
A Visual Language for Programming Reality-Based Interaction 
 

Orit Shaer and Robert J.K. Jacob 
Computer Science Department, Tufts University 

{oshaer, jacob}@cs.tufts.edu 
 

Abstract 
Reality-based interfaces (RBIs) offer the promise of 
natural interfaces that are intuitive to use. By allowing 
users to leverage their innate skills and knowledge 
about the real-physical world, RBIs could benefit 
disadvantage populations that rely on physical I/O 
modalities and tangible representations. We present 
our research which is aimed at simplifying the 
development of RBIs by providing a technology-
independent visual language for modeling and 
programming these interfaces. Such a language will 
enable developers to systematically analyze and 
compare interaction designs as part of the 
development process while addressing issues such as 
users’ skills and needs. Ultimately, we expect this 
research to lower the barriers for developing RBIs. 
 
1. Introduction 

 
The last decade has seen a wave of HCI research 

that led to the development of a range of interaction 
styles such as tangible user interfaces (TUIs) [1], 
ubiquitous computing, and physical interfaces. All  of 
these extend beyond the limitations of a two 
dimensional display, a mouse and a keyboard, to 
change interaction with computers from an isolated 
activity to one that is taking place within the real-
physical world and is hence similar to daily real world 
activities. By making interaction with computers more 
like interaction with the real-physical world, these 
interfaces allow users to leverage their existing skills 
and expectations from the real physical world while 
accessing and manipulating information. Thus, we 
refer to these interfaces as Reality-Based Interfaces [7] 
(RBIs). 

RBIs embed computation in the real-physical world 
and often employ metaphors that give physical form to 
digital information [1].  A reality-based interaction 
takes place within the real-physical world and typically 
employs manipulation of artifacts or performance of 
gestures. As a reality-based interaction takes place 
within the physical world, users are allowed to engage 
their full bodies in the interaction. Furthermore, such 
interaction often involves multiple users interacting in 
parallel with multiple devices. Because RBI’s leverage 
users’ existing skills, and real world knowledge as well 

as giving tangible representation to digital information, 
they offer the possibility of natural interfaces that are 
intuitive to use. Thus,  RBIs could especially benefit 
populations with special needs such as children [3, 6] 
and elderly [4].  
Although RBIs offer the possibility of interfaces that 
are easier to learn and use, they are currently more 
difficult to build than traditional interfaces. Current 
event-driven software models fail to explicitly capture 
aspects of realty-based interaction; examples include 
physical representations, parallel digital and physical 
output channels, and concurrent interaction of multiple 
users. Thus, RBI developers face challenges such as 
analyzing, comparing, and communicating alternative 
interaction design. Furthermore, the lack of software 
toolkits aimed at RBIs requires developers to deal with 
physical I/O using low-level programming. Among the 
technologies commonly used for physical I/O are 
computer vision, RFID, and microcontrollers. Also, 
mobile devices such as PDAs and wearables are often 
used to build RBIs, As each of these technologies 
currently requires a different set of physical devices 
and instructions integrating and customizing them to 
an RBI application is difficult and costly.  

Our research aims to simplify the task of building 
RBIs by providing developers with a technology-
independent, high level, description language that 
would enable developers to easily analyze, coherently 
discuss, and rapidly implement RBIs. To meet this 
goal, this research is designed as an iterative cycle 
which consists of three stages: 1) Identifying a set of 
core constructs for describing the structure and 
behavior of RBIs 2) Developing a modeling language 
3) Evaluating, reflecting, and redesigning.  

  
2. Modeling RBI structure and behavior 

 
In order to develop a language capable of explicitly 

describing the unique characteristics of RBIs, we 
began by identifying a set of high-level abstractions 
that capture the structure and behavior of TUIs (a 
common RBI style) [5]. Based on surveying existing 
TUIs, working with  students in TUI classes, and 
building TUIs, we identified a set of high-level 
constructs for TUIs.  We posit that the structure of a 
TUI is a set of relationships between two types of 



physical objects: tokens which represent digital 
information (e.g. a building model in an urban 
planning TUI) and constraints, which constrain a 
token’s manipulation (e.g. a surface on top of which a 
building model is manipulated). The relationship 
between a token and a set of constraints is called a 
TAC (token and constraint). Similar to widgets, TAC 
objects encapsulate the set of manipulation actions that 
users can perform upon a physical object.  

We have found that event models are not 
appropriate for describing a TUI’s behavior. The 
dynamic behavior of a TUI is more perspicuously 
described using a model that captures both the linear 
aspect of a TUI (i.e. possible high-level states and 
transitions) and its distributed aspect (i.e. concurrent 
multiple users across multiple devices). Thus, we 
developed a two-tier model that combines elements 
from two modeling techniques: state machines and 
Petri Nets to describe the behavior of a TUI in terms of 
states, tasks and actions. 
 
3. A Visual Language for RBIs 
 
By identifying a set of core constructs and an 
interaction model we laid the foundations for a high-
level description language for TUIs. We expect such a 
language to provide means to: 1) unambiguously 
specify the structure and behavior of a TUI 2) be 
comprehensible by non-programmers 3) explicitly 
capture the physical properties of interaction objects. 
To accomplish these, we are currently developing 
TUIML, a visual language for modeling and 
programming TUIs.  
TUIML uses the concepts of tokens, constraints and 
TACs to describe both the structure of a TUI and the 
set of TAC configurations possible at runtime. 
TUIML provides a graphical notation that uses shapes 
to represent the physical form of tokens and 
constraints. This representation captures the physical 
characteristics of objects, thus implying how these 
objects can be manipulated in respect to each other. 
Figure 1 shows a simple TUIML description of tokens 
and constraints configuration in an urban planning 
application. To describe the behavior of a TUI, 
TUIML provides two types of diagrams corresponding 
to the two-tiers in our model.  
We intend TUIML to be used in three ways: 1) as 
informal diagramming language for creating (mainly 
by collaborative sketching) diagrams which are aimed 
at exploring and understanding a solution space 2) as a 
semi-formal specification language for creating 
detailed and complete specifications which are aimed 
at guiding implementation activities. 3) as a visual 

programming language for creating complete and 
executable specifications.  
We continuously evaluate TUIML while focusing on 
three aspects: expressiveness, usability and usefulness. 
Our evaluation activities include applying TUIML to 
describing variety of RBIs, and incorporating TUIML 
in a TUI class. 

 

 
Figure 1. A TUIML description of the physical 
configuration of an urban planning application while 
performing the task of  distance measuring. It shows m 
building models (tokens) that can be manipulated upon a 
surface (a constraint) while distance is being measured by 
connecting two buildings using a distance-measuring tool. 
Assuming n distance-measuring  tools are available as well 
as sufficient building models, n users can perform the task of 
distance-measuring in parallel 
 
4. Discussion and Future Work 
We expect our research to contribute a technology-
independent visual language that simplifies the 
development of RBIs. By allowing RBI developers 
from different disciplines to easily analyze, coherently 
discuss, and rapidly implement RBIs, we expect to 
lower the threshold for developing RBIs. 
 
5. References 
[1] B. Ullmer and H. Ishii, “Emerging Frameworks for 

Tangible User Interfaces”, IBM Systems 39. 
[2] M. Horn,  R.J.K. Jacob, “ Tangible Programming in the 

Classroom: A Practical Approach”, Extended Abstracts 
CHI 2006. 

[3] M. Nilsson, S. Johansson and M. Håkansson. 
“Nostalgia: An Evocative Tangible Interface for Elderly 
Users“, Extended Abstracts CHI 2003. 

[4] O. Shaer, N. Leland, E.H Calvillo and R.J.K. Jacob, 
"The TAC Paradigm: Specifying Tangible User 
Interfaces", Personal and Ubiquitous Computing, vol. 8, 
no. 5, pp. 359-369, Sept. 2004. 



[5] O. Zuckerman, M.  Resnick, “System Blocks: A 
Physical Interface for System Dynamics Simulation”  
CHI 2003. 

[6] R.J.K Jacob, “What Is the Next Generation of Human 
Computer Interaction?”, CHI 2006 , workshop 


