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Abstract— With recent advances in mobile sensor networks, 

sensor networks are now being used in wildlife environments.  
Sensor networks are utilized in wildlife to track animals.  The 
discoveries that have been made through such efforts include 
animal behavior and lifestyles.  One of the most significant 
reasons why wildlife tracking research has escalated is for the 
protection of humans and animals in the food chain.  Another 
possible reason for wildlife tracking is to protect endangered 
species. 

In this paper, we analyze related work being done and 
describe how to track mobile sensor nodes.  We then present an 
optimized recovery algorithm to track animals when they cannot 
be found.  Using simulations we show that our proposed 
algorithm is effective in extending the network lifetime and 
performing a quick recovery. 

 
Index Terms— Algorithms, Recovery, Sensor Networks, 

Tracking 
 

I. INTRODUCTION 
ENSOR networks are one of emerging technologies that 
have many applications. These networks are composed of 

hundreds, and potentially thousands of tiny sensor nodes, 
functioning autonomously, and serving different purposes. 
While the set of challenges range [1] [8] from geography 
routing, power conservation, data management, these sensors 
also hold the potential to revolutionize many segments of 
economy and life, from manufacturing, military, 
transportation, health-care industry, and environmental 
monitoring. [9] Sensors are often deployed in constrained 
environments such as deserts, road, forests, or other physical 
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phenomena for monitoring, observing, or detecting a 
particular event. One of the applications of sensors network, 
which will be discussed in this paper, is to monitor the health 
of the animals or report the condition of wildlife habitat for 
environmental conservation purposes.  

 
Habitat and environmental monitoring represent a class of 

sensor network applications that benefit the scientific 
communities and societies.[3][4][5] This technology allows 
researchers and biologists to have a closer look on the 
monitored area by providing [7] local measurement, 
sampling, and detailed information that are otherwise difficult 
and expensive to obtain. The traditional approach of obtaining 
such information requires human presence at the monitored 
location, which can disrupt normal animal behavior. For 
example, [10] seabird colonies are extremely sensitive to 
human presence. In Maine, biologists have discovered that 
their daily 15 minute visits to the colony increase the egg and 
chick mortality rate by 20% in a given breeding year. As the 
disturbance is continuously repeated, the entire colony may 
abandon the breeding site. 

 
Tracking in sensor networks is also necessary for many 

other applications, such as computer vision, tactical battlefield 
surveillance, air traffic control, perimeter security, and 
emergency response. 

 
Numerous studies have been done for tracking movements 

and the population of animals in their natural habitat. While 
there are many tracking movement techniques for single or 
multiple targets, there are other challenges, which are equally 
important, such as failures occurring during the tracking 
process.  

 
We begin our paper analyzing two existing applications 

that have been deployed in wildlife communities in section II, 
such as ZebraNet and Great Duck Island project. In Section 
III, we elaborate on the specifications of tracking mobile 
sensor nodes in wildlife. Those specifications include 
hardware used, tracking and prediction algorithm, and 
recovery approach. Our paper will discuss how to recover and 
rediscover when failures occur during the habitat and wildlife 
monitoring operation. We present a comparison of our 
recovery simulation versus a simulation proposed by another 
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university. The performance of this simulation generates 
better results for larger sized land animals, such as horse, 
cow, deer, etc. We conclude by presenting proposals for 
future ventures. 

  

II. RELATED WORK 
Tracking mobile nodes in a sensor network deals with 

approximating the trajectory of one or more moving objects 
based on information transmitted by the sensors.  A common 
example of animal tracking is the problem of tracking cows in 
order to determine the origin and isolate the spread of mad 
cow disease.  Tracking animals introduces curiosity of 
understanding animal behavior, animal interaction between 
humans and other species, and how animals affect the lives of 
humans in their participating role in the food chain. 

Figure 1: The food chain 
 
Due to the mobile ad hoc nature of these networks, sensor 

networks face two major problems.  First, efficient network 
traffic protocols and energy-reducing techniques are required.  
Secondly, the sensors have to communicate with one another 
or with a “base” to transmit readings or results of local 
computations. However, several methods for tracking animals 
have been implemented and studied, such as ZebraNet [6] and 
Great Duck Island [2]. 
 

A. ZebraNet 
At Princeton University [6], researchers are investigating 

advances with wireless sensor networks and applying this 
technology to support wildlife tracking for biological 
research.  This tracking system, called ZebraNet, can forward 
data to a mobile base station by using peer-to-peer 
networking techniques.  Their design decisions include 
custom tracking collars worn by the animal.  These collars 
weigh approximately 2.4 pounds and are enabled with global 
positioning systems.  Since all collars, or nodes, are mobile, 
ZebraNet can track animals long term and over long 
distances.  The protocols evaluated are flooding (peer-to-
peer) and history-based (peer-to-peer) compared against 
direct (not peer-to-peer).  In flooding, animals broadcast to 
everyone discovered in their range every three minutes.  In 
history-based, animals choose at most one peer to send within 
range every three minutes; the one with the best past history 
success rate of delivering data is chosen.  Figure 2 depicts the 
success rate with infinite storage and constrained bandwidth; 
in short range, flooding proves to be the best protocol, but in 

long-range, history-based outperforms the other protocols. 
 

 
Figure 2: Radio Range Results 

 
When investigating these protocols, it is important to 

consider energy efficiency.  Figure 3 shows the flooding 
protocol makes sense for small radio range, but not for large 
ranges.   Flooding’s energy consumption quickly increases 
due to the redundant swaps of data already sent to the base, 
while the history-based protocol grows very slowly from 
1.0X at 1km radio range to 1.04X at a radio range of 15km. 

 

 
Figure 3:  Energy Results 

  
Thus far, ZebraNet has been deployed in Kenya to monitor 

zebras and has provided us with insight into zebra behaviors, 
lifestyles, and velocities.  Overcoming the challenging terrain, 
researchers have been able to tag zebras and fly over them 
with a plane to record information.  What they have found 
includes behaviors like one male typically traveling with 
many females. Some additional behaviors mostly include 
herbivores grazing near water and resume ambient motion 
after drinking, as it is rare for zebras to run towards or away 
from something.   
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B. Great Duck Island 
On Maine’s Great Duck Island (GDI) [2], biologists have 

placed sensor devices in duck’s underground nests and on 
four inch stilts placed just outside of duck burrows for a nine 
month monitoring period.  This deployed network of thirty-
two nodes continuously streams data onto the web 
(http://www.greatduckisland.net).  Figure 4 shows these 
underground sensor devices (1), the four inch stilts (2), and 
the gateway node (3) which transmits all of the information 
from these devices to a laptop in the research station (4).  The 
data is then sent to a satellite (5) and ultimately to an Intel 
Research lab at Berkeley California. 

 
Figure 4: Great Duck Island Sensor Network 

 
The GDI system is a tiered architecture depicted in figure 

5.  Each layer has storage to protect against data loss during 
power outages.  The lowest level consists of small battery 
powered sensors nodes collecting data.  The sensor nodes 
chosen are UC Berkeley mica motes.  The accuracy of these 
devices is remarkably within three percent of the actual value.  
The gateways transmit sensor data from the patch to the 
transit network.  Since these gateways are solar powered, they 
are always on.  The base station provides WAN and data 
storage.  Replicas of the database are necessary for remote 
users.  The base station connects to the database replicas 
across the Internet and the data is finally displayed through a 
user interface.   

 
The most efficient routing for low duty cycle sensor 

network is sending data to the gateway on scheduled periods, 
synonymous to one-direction communication.  The habitat 
information discovered at GDI consists of temperature, 
relative humidity, solar radiation, voltage utilization, and live 
sensor readings, all of which is the data collected from 
weather motes and burrow motes. 

 
The following tracking methods are applicable to animal 

tracking, namely Binary Network Model [28] and Distributed 
Predictive Tracking Algorithm [15].  

 
 

 
 
 

 
Figure 5: GDI System Architecture 

 

C. Binary Network Model 
The Binary Network Model proposed by researchers in 

Dartmouth College and CSU Los Angeles [28] requires 
sending one bit of information to a central computer.  This bit 
of information carries the direction of the object, whether it is 
moving towards (+) or away from (-) the sensor, as shown in 
figure 6.  The star denotes the current location of the animal. 

 
Figure 6: Binary Sensor Network Geometry 

 
Adding another bit will provide the actual location of the 

object.  The advantages to this model are broadcasting single 
bits over the network is very feasible and the trajectory 
prediction error is low.  The disadvantages to this network are 
only one animal can be tracked at a time and there are no 
failure recovery considerations, which is not optimal for our 
sensor tracking model. 
 

Many additional tracking techniques have been proposed 
[13] [14] [16] to track moving targets. Researchers have 
formulated an estimation of signals received from sensors 
which calculate time dependent measurements to represent 
the location and characteristics of the target. One approach is 
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to adopt the classic Bayesian formulation which computes the 
measurement and communication costs to minimize tracking 
failure.  
 

There is another research study [18] to track and understand 
the temporal relationship between objects in tracking multiple 
target environments, such as monitoring the interaction of 
numerous animals. It is also very useful to investigate 
predatory activities such as wolves trying to attack his prey of 
vulnerable, innocent lambs. 
 

D. Distributed Predictive Tracking Algorithm 
Researchers at RPI developed a distributed protocol for 

target tracking in sensor networks [15].  This algorithm 
organizes sensors in clusters and uses sensor triplet 
triangulation to predict the target’s present location, as shown 
in figure 7.  The target’s next location is predicted using a 
linear predictor based on the last two actual locations of the 
target. 

Figure 7: Sensor Triplet Triangulation 
 
 Figure 7 also brings up a notion of normal beam and high 
beam.  These sensors are usually set to normal beam if the 
cluster is active.  Most clusters are in hibernation mode when 
the cluster head does not sense the target in its cluster.  High 
beam is only activated when the target is lost and the cluster 
radius of the predicted location does not sense the target.   
 
 The predictive mechanism works without always having to 
consume more energy by having the sensors operate with 
high beam. There is a relay message sent from cluster head to 
cluster head which makes this mechanism successful. Each 
cluster head activates the appropriate sensors before the target 
arrives.  As the target is leaving the original cluster head’s 
group, that cluster head alerts the next cluster by handing over 
a target descriptor to the next cluster head.  This target 
descriptor consists of the target’s identity, the present and 
predicted locations, and the time stamp of when the target 
entered the first cluster.  By having this information relayed, 

the clusters are able to obtain facts about the animal before it 
even arrives in its cluster. 

III. TRACKING MOBILE SENSOR NODES 

A. Hardware 
Both ZebraNet and GDI systems utilize the well-known 

Berkeley Mica motes, shown in figure 8.  The size of the 
mote is 2.25 x 1.25 by 0.25 inches.  Due to their size, these 
rectangular devices only run on two AA batteries. 
 

Figure 8: Berkeley Mica Mote 
 
The MICA mote uses an Atmel ATmega 128L processor 

running at 4 megahertz, which is an 8-bit microcontroller that 
has 128 kilobytes of flash memory to store the program. The 
ATmega only consumes 8 milliamps when it is running, and 
15 micro amps in sleep mode.  This mote is noted as being 
one of the most commonly used and energy efficient devices. 

B. Tracking Algorithm 
When dealing with mobile sensor nodes, the sensor range and 
average speed of target become very important factors for 
tracking performance.  There are four tracking algorithms that 
we researched which apply to habitat monitoring.  These four 
strategies include naïve activation, randomized activation, 
selective activation based on prediction, and low duty cycle 
operation.  The latter two algorithms will be described in the 
next section due to their predictive behavior. 
 
 In naïve activation, all nodes are in tracking mode all of the 
time.  Although this has intensive energy consumption, this 
strategy yields the best possible quality of tracking. 
 
 Randomized activation has, on average, a fraction of p 
nodes active and in tracking mode.  Since each node has a 
probability p of being on, energy consumption improves 
slightly, but the quality of tracking decreases. 
 

C. Prediction Algorithm 
 Selective activation based on prediction is when a small 
subset of nodes is in tracking mode at any given point in time.  
All other nodes remain in communication mode and may be 
alerted by signals from tracking nodes.  The nodes in tracking 
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mode can also predict the next position of the target which 
will warn the next subset of nodes that the animal is moving 
into their area.  This notion of predicting the next position is 
depicted in figure 9:  Xa is the actual position of the animal at 
a certain point in time; Xb is the animal’s believed location; 
Xp is the predicted location.  By using prior history of Xb, Xp 
is determined.  The selective activation based on prediction 
algorithm utilizes the convex hull of both the actual and 
predicted circles to predict the position of the animal at time 
t+1.  Using a good prediction algorithm has shown that this 
algorithm has orders of magnitude energy savings and 
negligible difference in tracking quality. 

 
Figure 9:  Selective Activation Based on Prediction 

 
 Another energy efficient algorithm is low duty cycle 
operation.  This algorithm has the entire sensor network 
pulsating on and off, introducing a low power operating mode 
with wakeup.  This power saving mode requires less power 
and is much different than being off since the nodes must 
wakeup to external stimuli.  One application of this algorithm 
is the Frisbee model presented by researchers in UCLA and 
USC.  The Frisbee model has a “wakeup wavefront” that 
wakes up nodes in the predicted path of the animal.  Figure 10 
shows Bubba the Lobster traversing along its yellow path.  
The blue circular regions are the active sensor nodes, sensing 
and tracking Bubba’s movement.  The radius of these blue 
circles is proportional to the speed of the animal.  All of the 
nodes outside these regions are in power saving mode.  Once 
Bubba moves from one sensor cluster to another, the previous 
sensor cluster reverts back to power saving mode. 

 
Figure 10:  Frisbee Model 

 
 When dealing with tracking algorithms, time 
synchronization is critical.  As energy efficiency increases, 
the quality of tracking decreases.  However, selective 
activation based on prediction and low duty cycle operation 
algorithms have shown that the energy conserved is 
considerably higher than other algorithms, such that the 
quality of tracking becomes negligible. 

IV. RECOVERY 
In this section, we discuss our proposed failure recovery 

scheme in tracking a moving target. This failure can occur 
due to issues such as network failure, prediction error, or 
node failure. The basic protocol for tracking a moving target 
is to select and wake up a group of nodes based on the 
movement of the target. The current group of nodes hands off 
the current monitoring task to the next group of nodes. 
However, the next group might never wake up and see the 
target enter their monitored area due to network failure or the 
target selects to go towards the opposite area of the selected 
group. For example, the current group predicts the target is 
heading north, but the target may make a drastic direction 
change and head northeast. Hence, prediction error occurs. 
Failure is detected when the group leader, who is currently 
monitoring the target about to enter another area, does not 
receive an acknowledgement from the next selected group.  
The newly selected group is where the target was predicted to 
go, so this results in a lost confirmation.  

 
The possibility of not being able to find a target could be a 

direct result of the following conditions: 
1. Network failure occurs when packets from the cluster 

head, which is currently monitoring the target, fails to 
reach the next cluster head. This results in a lost 
acknowledgement. 

2. Prediction failure of the next location where the 
animal is heading. For example, the animal may 
suddenly change its path resulting in an inaccurate 
predicted location.  
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3. Failure to recognize multiple targets at once. For 
example, a cluster might be monitoring two moving 
horses, which are standing next to each other. The 
cluster nodes might be mistakenly recognizing the two 
horses as one entity. When the horses are about to 
leave the monitored area and enter another cluster 
group, the horses decide to split up. This split results 
in two distinct directions and different cluster groups. 
The current sensor nodes realize there is more than 
one target, but they do not notify the second cluster 
head. Hence, one of the two targets is not monitored. 

4. The sensor node hardware may malfunction or the 
battery is weakening. Someone must be available to 
perform routine maintenance checks on the deployed 
hardware to ensure the integrity of the system. 

 
We propose a recovery algorithm to take advantage of 

hierarchical clustering. The algorithm establishes a search 
region and wakes up the relevant nodes.  Simultaneously 
waking up the necessary nodes at one particular region will 
reduce the network traffic and avoid the unnecessary extra 
energy cost. 

 
 
 
 

 
Figure 11:  Each grid visually represents a group of 

clusters 
 

Establishing a search area is much simpler if the nodes 
positions are known.  GPS might be required to determine the 
precise position of each node. However, our proposed 
algorithm does not require prior knowledge of the node 
positions or GPS. Additionally, targets are not exactly tagged 
as in ZebraNet [6] because the tag also functions as a node 
that wakes up every sensor node on its path. The tag sends a 
signal to wake up sensor nodes, which are currently 
surrounding the target.  Therefore, tagging the target actually 
removes the risk of prediction failure of where the target’s 
next location and thus, the recovery procedure for lost targets 
will not be necessary. This approach is less opportune 
because it is not practical to tag every animal in wildlife and 
potentially disturb the life of the animals. Moreover, tagging 
animals defeats the purpose of the habitat monitoring. 

 
 Figure 11 illustrates the idea of having one cluster head per 
cluster, or grid.  Each cluster consists of a randomly selected 
number of nodes, one of which is the cluster head.  The 
cluster head is shown in blue, while all other nodes are white. 

A. Clustering 
Our proposed algorithm takes advantage of hierarchical 

clustering structures for more efficient utilization of 
resources, simpler routing protocol, and management [19]. 
Clustering also allows some nodes to play watchdog or 
managerial roles over other nodes.  This manager node is 
called the cluster head CH. Each cluster head joins another 
cluster and selects another cluster head.  This process 
continues until it forms a tree with one root, as shown in 
figure 12. This approach is known as hierarchical clustering 
technique.  

 

 
Figure 12: Hierarchical Clustering Technique 

 
After the initial deployment, sensor nodes often are 

compelled to organize themselves into a group of clusters and 
select a leader for every cluster. Several protocols exist on 
how to form a cluster. The initial step in forming a cluster is 
to select a cluster head. Once a cluster head is selected, each 
node can join the cluster by contacting their closest cluster 
head. The distance from the sensor node to the cluster head is 
the number of hops between them. For instance, a sensor 
node might prefer the cluster head that can be reached in three 
hops rather than another cluster head ten hops away. The 
cluster head selection protocol is based on unique node 
identifiers. This identifier can initially be assigned randomly 
to the nodes [29] [30]. In selecting a cluster head, a node may 
declare itself as the cluster head if it possesses the highest ID 
among other nodes that have not been claimed by another 
existing cluster head. Several cluster heads closest to the base 
station may become the gateway. Currently there is no 
theoretical proof that guarantees the quality of clustering. 
Clustering is just a constant bound to measure the 
effectiveness of reaching and discovering all nodes in the 
network. 

 
Some may argue that the disadvantage of becoming a 

cluster head is a bit more energy consuming because the 
cluster head has more responsibility than other ordinary 
nodes. The author describes in [20] that every node should 

CH CH

d 

d 

CH

First level 

Master CH 



 7

take turns being a cluster head during every periodic cycle. 
The hierarchical clustering approach could be implemented 
without significant extra energy costs if a node would not 
repeatedly be selected as the cluster head. Hence, they 
recommended the formula below where each node in the 
cluster takes turns becoming the cluster head with probability 
P1 and c = 3.06a√λ with parameter a. 
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[22] [23] [24] A tree-based clustering approach is also used 
to improve energy consumption and reduce traffic simply by 
having only a cluster of nodes monitor the activities of a 
moving target. The subordinates only report to their leader, 
the cluster head. Data is routed among the cluster heads to the 
base station or a designated destination. Kung also proposed a 
model that characterized the nodes into geographical group 
and weighted the edges to represent the movement of the 
target.  Zhang and Cao also proposed that the trees are 
actively modified, pruned, and expanded to accommodate the 
network traffic, density of the network, and the routing path. 
However, our recovery algorithm would work best with less 
frequent reconstruction and modification. 

 
There are also [24] [25] [26] a number of proposed 

algorithms to determine the location and radius of the 
monitored region by a cluster of nodes. We modify the 
algorithm such that after the initial deployment process, every 
cluster head reports the radius of its monitored region to its 
immediate parent. The parent computes the radius of its 
region based on the information from its subordinates and it 
propagates its newly computed region radius until it reaches 
the root. For example, all city governors report their respected 
city size to their immediate superior, the county governor. All 
county governors compute the size of their county based on 
information from their subordinates and report the radius of 
their area to a higher superior, the state governor. The process 
is repeated until it reaches the president, the root of the 
hierarchy tree.  

 
The missing target can be recovered quickly by performing 

Space Decomposition Search. The basic concept of this 
algorithm is to take advantage of hierarchy clustering and 
wake up all of the nodes in the area at once and perform a 
single simultaneous search. The root will wake up its 
subordinates and the order will be propagated to leaf level.  
Then those leaf nodes perform an instantaneous search and 
will propagate the finding result to their superior until it 
reaches root level. The running time of this search algorithm 
is O (log N). 
 

B. Computing Velocity 
The radius of the search region and the number of nodes 

involved in the search event are determined by how far the 
target would travel. One of the challenges is determining the 
speed of the target. In [15], the author proposes a method of 
computing the target’s speed based on the detection time 
between sensors and the position of nodes.  Another approach 
described in [16] shows how sensors should determine the 
underlying target state of its position and velocity based on 
the sensor measurements up to time t. A prediction-based 
tracking algorithm is described in [17] where the authors use 
the velocity estimation of the target to select which sensors to 
query.  Other approaches have been developed using Kalman 
Filters, which assume Gaussian observation models and linear 
state dynamics, and Bayesian Filtering techniques. 

 
Once the velocity of the target is acquired, travel distance 

of the target can be computed with distance d = velocity v * 
time t. The question is how to decide the condition of the 
velocity. For instance, it is very difficult to determine if the 
target is running, walking slowly, or moving in regular speed. 
It also depends on the radius and the type of animal. A horse 
runs much faster than a cow. Velocity changes are 
unpredictable. Determining the condition of the target’s speed 
will be easier if the target carries a wireless collar or tag like 
in ZebraNet [6]. Hence, more helpful target information can 
be downloaded from the tag to the local sensor and velocity 
computations become more precise.  Target information also 
includes the maximum speed and behavior of the target. 
However, tagging the target with some type of wireless 
device can be very costly and difficult. 

 
Without proper information it is difficult to determine the 

type of target’s speed, whether the target is running or 
moving in its regular speed. We make an assumption that 
there is no secondary party or adversary who might alter the 
speed of the target, like running away from its predator. In 
addition, the current cluster head, which is the leader of the 
current cluster monitoring the target, might get more target 
description information from the previous cluster head. Even 
then, such information is not enough to determine the speed 
condition and it can vary between target types, whether the 
target is a horse, cow, deer, etc. 

 
Hence we need to compute the velocity Vrunning if the target 

decides to run. A CH has information of the current velocity 
Vcurrent from its subordinates and Vprevious from the previous 
CH.  Therefore, the current CH will use the highest velocity 
value. 
 

); V, max(V  V previouscurrentcurrent =  
 
Vcurrent is bounded by at most 2 * Vcurrent , where Vcurrent  <  2 

* Vcurrent. We assume that a target increases its speed by at 
most twice the current speed as long as the target does not 
feel threatened and Vcurrent is the average velocity when the 
target is in the current cluster monitored area. In the non-
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threatening situation, the target is more likely moving in 
constant speed. Therefore, the probability Prunning is likely to 
be less than ½. We can compute the expectation of Vrunning 
using Bernoulli random variable. 

 
( ) currentunningcurrentunningrunning VVVE rr P2P1][ +−=  

for Prunning < ½ 
 
Next we compute distance d using Vcurrent. 
 

tVd current •=  
 
The target may accelerate over 2 * Vcurrent and maximum 

velocity Vmax > 2 * Vcurrent.  Naturally, no living being could 
run forever without stopping, so at some point, it will 
eventually stop. The longer or the faster they run, the more 
likely they will stop. Thus, if a target runs with maximum 
speed for a long period of time, then the probability of the 
target stopping increases. We apply the finite Markov Chain 
to compute the probability the likelihood of a target will stop 
moving. Suppose Pv is the probability when the target reaches 
the maximum speed before it stops and v is the initial speed 
as the target enters the monitored region by a designated 
cluster of nodes.  Paccelerate is the probability of increasing the 
velocity and (1 - Paccelerate) is the probability of decreasing the 
velocity, where Paccelerate < ½. 

 
Let I be an event when the target increase its velocity at time  
t = 1. 
 
Let R be an event when the target runs with full speed for Vmax 
≥ 2 * Vcurrent. 
 
Let Vi be the velocity at time t. 
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Since (I ∩ V0 = v), (R | V1 = v + 1), and (R | V0 = v –1) 
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Then,  
 01 11 =−++= −+ vacceleratevvacceleratev PPPPPP  

where 00 =P  and 1max =P  

 
 

 
Applying the linear recurrence will uncover the 

characteristic equation regardless of the indexing scheme. The 
characteristic equation of this recurrence is: 
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Providing the characteristic of the equation (1 - Paccelerate ) / 

Paccelerate, we compute the probability of the target completely 
stopping at some point in time t. Let a be the acceleration 
where S maximum speed = a  + current velocity Vi. 
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From the formulas, the higher S gets, the more likely the 

target will eventually stop. 
 
The most important aspect of determining the radius search 

area is the time t and distance d that a target will travel. Time 
t is a parameter and a deciding factor of the distance length. 
Parameter t depends on many factors, such as the node’s 
computing power, network traffic, and the furthest distance a 
target can travel from the last seen position. Naturally, any 
living being cannot continue running without stopping, but 
the question is how far the animal will travel before it decides 
to stop. Hence P(V0 = 0) can be utilized to determine time t. 
The lower the value of P(V0 = 0), the more likely the target 
will travel more distance and value t should be increased.     

 

C. Popular Place 
Once value d is determined, then d needs to be multiplied 

by 2 simply because there are two opposing possible 
directions and the target may select either one of these 
directions. Next, that 2d value is propagated from the CH, 
where the target was last seen, to its superior. The superior 
compares the value of d with the diameter of its region. If the 
diameter of its region is roughly equal to 2d, then it will wake 
up all of its subordinates and leaf nodes to perform a search 
event.  Otherwise, the 2d information is propagated to the 
higher superior until the proper region is found.  Figure 13 
shows the 2d value with the black circle being the last 
position the animal was seen, and the orange circles being the 
next popular places with their hop counts denoted. 
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Figure 13: Tracking Algorithm based on popularity 

 
Once the proper region is acquired at a high-rank CH, it 

sends request to its subordinates to find the popular place.  
One might ask what characterizes a popular place.  Take for 
instance, tourists visiting Boston, MA.  A popular place 
would be where the tourists tend to go.  Touristy places 
would include Faneuil Hall, Boston Common, New England 
Aquarium, or the USS Constitution.  Now that we have four 
of the most popular places, we can try to locate a tourist by 
first asking these four places.  By asking the most popular 
places, you are minimizing the amount of energy in a sensor 
network by avoiding the energy-consuming operation of 
turning all sensors on.  This is the convention of popular 
place. 

 
A larger scale example of popular place focuses not only 

on one city in one state, but in one country with numerous 
states.  Consider tourists visiting the United States of 
America.  First time visitors may want to visit three or four 
states, including Massachusetts, Florida, California, and 
Illinois.  By using the popular place convention, if a tourist 
got lost, we would ask these 4 states first.  If the tourist had 
visited one of these states, then we would traverse through the 
chain of further investigating which county, city, or 
neighborhood the tourist was last seen.  This is how the 
popular place tree can grow very quickly but at the same time 
reduces energy of every sensor in all fifty states being 
activated. 

 
We apply this approach to wildlife animals since they tend 

to visit places where food and water is available. Other 
factors which commonly dictate animals’ locations are those 
which provide ideal climate or some degree of safety from 
predators. This is where animals typically prefer to rest, nest, 
or reproduce. 
 

D. Broadcasting 
Once the popular places are defined, then each CH of 

popular places send beacon packets and computes the 
distance, or the number of hops, to the CH where the target 
was last seen. Each beacon packet contains the descriptions of 
the targets. 

 
After receiving packet from the CHs of popular place, the 

CH where the target was last seen broadcast packets with the 
life span equal to the distance or hops from one of the popular 
places.  The purpose of broadcast is to establish and wake 
every node in the search region. Packet life span is decreased 
by one in every forward event. Flooding based mechanisms in 
the hierarchy tree are described in [11] [12] and the authors 
claim performing search operations with flooding based 
techniques is energy efficient. In fact, the flooding technique 
in [12] is specifically designed to support querying 
information in sensor networks for bird habitat monitoring. 

 
Rules of broadcasting:  
1. A node only forwards packet p if and only if the new 

packet sequence is greater than the previously received 
packet sequence. 

2. The packet sequence is decreased by one at each node. 
 
ω(u, v) is the packet sequence from u to v. s(n) is the 

current sequence value of the packet at node k. 
 
Lemma 1 
Let G = (V, E) be an undirected graph with source vertex s, 

and all edge (u, v) ∈ E. Cycles are avoided when ω(u, v) > 
s(v).  

 
Proof:   
We prove the lemma by using contradiction. Let us say that 

there is no cycle between u and v and ω(u, v) < s(v).  If 
packet p travels between node u and v for s(u) = n and ω(u, v) 
= n-1, then ω(v, u) = ω(u, v) - 1 = n – 2. u forwards p to v and 
ω(u, v) = ω(v, u) –1 = n-3.  There is clearly a contradiction in 
our earlier assumption when ω(u, v) = n-3 and s(u) = n, so 
ω(u, v) < s(u) and cycle is exist. Hence, contradiction 
establishes the claim.      

Here is the second proof by contradiction. Let us say that 
there is no cycle between u and v and ω(u, v) < s(v). ∃ z such 
that edge (z , u) ∈ E.  Initially, u forwards packet p to v.  
Packet p travels and reaches z.  Later, v receives packet p 
from z and u forwards packet p to v. Since s(u) = n and ω(u, 
v) = n-1, then ω(z, u) is at most n-3.  Therefore, ω(z, u) < s(u) 
and cycle occurs. Hence, this contradicts the earlier 
assumption.  
 

Once the broadcast operation is executed, the search region 
is established and all the leaf level nodes are awake. For some 
period of time, all leaf nodes perform a simultaneous search 
operation to find the lost target based on target description. 
Subsequently, all leaf nodes will report their findings to their 
cluster head and then this information will be propagated to 

 

2D 

1h 

4h 

2h 
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the cluster head responsible for the area where the target was 
last seen. If the target cannot be found, this “master” cluster 
head will report these results to the base station. Otherwise, it 
will hand off the monitoring task to the new group, which 
will attempt to find the target. 
 

E. The Recovery 
In this section, we discuss the recovery procedure when the 

search region fails to capture the target and the target’s actual 
position is outside the search region. 

 
 Figure 14: X is the actual position of the target. 

 
These failure occurrences are caused by the lack of proper 

information in finding popular places, especially when nodes 
are recently deployed in the new environment. Performing a 
recovery operation by finding the parameters of where the 
lost target might go is not effective if the nodes are recently 
deployed because there is not enough data to capture the 
places that have been previously visited. For example, during 
the first minute after the deployment of nodes, a zebra passes 
the monitored region and most sub-regions are at most visited 
once. Hence, every place has the potential in becoming the 
popular stopping place for the zebra and it is difficult to 
determine the popular place given very limited information. 

 
Our approach is to perform another search using the 

maximum search area to find the popular place. The 2D 
search region is Vrunning * t * 2. All nodes in the radius 2d are 
activated and perform the search. The success of the search 
relies heavily on time t. Thus, finding the proper t is very 
critical for a successful search.  Figure 14 illustrates 2D as the 
maximum search area, X as the actual location of the animal 
hiding, and the yellow region as the location the animal was 
last seen. 

 

V. SIMULATION 

A. Overview 
We simulated and compared Yang’s and Sikdar’s [15] 

battery utilization algorithm against ours. The purpose of 
comparing these two algorithms is to demonstrate the 

improvement of energy efficiency. Yang and Sikdar offered a 
simple, straightforward solution to find the missing target: in 
order to locate the missing target, a group of sensors, of 
radius X meters from where the target was last seen, is 
activated. There is no clear description whether it is a group 
clusters or just one single cluster that is selected and 
activated. Hence, we simulate two circumstances and 
compare the energy cost when: 

1. A single cluster per round is activated. 
2. A group cluster per round is activated: 3 nodes per 

group since the minimum number of required nodes per 
cluster is 3. 

 
We made several assumptions that both algorithms require 

equal amounts of time to perform a search, and the same 
hardware is used. Therefore, both algorithms need the same 
amount of energy to activate a node and to execute the search.   
 

The simulation is categorized into several scenarios and we 
compare the performance between both algorithms. The 
scenarios are: 

1. Both algorithms have the equal amount of nodes to 
perform the search task. 

2. When our algorithms miss the target, they retry using 
the maximum predicted number of nodes needed (all 
nodes in 2D region). 

3. The actual number of required nodes is less than the 
predicted number. Hence, the search region computed 
by our algorithm might be too large compared to 
Yang’s and Sikdar’s. We compare the cost of energy 
usage when the number of nodes generated by their 
algorithm is 1/3, 1/6, and 1/10 less than ours. 

4. Comparing the worst case scenario in which the entire 
nodes in the monitored region have to be activated. 
Our algorithm will perform the default task - 2D task - 
and space decomposition. The algorithm will continue 
expanding its search region until the entire nodes are 
awake.  

 

B. Equations 
The first assumption that Yang and Sikdar introduce is 

expanding the search region by only activating one cluster 
group at a time. Let E be the variable for energy, n is the 
actual number of nodes activated or required to perform a 
successful search, m nodes per cluster, time t needed to 
activate a sensor node, and all sensors consume Π of energy 
for every t. The formula to compute cost energy for Yang’s 
and Sikdar’s algorithm is: 
 

E = Π t Σ i , where  0 ≤  i ≤  n/m, 
 

The second assumption is the region expansion by a group 
of clusters. 
 

E = Π t Σ mi , where  0 ≤  i ≤  n/m; 
 

Our algorithm activates nodes simultaneously.  Hence,  

2D region 

Search Region 

X
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E = Π t n 

 
In our simulation, for the purpose of simplicity, Π and t are 

equal to 1. 
 

C. Simulation Environment 
The simulation is developed and runs in the UNIX 

environment, Pentium 4, and is written in Ansi-C. 
 

D. Results 
In this section, we compare and contrast how much energy 

is utilized by using both recovery algorithms. First, we 
compare the energy savings when Yang’s and Sikdar’s 
activate a single cluster per round. Each chart below 
demonstrates the energy consumption based on the number of 
nodes involved during the recovery operation. Each line in 
the graphs represents how much energy is used when X 
number of nodes is involved1.  
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Figure 15: A single cluster per round is activated 

 
We believe that simultaneously activating the entire nodes 

in the search region will significantly minimize the energy 
consumption, as it is shown in figure 15.  The energy used 
amplifies as the number of nodes involved increases; however 
our algorithm consumes much less energy.  
 
 

 
 
 
1  In all graphs shown, the x-axis represents the number of experiments 
performed, while the y-axis represents the units of energy used. 
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Figure 16: Worst case scenario 

 
The worst-case scenario is when a computation error occurs 

and our search region is 10, 6, and 3 times larger than Yang’s 
and Sikdar’s. Figure 16 (b) shows the worst case scenario 
despite the error calculating search region, where our 
algorithm still manages to outperform the other approach. 
Figure 16 (a) also shows that, with more nodes involved, the 
energy used by our algorithm remains low compared to the 
search by region, which is 10 times smaller than our 
algorithm’s search region.       
 

0

200

400

600

800

1000

1200

1400

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97

RPI
Ours

 
Figure 17: A group cluster per round is activated 

 
Secondly, consider a different scenario in which Yang’s 

and Sikdar’s algorithm activates a group of clusters per 
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round. Figure 17 shows that our algorithm consumes less 
energy. 
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Figure 18: Entire 2D region utilized 

 
However, if our algorithm fails to establish the proper 

search region and requires 2D region to find the target, then 
our algorithm will consume more energy than Yang’s and 
Sikdar’s algorithm, as shown in figure 18. 
 

E. Observations 
One of our biggest challenges is to determine the 

characteristic and behavior of the targets. Since we focus on 
larger sized wildlife animals (such as a horse or cow), their 
velocity change is more predictable than smaller animals. 
Smaller and lighter animals like rabbits have the ability to 
make an abrupt halt after running full speed without 
deceleration. In contrast, heavier and larger animals like 
horses need some time to decelerate before making a 
complete stop. Hence, it is very unlikely that our algorithm 
will make such a significant error computing the search 
region. 

 
Another obvious observation is that simultaneous node 

activation significantly reduces energy cost compared to that 
of increment node activation.  

 
The key to a successful recovery operation determining the 

appropriate time t to compute distance d = time t * velocity 
v. 
Parameter t depends on many conditions such as the 
processor power, network traffic, target’s behavior, and so on. 
The target’s behavior can vary depending on the condition of 
the environment. There are many factors that could drive the 
target to behave differently and it is very difficult to make 
such a prediction with very limited information. That is why 
another discipline, such as machine learning, could be quite 
valuable in learning the pattern behavior of a particular target. 

 
 

VI. CONCLUSION 
Tracking wildlife has been a hot topic for the 

past few years.  There has even been talk [27] 
from lawmakers to force the government to 

track livestock nationwide.  An identification system has been 
introduced to implant an RFID chip – VeriChip – into the 
animals.  The first implanted chip on a human happened soon 
after 9-11-2001.  The purpose of tracking livestock is to track 
infected livestock.  This syringe-injected chip is the size of a 
grain of rice. 

 
In this paper, we proposed another approach in tagging 

animals not only for tracking diseases, but also to find out 
more about the animal and its behavior.  We analyzed the 
tracking methods for mobile sensor networks and proposed a 
recovery method to search the system when the target is lost. 

VII. FUTURE WORK 
We are currently working on testing our algorithm and 

making any improvements as we see fit.  We would like to 
discover whether there is a softer tradeoff between energy 
consumed and prediction accuracy. In addition, we are also 
interested in collaborating our study with other disciplines 
such as Machine learning or Artificial Intelligence to compute 
a more precise search region. These disciplines offer different 
approaches to solve problems by analyzing a data set 
collected from particular events and learning the pattern of 
certain behaviors.  Our biggest goal is minimizing energy 
consumption when searching for the target.  By having most 
sensor nodes in the system in hibernation, the risk of losing 
the target may increase.  Another possible area of work is 
testing this on the field and seeing how multiple animal tags 
interact with the sensor network we have described.  This 
could be a truly fun and active task. 
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