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ABSTRACT

Robots rely on noisy sensors to accomplish their tasks. For example,
depth camera sensors output 3D data which are then interpreted by
visual algorithms to segment objects of interest. Robots often need
their sensor algorithms re-calibrated due to environmental changes,
malfunctions, or periodic maintenance to continue operation which
is only accomplished with expertise. In this work, we developed
an Augmented Reality based calibration tool that enables users of
all experiences to calibrate computer vision algorithms. We used
common filtering and segmentation techniques for 3D data sets to
adjust the rendered visual output. Finally, we describe the design
of a study to evaluate four different visualization designs and their
effect on user satisfaction and effectiveness.

1 INTRODUCTION

Robots rely on noisy sensors to accomplish their tasks. For example,
depth camera sensors output 3D data which are then interpreted
by visual algorithms to segment objects of interest. These algo-
rithms often have many parameters, each of which needs to be set
appropriately for a given task and environment. The success of a
robot’s task depends on this calibration which is often performed
with human expertise. Robots often need their sensor algorithms re-
calibrated due to environmental changes, malfunctions, or periodic
maintenance to continue operation. However, current approaches
to parameter-setting and calibration require significant expertise,
leaving a robot out of commission for periods of time unless a new,
user-friendly approach to vision calibration is introduced.

In this paper, we propose and describe the development of an
Augmented Reality (AR) system designed to allow non-expert users
to calibrate a robot’s visual perception software pipeline. AR has
helped robots convey their motion intent as well as display their
cognitive and sensory data onto the real-world giving humans an
intuitive visual aid from the perspective of the robot [3, 17]. AR
technology can create an interactive virtual space containing the
robot’s sensory data and cognitive output (see Figure 1) that a
human can access to detect and address malfunctions.

We introduce a “shared reality” framework for understanding
the role of AR in human-robot interaction (HRI) for vision calibra-
tion, describe the design of a system for using AR to calibrate a
multi-parameter RGBD object segmentation pipeline, and describe
a planned study to validate the described system. Our proposed
framework, RAIN (Robot-parameters Adjusted In No-time), allows
the robot to share the state of its sensor data through an AR inter-
face available to the human user. Our proposed system includes a
novel approach to parameter-setting which allows naive users to
appropriately calibrate complex visual perception pipelines. Using
our approach, users can adjust the filtering/segmentation param-
eters through the AR device that directly modifies the computer
vision pipeline running on the robot. The users can see the results
of their modification over-layed onto the real world through the AR
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Figure 1: Interactive virtual space shared by a human and
a mobile robot. The Hololens renders the robot’s Laser
scan data (red markers on human), Occupancy-Grid data
(red/green dots in grid formation), and planned path trajec-
tory (red/yellow markers).

device, allowing them to choose appropriate parameters without
necessarily understanding how the underlying pipeline works.

2 RELATED WORK

Some recent work on automatic sensor calibration has attempted
to eliminate the need for a human in the loop entirely. For example,
algorithms have been developed that do depth segmentation for
object grasping using supervised and reinforcement learning tech-
niques [15, 20]. Other segmentation techniques have leveraged prior
image processing techniques and integrated depth information [4].
However, in real-world environments that change over time, it will
still be helpful (or even necessary) to have an end user validate that
the final parameterization is correct. Our work provides a method
for doing this, and relates to work in HRI on establishing common
ground between humans and robots and to the literature on aug-
mented reality for robotics. The contribution of this work is (1)
identifying an intuitive visual representation of depth information
and (2) the development of AR-mediated algorithmic calibration
tool for all user experience levels.

2.1 Reaching Common Ground with a Robot

“Theory of Mind” is a set of social skills humans use to attribute
beliefs, goals, and desires to other individuals. Within HRI, humans
form mental models of robots that express social cues and gestures
with the same attributions. Furthermore, the Common-ground The-
ory suggests that mutual understanding between humans during
communication is due to coordination of shared information [9].
The common ground theory is then essential towards effective
human-robot interactions as it can elicit finer mental models of a
robot from a person [14]. Common ground in HRI is reached once
the beliefs and perceptions of the physical world as observed by the
robot match those observed by the human. Therefore, we focused
on an interface design that allows users to visualize the robot’s



sensor data in the real world to establish a form of common ground
and allow the user to set parameters for the vision pipeline.

Related works include common-ground frameworks for human-
computer and human-robot interactions using verbal [1, 6, 18, 23]
and non-verbal communications [7, 10]. However, this work has
not been extended to human-robot interactions beyond natural
language. A pilot study by Cheli et al. [8] explored AR as an educa-
tion tool for K-12 students. Middle school students were observed
debugging their assigned robots (EV3 Kit) through tablets and initi-
ated group discussions around sensor readings. In this work, we
similarly utilize AR technology to establish common ground with
a robot. We designed a system that users of all experiences can use
to quickly calibrate complex sensor pipelines.

2.2 Augmented Reality for Robotics

AR enables the rendering of computer graphics on to the real-world
in real-time [5, 12]. This differs from Virtual Reality (VR) that ren-
ders computer graphics over the entire physical environment which
places a user into a fully immersive virtual world [16]. Thus, robots
can leverage AR as a medium for communication and interaction
in HRI AR interfaces such as the Microsoft HoloLens have shown
promise in further enhancing natural HRI by aligning the perspec-
tives of humans and robots [2, 21]. For this study, relevant works
include approaches that have robotic systems that communicate
through an AR interface.

Walker et al. [3] explored an AR design space that conveyed a
UAV’s motion intent through various explicit and implicit designs.
Their study showed that a design that renders more visual explicit
information on the environment resulted in better task efficiency
and was rated as more clear, usable, and the robot seen as a better
member of the team. Muhammad et al. [17] had developed an AR
design communication tool that displays a robot’s cognitive and
sensory data as well as prompting for human intervention in order
to create a shared reality between humans and robots for commu-
nicating and problem-solving. Gadre et al. [11] enabled users to
create waypoints through an AR-interface to control the motion
trajectory of a robotic arm.

Although these prior works have developed tools to visualize a
robot’s perception of the environment, no prior work has studied
how AR can be used to improve perception-pipeline calibration by
non-expert users. In this work, we describe a set of design possi-
bilities for such AR-enabled calibration, and show that using our
system can allow a non-expert user to correctly and quickly cali-
brate a perception pipeline.

3 AR FOR SENSOR PIPELINE CALIBRATION

Formally, the problem we are trying to address is the alignment
of observations between humans and robots in a shared environ-
ment. In particular, all robots with visual pipelines require a user
to modify parameters and observe those changes to ensure that the
robot performs its function, such as object detection, adequately.
Typically, this modification is done on a computer screen and will
require some knowledge of coding to know which changes to make.
A "good" calibrated system is determined by the user or when the
output matches the design specifications.

Figure 2 shows the core challenge of this type of human-robot in-
teraction for calibration. Humans cannot directly access or interpret
the complex data within the virtual space of the robot, while the
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Figure 2: (Right) Physical world dominated by a human,
robots are unaware of most objects within environment,
(Left) Virtual World dominated by the Robot, humans may
not have direct access to the robot’s algorithms, (Center)
Shared reality world accessed by both parties. Robot renders
the virtual markers seen by human with an AR device; pa-
rameters can be set by human through a User-interface.

robot has limited human-interpretable knowledge of the physical
world. Although anything in AR can be shown on a 2D screen, AR
shows data in context of the real-world allowing users to see their
immediate changes and avoid the disconnect caused by switching
back and forth from a screen to the real-world. Thus, users can
directly compare the robots data structures by visualizing them
onto the real-world as opposed to on a screen. Our framework en-
ables users and robots to access this "Shared Reality" world where
translatable information exchange is most effective.

4 METHODOLOGY

We designed an AR mobile system to render processed robotic
sensory data as visual particles with an interactive UI allowing
users to modify the distribution of the particles, and we plan to
deploy the system in a user study as described below:

4.1 Calibration Task

We consider the task of segmenting objects from a 3D point cloud.
Common issues include mistaking two objects as one, losing ob-
jects within the background, or misidentifying an object due to a
noisy measurement. We use the Point Cloud Library (PCL) ! as the
segmentation pipeline, which contains a variety of filtering and

!http://pointclouds.org/
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segmentation algorithms for detecting objects in 3D data. The spe-
cific steps in the pipeline include a voxel grid filter, a pass-through
filter, outlier removal and cylinder segmentation. Each of these
components has a set of parameters (e.g., the size of each voxel,
radius limits for cylinder detection, etc.).

4.2 System Design

In this section, we describe the AR system which allows users to
visualize 3D point clouds while calibrating the robot’s visual pro-
cessing module. The system is composed of three main components:
Depth Camera Sensor: We used the Astra Camera sensor for
gathering point-cloud data sets which are then processed by visual
algorithms. This camera is commonly used with the Turtlebot2
robotic platform. The depth camera sensor was plugged into an
ASUS laptop installed with Ubuntu 16.04 LTS and launched by
Robot Operating System (ROS) [19].

AR Device: We used a Samsung Galaxy S9 Android smartphone
device with a 12 MP Camera to run the application. It should be
noted that the application that runs the proposed design space can
be installed on any smartphone or tablet device. The application
has the ability to render visual markers similar to those displayed
in RViz, the default visualization software that is part of ROS.

Communication Framework: A customized framework ensured
that the visualizations and interactive input fields were appropri-
ately displayed. First, the visual prototypes described in 5.2 were
developed in Unity 2. Displaying the visual information accounting
for the pose of the robot is handled through Vuforia 3, an augmented
reality software development kit, which enables the rendering of
computer graphics onto real-world environments. A websocket
connection links the robot platform to the AR device. This link
enables ROSBridge to send topic messages as JSON types within
ROS to Unity. ROS-Sharp is responsible for the conversion of ROS
topics to JSON messages. C# scripts that run within Unity handle
the feedback responses.

5 PROPOSED STUDY

We plan to study the effect of several different visualization types
on users’ ease and effectiveness at calibrating the vision pipeline.

Figure 3: Uniform distribution of rendered particles that cor-
respond to the filtered output of the raw data. (Left) Low den-
sity and (Right) High density.

Zhttps://unity.com/
3https://developer.vuforia.com/

@ VS:0.035 Size: 0.005

- Radius Max +
0.04

Figure 4: Red particles rendered over a detected real-world
object. The particles correspond to points in the raw data
that fit a cylinder model of a given radius. A user adjusts the
radius parameter to detect the object.

5.1 Interaction Design

Preliminary validation of the system was conducted in a tabletop
workspace with a cylinder detection task. The workstation con-
sisted of a workbench and a depth camera sensor attached to an
adjustable arm-bar secured to the workbench resulting in a front
view of the workbench as seen in Figure 3. Various cylindrical
objects are placed on the workbench which can be detected by
the sensor. A user can access the visualizations by placing the tar-
get image within the AR devices field of view which will render
the graphics on the screen. Users then can adjust the parameters
displayed on the AR device. Figure 4 shows an adjustable radius
parameter at the bottom right of the interface.

5.2 Visualization Designs

We consider four different visualization modes for displaying the
3D point cloud data set to the human user:

Uniform density: Raw point-cloud data points are rendered uni-
formly after voxel-grid filtering, as shown in Figure 3.
Non-Uniform density: This visualization identifies the ground
plane and renders the plane with a sparse distribution of markers,
while identified objects will be rendered with a dense surface area
of markers.

Heterogeneous density: Identified objects are rendered with vi-
sual markers that differ from the ground plane. (i.e. slightly larger,
white in color, and spherical in shape, etc.)

Negative Space density: Within this visualization, the particles
are rendered around the space of detected objects.

5.3 Outcome Measures

Objective and subjective measurements will characterize the effec-
tiveness of the calibration tool. Task efficiency measures the total
time participants spent completing the task (lower times indicated
better performance/efficiency). A participant’s recorded time will



only be included in the analysis if no technical issues occur. Tech-
nical issues include any freezing of the AR-Device or on the robot
end. Consistent start and end times for each participant will ensure
fair results. A percentage of the objects detected will be recorded
to measure accuracy. As for the subjective ratings, a 7-point scale
Likert-style questionnaire common among HRI papers, will be uti-
lized to measure user perceptions and preferences. Scales will rate
Design Clarity, Design Usability, and Recommendation for other users.
Open-ended responses will be recorded for any improvements or
changes to the study and will be administered at the conclusion of
the study. They will include statements that refer to “working with
the AR interface”, “difficulty to correct the robot perception”, “AR-
device provided enough information”. We will then analyze the data
using a one-way Analysis of Variance (ANOVA) with experimental
condition as the fixed effect. Post-hoc tests will evaluate the design
methods against a baseline condition. In addition, the NASA-TLX
workload survey metric will measure cognitive workload when
analyzing the visualization techniques [13, 22].

5.4 Procedure

(1) First, participants are read identical instructions for the study
and the task they will perform, and a consent form is then obtained.
In addition, the participant is randomly selected a visualization (i.e.
AR Visualization Designs) they will utilize. (2) Next, participants
familiarize themselves with the AR-device and the functionality of
the application; this will take approximately 5 minutes. Participants
who are assigned to the baseline condition are verbally instructed
that the robot will make observations in the world and can be seen
through a non AR-device. (3) Participants will then perform the
instructed task within 10 minutes. Specifically, participants will try
to identify all cylindrical objects placed on a tabletop by only using
the interactive buttons on the AR interface. (4) After the allotted
time has elapsed, participants will be notified that the task is over,
and a post-questionnaire will be administered.

6 DISCUSSION AND CONCLUSION

In this work, we developed an AR-based calibration tool that enables
users of all experiences to calibrate computer vision algorithms. We
used common filtering and segmentation techniques for 3D data
sets to adjust the rendered visual output. Finally, we describe the
design of a study to evaluate four different visualization designs
and their effect on user satisfaction and effectiveness.

There are some limitations to this work: The visualizations de-
veloped so far are only a small section of possible ways to visu-
alize depth information. We plan to explore other visualization
techniques such as lifetime of visual rendering and substitution
of point-clusters to gauge user performance in a similar experi-
ment. One other limitation is the narrow bandwidth that results
in lag times when sending large messages through a web-socket
connection. Changing the parameters in the device interface does
not immediately update the PointCloud visuals which can be a
source of confusion. To address this limitation, we plan to develop
an adaptive visualization approach to render 3D data at various
resolutions. Our research will demonstrate the effectiveness of AR
technology by providing users of all levels of expertise an intuitive
visual aid to calibrate sensor algorithms and as a result improve
depth-sensor based tasks.
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