for each time step, the modality data is defined
as follows:

int ∈ RMw×Mh×Mc , hnt ∈ RMd×M ′
d

ant ∈ RMe×M ′
e , vnt ∈ RMf×M ′

f

where Mw, Mh and Mc are the width, height and the number
of channels of each image respectively, Md is the number
of robot joint-torque sensor readings, Me is the number of
frequency bins in the audio spectrogram, and Mf is the
number of accelerometer readings. Moreover, M ′d, M ′e and
M ′f are the number of in-frame time steps of haptic, auditory,
and vibrotactile modalities respectively.

The goal of the framework is to predict the future visual
frames In>K = {inK+1, · · · , inT } given K context frames
In≤K = {in1 , in2 , · · · , inK} along with other modalities, where
K < T . We also add a categorical feature bn ∈ B indicating
the type of behavior performed by the robot. While the
main task is predicting subsequent frame images înt , where
t ∈ {K + 1, · · · , T}, we introduce the concept of auxiliary
tasks learning, which also predicts the next frames for haptic,
audio and vibrotactile modalities which are denoted as ĥnt ,
ânt and v̂nt respectively. Auxiliary tasks are expected to help
find a stronger representation of how the modalities relate to
one another through backpropagation, from which the main
task might benefit. To this end, we define a highly abstracted
autoregressive model F :

înt , ĥ
n
t , â

n
t , v̂

n
t = F(In≤K ,Hn

<t,An
<t,Vn

<t, b
n) (1)

where Hn
<t, An

<t, Vn
<t are the additional modality sequences

prior to time step t. The model first learns how to extract



(a) Visual Feature Network (b) Visual Prediction Network

Fig. 2: Pipeline of The Visual Prediction Module, 2a shows the architecture of visual feature extractor, and 2b shows the
architecture of visual prediction network.

(a) Haptic Features (b) Audio Spectrogram (c) Vibro Accelerometer (3 Axes)

Fig. 3: Visualization of (a) haptic, (b) audio and (c) vibrotactile modalities when the robot drops a bottle

high-level representations of each modality individually, then
learns the interaction and combination of the 4 modality
representations, and finally outputs the next frame prediction
of each modality using the multi-heads network. Next, we
discuss the details about the model F .

B. Model architecture

The proposed network architecture, shown in Figure 1,
consists of 3 sub-modules: feature encoders, fusion module,
and multi-modality prediction network.

a) Feature Encoders: Previous methods on next frame
prediction relied mainly on the visual modality, while in our
approach, inputs to the network are sequences of different
modalities I,H, A, V . To efficiently integrate different modal-
ity features together, all modalities are mapped into W × H
feature maps with different numbers of channels via their
corresponding feature encoder. The feature encoder networks
are composed of convolution, downsampling, and ConvLSTM
modules with concatenation and tile operation.

For the visual modality, we employ stack ConvLSTMs
(Figure 2a) to extract high-level vision features as well as
spatio-temporal features. For the haptic modality, we spatially
tile the concatenated joint signals and robot gripper pose
across the feature map and feed it into the haptic-specific
feature extraction network. For the audio and vibrotactile
modalities, first we use Fast Fourier Transform (FFT) to
compute a spectrogram, then employ convolutional layers and
ConvLSTM layer to extract features.

b) Fusion Module: The fusion module contains one
convolutional layer and one ConvLSTM layer with a concate-
nation operation, as illustrated in Figure 1. To further merge
the modality features, it first integrates the lowest-dimensional
activation maps given by each feature encoder into one latent
feature map along the channel via concatenation operator, and
feed it into the defined layers sequentially. The number of
channels in the output feature map will be compressed into the
same as of the visual input feature map, which in our work,
channel size 64, and 128 are considered. The output feature
map contains information extracted from all used modalities
and will be further used to predict each modality in the next
frame. Note that the number of chosen modalities can vary
from 1 to 4, and the fusion module will automatically adapt
the modality setting and output the integrated feature map with
a fixed number of channels.

c) Multi-modal prediction head: The core of the model
is learning the internal relation across different modalities,
which consequently leads to increasing the performance of
the main task (visual next-frame prediction). This is achieved
by augmenting the auxiliary tasks. For each modality, there is
a head that gets its input (fused feature map) from the fusion
module, which integrates all the information and outputs the
corresponding next frame modality.

For auxiliary task prediction heads, we directly reconstruct
the next frame. Transposed convolutional layers are employed
in each decoder, and the fused map is upsampled to be in the



(a) lift behavior

(b) push behavior

Fig. 4: Sharpness of predicted images, when the robot arm
perform different behaviors (4a: lift, 4b: push).

same dimension as the original input. For the visual prediction
head (Figure 2b), we use the idea of pixel transformation
proposed in [2], [33], and perform two tasks instead of
reconstructing the image directly. The first task is learning the
pixel transformation parameters for each grouped object. The
second task is performing an instance segmentation task that
aims to group pixels by object. There are two branches for the
visual prediction head. In the object motion capture branch,
a motion prediction module called convolutional dynamic
neural advection (CDNA) is used [2]. The CDNA function
computes new pixel values by applying multiple normalized
convolution kernels to previous frames. CDNA is an object-
centric motion prediction module, and as it is indicated in [2],
the intuition behind it is that pixels form the same rigid entity
move together. This module is expressed in the following
equation:

Ĵt(x, y) =
∑

k∈(−k,k)

∑
l∈(−k,k)

m̂(k, l)Ît−1(x− k, y − l) (2)

where k is the size of m̂ convolution kernel, and Ĵ is a
set of several transformations of the previous image. In the
instance segmentation branch, skip connections are used
to include the intermediate feature maps obtained from the
visual encoder to the middle of the prediction head by directly
concatenating them to restore the details learned in the low-
level feature maps. This branch is responsible for applying
masks to different objects. Finally, to obtain a single output
image Ît, the composition of predicted images should be
modulated by a mask.

Ît =
∑
c

Ĵ
(c)
t � Ξ (3)

where c represents the channel of the mask, and � is the
Hadamard product. The total loss function contains 4 compo-
nents, each of which corresponds to the cost function for each
modality. The cost function for each modality is weighted and
is described below. LT is the total loss:

LT = λiLi + λhLh + λaLa + λvLv (4)

where in our work, the coefficient hyper-parameters are se-
lected via grid search: λi = 1.0, λh = 10−4, λa = 10−3 and
λv = 10−4. We used mean square error (MSE) as the cost
function for each modality.

IV. EXPERIMENTAL RESULTS

We compare the proposed framework with the vision only
model proposed in [2] both quantitatively and qualitatively.
To better investigate the robustness of the model, we provide
two settings for experiments, which will be discussed in
sections IV-A and IV-B. Furthermore, we discuss the effect
of employing auxiliary training in section IV-C.

Implementation Details. We make use of PyTorch [34]
for GPU-based implementation1, set the number of context
frames K to 4, and evaluate the model performance for the
following 16 predicted frames. For a few behaviors (grasp and
tap), there are fewer frames in the dataset, only the following
6 frames are predicted. We employed ADAM optimizer [35]
with learning rate lr = 1e−3 to train the network for 30 epochs
with batch size 32. For evaluation, we use Structural Similarity
Index Measurement (SSIM) metrics to measure the visual
prediction quality. Alternative metrics, such as Maximum
Mean Discrepancy (MMD) [36] could be considered. We
performed 5-fold cross-validation such that during each test,
data from 80 objects was used for training and data from the
remaining 20 objects was used for testing.

Dataset. The dataset described in [37] is used to evaluate
and compare the proposed network with the single-modal
network. For collecting the dataset, an uppertorso humanoid
robot with a 7-DOF arm manipulates 100 objects by executing
9 different exploratory behaviors (push, poke, press, shake,
lift, drop, grasp, tap and hold) multiple times and records
visual, haptic, auditory and vibrotactile sensory data. The

1Code: https://github.com/tufts-ai-robotics-group/mmvp/tree/main

https://github.com/tufts-ai-robotics-group/mmvp/tree/main


(a) Ablation study on sensory inputs

(b) Ablation study on behavior input

Fig. 5: Quantitative result evaluated with SSIM metric. Abla-
tion studies on all behavior setting

TABLE I: Investigation of contribution of each modality to
the improvement of model prediction

avg. SSIM haptic audio vibrotactile behavior
0.771 X
0.773 X X
0.767 X X
0.769 X
0.756 X
0.770 X X
0.776 X X X
0.773 X
0.798 X X X X

visualization of different sensory modalities when the robot
drops a bottle is provided in Figure 3. Figure 3a illustrates the
torques of 7 joints of the robot and 3 end-effector positions
over time. Figure 3b shows the spectrogram of the auditory
data. We use the Fast Fourier Transform to convert the raw
signal into a representation in the frequency domain. Figure
3c shows the 3-axis accelerometer readings.

TABLE II: Modalities loss with and w/o auxiliary training, aux
refers to auxiliary training and no aux refers to no auxiliary
training.

vision
(SSIM)

haptic
(MSE)

audio
(MSE)

vibro
(MSE)

aux no aux aux
vision 0.756 - - -

vision+haptic 0.785 0.764 0.282 - -
vision+haptic+audio 0.796 0.791 0.246 0.042 -

vision+haptic+audio+vibro 0.798 0.795 0.244 0.041 0.739

A. Training the Network with All Behaviors

The first experiment is to evaluate the framework in the
all-behavior setting. Unlike the model in [2], which only
uses one behavior (push), in the presented work, we trained
the model on data spanning all 9 exploratory behaviors and
evaluated it on novel unseen objects that were not seen during
training. In this setting, we first show an illustrative example
which describes the qualitative results of using multi-modal
perceptions and a vision-only model compared with ground
truth. Then we quantitatively evaluate the model performance
with regards to different numbers of used sensory modalities.
Furthermore, we study the model’s performance when the
behavior type (e.g. grasp vs. push) is added as a categorical
feature to the network. Note that except when explicitly
indicated, the behavior category feature is used as input for
the experiments.

Illustrative Example. Figure 4 shows the qualitative re-
construction performance of the proposed method and vision-
only model [2] compared to ground-truth when the robot arm
uses different behaviors (push, lift) to interact with objects. We
observe that predicted frames using multi-modal are much less
blurry. Furthermore, this figure demonstrates that the proposed
method better captures the motion and can localize the object
appearance with more precision especially in multiple steps
into the future (e.g. see location of robot arm and the object
for push behavior, frame No. 16).

Quantitative Reconstruction Performance. Figure 5a il-
lustrates the performance of the network when integrated
with different combinations of modalities compared to the
vision-only method [2]. The results show that utilizing the
network with multi-modal perceptions substantially increases
the performance of the predicted frames. Note the gap between
vision only and any combination of multi-modal escalates for
further future frames. Meanwhile, as expected, the quality
of prediction in all models decreases over time as errors
accumulate. To avoid overfitting, we train the model with
different channels in each layer and explore the effect of
the model’s size on the performance. The baseline model
explored in [2] contains 12.5M parameters, based on which
we extend other modality sub-networks and reached 13.6M
parameters. The number of associated parameters for the
additional modalities are much less for two reasons. First the
dimensions of other modalities are smaller compared to the
vision. Second a deeper network is used for the visual branch.



Fig. 6: Investigating the performance of different combinations of modalities per individual behavior

In another set of experiments, we investigate the effect of
adding the behavior type as an input feature to the model.
Figure 5b contrasts the model when it is trained with and
without behavior. This figure shows the model performs better
when the behavior is added as an input feature.

We demonstrate the contribution of each modality to the
improvement of the model prediction via an ablation study.
Table I shows the average SSIM over all time steps. The
highest performance is obtained by integrating all modalities
into the model. We also observe that in our dataset, haptic,
audio, and behavior category share comparable contributions,
while adding vibrotactile modality does not necessarily benefit
the performance in this case, and sometimes it adds noise to
the model which leads to performance degradation.

B. Training Behavior-specific Models

We also investigate the performance of the model when
trained and evaluated on an individual specific behavior. In this
section, we ran the experiments with each behavior individu-
ally, yielding 9 models for each combination of modalities. We
evaluate the performance of each model separately and also
the averaged performance over all 9 behaviors. Furthermore,
we compare the averaged performance to the model trained
in section IV-A under the same combination setting. Finally,
we explore how each behavior model performs differently
from the others and investigate how they benefit from the
additional modalities. Figure 6 shows the comparison be-
tween vision versus vision+haptic, vision+haptic+audio and
vision+haptic+audio+vibrotactile for individual behaviors in
terms of SSIM.

By comparing a different combination of modalities within
each behavior, we observe that for 6 out of 9 behaviors,
the model benefits from other modalities, especially, haptic.
By contrasting the same modality setting across different
behaviors, we notice that some behaviors (lift, grasp, hold
and drop) pose an easier next-frame prediction challenge than
others. We also observe that for tasks with discrete events
(e.g. drop), the audio and tactile modalities are very helpful
for predicting future frames; however, for contact behaviors,
the haptic modality is significantly more helpful than audio

and tactile feedback. Furthermore, by integrating 9 separate
models, we evaluate the averaged performance of the model
(the ’averaged’ column in figure 6). The averaged performance
of the behavior-specific models is higher than that of the model
trained simultaneously on all behaviors as described in Section
IV-A, shown in the rightmost column.

C. Predicting Future Frames of Auxiliary Modalities

Another novelty of the proposed framework is predicting
future frames of modalities other than vision. Predicting
other modalities can sometimes be useful (e.g. comparing the
difference between predicted audio and the observed audio
modality to identify abnormal events as they happen). In this
subsection, we investigate the performance of these auxiliary
tasks and whether learning them helps improve visual next-
frame prediction. We evaluate vision modality prediction in
two settings: with auxiliary training and without auxiliary
training settings and assess the performance of the next-frame
prediction model for the non-visual modalities under the with
auxiliary training setting.

Table II shows that auxiliary training of haptic modality
enhances vision prediction while auxiliary training of audio
and vibrotactile modalities does not necessarily contribute to
improve visual next-frame prediction. Furthermore, this table
shows that the audio modality contributes to the prediction of
the haptic, while the vibrotactile modality seems to have little
influence on predicting haptic and audio modalities.

V. CONCLUSION AND FUTURE WORK

In this work, we developed a predictive framework incor-
porating multiple sensory modalities to help solve the next-
frame prediction problem. Our experiments show that utilizing
the network architecture with additional haptic, auditory, and
tactile inputs achieves the best results compared to a state-
of-the-art vision-only baseline. Furthermore, in this paper, we
proposed the use of auxiliary tasks (predicting future haptic,
audio, and vibrotactile signals) and showed that learning such
tasks also improves visual next-frame prediction.

One limitation of our framework is that it is trained on only
one robot. Since different robots have different morphologies
and different sensor suites, the learned knowledge cannot be



directly used by another robot. An interesting avenue for future
work is to extend transfer learning methodologies (e.g., [38],
[37]) as to enable a robot to bootstrap its sensorimotor learning
process with knowledge learned by another robot. Another
viable direction for future work is to integrate the multisen-
sory next-frame prediction methodology described here with
reinforcement learning methods for object manipulation tasks.
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