
 1

Abstract— With recent advances in mobile sensor networks,

sensor networks are now being used in wildlife environments.
Sensor networks are utilized in wildlife to track animals. The
discoveries that have been made through such efforts include
animal behavior and lifestyles. One of the most significant
reasons why wildlife tracking research has escalated is for the
protection of humans and animals in the food chain. Another
possible reason for wildlife tracking is to protect endangered
species.

In this paper, we analyze related work being done and
describe how to track mobile sensor nodes. We then present an
optimized recovery algorithm to track animals when they cannot
be found. Using simulations we show that our proposed
algorithm is effective in extending the network lifetime and
performing a quick recovery.

Index Terms— Algorithms, Recovery, Sensor Networks,

Tracking

I. INTRODUCTION
ENSOR networks are one of emerging technologies that
have many applications. These networks are composed of

hundreds, and potentially thousands of tiny sensor nodes,
functioning autonomously, and serving different purposes.
While the set of challenges range [1] [8] from geography
routing, power conservation, data management, these sensors
also hold the potential to revolutionize many segments of
economy and life, from manufacturing, military,
transportation, health-care industry, and environmental
monitoring. [9] Sensors are often deployed in constrained
environments such as deserts, road, forests, or other physical

© 2005

phenomena for monitoring, observing, or detecting a
particular event. One of the applications of sensors network,
which will be discussed in this paper, is to monitor the health
of the animals or report the condition of wildlife habitat for
environmental conservation purposes.

Habitat and environmental monitoring represent a class of

sensor network applications that benefit the scientific
communities and societies.[3][4][5] This technology allows
researchers and biologists to have a closer look on the
monitored area by providing [7] local measurement,
sampling, and detailed information that are otherwise difficult
and expensive to obtain. The traditional approach of obtaining
such information requires human presence at the monitored
location, which can disrupt normal animal behavior. For
example, [10] seabird colonies are extremely sensitive to
human presence. In Maine, biologists have discovered that
their daily 15 minute visits to the colony increase the egg and
chick mortality rate by 20% in a given breeding year. As the
disturbance is continuously repeated, the entire colony may
abandon the breeding site.

Tracking in sensor networks is also necessary for many

other applications, such as computer vision, tactical battlefield
surveillance, air traffic control, perimeter security, and
emergency response.

Numerous studies have been done for tracking movements

and the population of animals in their natural habitat. While
there are many tracking movement techniques for single or
multiple targets, there are other challenges, which are equally
important, such as failures occurring during the tracking
process.

We begin our paper analyzing two existing applications

that have been deployed in wildlife communities in section II,
such as ZebraNet and Great Duck Island project. In Section
III, we elaborate on the specifications of tracking mobile
sensor nodes in wildlife. Those specifications include
hardware used, tracking and prediction algorithm, and
recovery approach. Our paper will discuss how to recover and
rediscover when failures occur during the habitat and wildlife
monitoring operation. We present a comparison of our
recovery simulation versus a simulation proposed by another

Francine Lalooses
Department of Electrical Engineering

Tufts University
Medford, MA

Email: Francine.Lalooses@tufts.edu

Hengky Susanto
Department of Computer Science

Tufts University
Medford, MA

Email: Hengky.Susanto@eecs.tufts.edu

Recovery Target Tracking in Wildlife

S

Chorng Hwa Chang
Department of Electrical Engineering

Tufts University
Medford, MA

Email: hchang@ece.tufts.edu

 2

university. The performance of this simulation generates
better results for larger sized land animals, such as horse,
cow, deer, etc. We conclude by presenting proposals for
future ventures.

II. RELATED WORK
Tracking mobile nodes in a sensor network deals with

approximating the trajectory of one or more moving objects
based on information transmitted by the sensors. A common
example of animal tracking is the problem of tracking cows in
order to determine the origin and isolate the spread of mad
cow disease. Tracking animals introduces curiosity of
understanding animal behavior, animal interaction between
humans and other species, and how animals affect the lives of
humans in their participating role in the food chain.

Figure 1: The food chain

Due to the mobile ad hoc nature of these networks, sensor

networks face two major problems. First, efficient network
traffic protocols and energy-reducing techniques are required.
Secondly, the sensors have to communicate with one another
or with a “base” to transmit readings or results of local
computations. However, several methods for tracking animals
have been implemented and studied, such as ZebraNet [6] and
Great Duck Island [2].

A. ZebraNet
At Princeton University [6], researchers are investigating

advances with wireless sensor networks and applying this
technology to support wildlife tracking for biological
research. This tracking system, called ZebraNet, can forward
data to a mobile base station by using peer-to-peer
networking techniques. Their design decisions include
custom tracking collars worn by the animal. These collars
weigh approximately 2.4 pounds and are enabled with global
positioning systems. Since all collars, or nodes, are mobile,
ZebraNet can track animals long term and over long
distances. The protocols evaluated are flooding (peer-to-
peer) and history-based (peer-to-peer) compared against
direct (not peer-to-peer). In flooding, animals broadcast to
everyone discovered in their range every three minutes. In
history-based, animals choose at most one peer to send within
range every three minutes; the one with the best past history
success rate of delivering data is chosen. Figure 2 depicts the
success rate with infinite storage and constrained bandwidth;
in short range, flooding proves to be the best protocol, but in

long-range, history-based outperforms the other protocols.

Figure 2: Radio Range Results

When investigating these protocols, it is important to

consider energy efficiency. Figure 3 shows the flooding
protocol makes sense for small radio range, but not for large
ranges. Flooding’s energy consumption quickly increases
due to the redundant swaps of data already sent to the base,
while the history-based protocol grows very slowly from
1.0X at 1km radio range to 1.04X at a radio range of 15km.

Figure 3: Energy Results

Thus far, ZebraNet has been deployed in Kenya to monitor

zebras and has provided us with insight into zebra behaviors,
lifestyles, and velocities. Overcoming the challenging terrain,
researchers have been able to tag zebras and fly over them
with a plane to record information. What they have found
includes behaviors like one male typically traveling with
many females. Some additional behaviors mostly include
herbivores grazing near water and resume ambient motion
after drinking, as it is rare for zebras to run towards or away
from something.

 3

+ +

-

B. Great Duck Island
On Maine’s Great Duck Island (GDI) [2], biologists have

placed sensor devices in duck’s underground nests and on
four inch stilts placed just outside of duck burrows for a nine
month monitoring period. This deployed network of thirty-
two nodes continuously streams data onto the web
(http://www.greatduckisland.net). Figure 4 shows these
underground sensor devices (1), the four inch stilts (2), and
the gateway node (3) which transmits all of the information
from these devices to a laptop in the research station (4). The
data is then sent to a satellite (5) and ultimately to an Intel
Research lab at Berkeley California.

Figure 4: Great Duck Island Sensor Network

The GDI system is a tiered architecture depicted in figure

5. Each layer has storage to protect against data loss during
power outages. The lowest level consists of small battery
powered sensors nodes collecting data. The sensor nodes
chosen are UC Berkeley mica motes. The accuracy of these
devices is remarkably within three percent of the actual value.
The gateways transmit sensor data from the patch to the
transit network. Since these gateways are solar powered, they
are always on. The base station provides WAN and data
storage. Replicas of the database are necessary for remote
users. The base station connects to the database replicas
across the Internet and the data is finally displayed through a
user interface.

The most efficient routing for low duty cycle sensor

network is sending data to the gateway on scheduled periods,
synonymous to one-direction communication. The habitat
information discovered at GDI consists of temperature,
relative humidity, solar radiation, voltage utilization, and live
sensor readings, all of which is the data collected from
weather motes and burrow motes.

The following tracking methods are applicable to animal

tracking, namely Binary Network Model [28] and Distributed
Predictive Tracking Algorithm [15].

Figure 5: GDI System Architecture

C. Binary Network Model
The Binary Network Model proposed by researchers in

Dartmouth College and CSU Los Angeles [28] requires
sending one bit of information to a central computer. This bit
of information carries the direction of the object, whether it is
moving towards (+) or away from (-) the sensor, as shown in
figure 6. The star denotes the current location of the animal.

Figure 6: Binary Sensor Network Geometry

Adding another bit will provide the actual location of the

object. The advantages to this model are broadcasting single
bits over the network is very feasible and the trajectory
prediction error is low. The disadvantages to this network are
only one animal can be tracked at a time and there are no
failure recovery considerations, which is not optimal for our
sensor tracking model.

Many additional tracking techniques have been proposed
[13] [14] [16] to track moving targets. Researchers have
formulated an estimation of signals received from sensors
which calculate time dependent measurements to represent
the location and characteristics of the target. One approach is

INTERNET

TRANSIT
NETWORK

Client Data Browsing
And Processing Base Station

Base-Remote Link

Gateway

Sensor Node Patch
Network

Sensor Patch

Data Service

 4

to adopt the classic Bayesian formulation which computes the
measurement and communication costs to minimize tracking
failure.

There is another research study [18] to track and understand
the temporal relationship between objects in tracking multiple
target environments, such as monitoring the interaction of
numerous animals. It is also very useful to investigate
predatory activities such as wolves trying to attack his prey of
vulnerable, innocent lambs.

D. Distributed Predictive Tracking Algorithm
Researchers at RPI developed a distributed protocol for

target tracking in sensor networks [15]. This algorithm
organizes sensors in clusters and uses sensor triplet
triangulation to predict the target’s present location, as shown
in figure 7. The target’s next location is predicted using a
linear predictor based on the last two actual locations of the
target.

Figure 7: Sensor Triplet Triangulation

 Figure 7 also brings up a notion of normal beam and high
beam. These sensors are usually set to normal beam if the
cluster is active. Most clusters are in hibernation mode when
the cluster head does not sense the target in its cluster. High
beam is only activated when the target is lost and the cluster
radius of the predicted location does not sense the target.

 The predictive mechanism works without always having to
consume more energy by having the sensors operate with
high beam. There is a relay message sent from cluster head to
cluster head which makes this mechanism successful. Each
cluster head activates the appropriate sensors before the target
arrives. As the target is leaving the original cluster head’s
group, that cluster head alerts the next cluster by handing over
a target descriptor to the next cluster head. This target
descriptor consists of the target’s identity, the present and
predicted locations, and the time stamp of when the target
entered the first cluster. By having this information relayed,

the clusters are able to obtain facts about the animal before it
even arrives in its cluster.

III. TRACKING MOBILE SENSOR NODES

A. Hardware
Both ZebraNet and GDI systems utilize the well-known

Berkeley Mica motes, shown in figure 8. The size of the
mote is 2.25 x 1.25 by 0.25 inches. Due to their size, these
rectangular devices only run on two AA batteries.

Figure 8: Berkeley Mica Mote

The MICA mote uses an Atmel ATmega 128L processor

running at 4 megahertz, which is an 8-bit microcontroller that
has 128 kilobytes of flash memory to store the program. The
ATmega only consumes 8 milliamps when it is running, and
15 micro amps in sleep mode. This mote is noted as being
one of the most commonly used and energy efficient devices.

B. Tracking Algorithm
When dealing with mobile sensor nodes, the sensor range and
average speed of target become very important factors for
tracking performance. There are four tracking algorithms that
we researched which apply to habitat monitoring. These four
strategies include naïve activation, randomized activation,
selective activation based on prediction, and low duty cycle
operation. The latter two algorithms will be described in the
next section due to their predictive behavior.

 In naïve activation, all nodes are in tracking mode all of the
time. Although this has intensive energy consumption, this
strategy yields the best possible quality of tracking.

 Randomized activation has, on average, a fraction of p
nodes active and in tracking mode. Since each node has a
probability p of being on, energy consumption improves
slightly, but the quality of tracking decreases.

C. Prediction Algorithm
 Selective activation based on prediction is when a small
subset of nodes is in tracking mode at any given point in time.
All other nodes remain in communication mode and may be
alerted by signals from tracking nodes. The nodes in tracking

 5

mode can also predict the next position of the target which
will warn the next subset of nodes that the animal is moving
into their area. This notion of predicting the next position is
depicted in figure 9: Xa is the actual position of the animal at
a certain point in time; Xb is the animal’s believed location;
Xp is the predicted location. By using prior history of Xb, Xp
is determined. The selective activation based on prediction
algorithm utilizes the convex hull of both the actual and
predicted circles to predict the position of the animal at time
t+1. Using a good prediction algorithm has shown that this
algorithm has orders of magnitude energy savings and
negligible difference in tracking quality.

Figure 9: Selective Activation Based on Prediction

 Another energy efficient algorithm is low duty cycle
operation. This algorithm has the entire sensor network
pulsating on and off, introducing a low power operating mode
with wakeup. This power saving mode requires less power
and is much different than being off since the nodes must
wakeup to external stimuli. One application of this algorithm
is the Frisbee model presented by researchers in UCLA and
USC. The Frisbee model has a “wakeup wavefront” that
wakes up nodes in the predicted path of the animal. Figure 10
shows Bubba the Lobster traversing along its yellow path.
The blue circular regions are the active sensor nodes, sensing
and tracking Bubba’s movement. The radius of these blue
circles is proportional to the speed of the animal. All of the
nodes outside these regions are in power saving mode. Once
Bubba moves from one sensor cluster to another, the previous
sensor cluster reverts back to power saving mode.

Figure 10: Frisbee Model

 When dealing with tracking algorithms, time
synchronization is critical. As energy efficiency increases,
the quality of tracking decreases. However, selective
activation based on prediction and low duty cycle operation
algorithms have shown that the energy conserved is
considerably higher than other algorithms, such that the
quality of tracking becomes negligible.

IV. RECOVERY
In this section, we discuss our proposed failure recovery

scheme in tracking a moving target. This failure can occur
due to issues such as network failure, prediction error, or
node failure. The basic protocol for tracking a moving target
is to select and wake up a group of nodes based on the
movement of the target. The current group of nodes hands off
the current monitoring task to the next group of nodes.
However, the next group might never wake up and see the
target enter their monitored area due to network failure or the
target selects to go towards the opposite area of the selected
group. For example, the current group predicts the target is
heading north, but the target may make a drastic direction
change and head northeast. Hence, prediction error occurs.
Failure is detected when the group leader, who is currently
monitoring the target about to enter another area, does not
receive an acknowledgement from the next selected group.
The newly selected group is where the target was predicted to
go, so this results in a lost confirmation.

The possibility of not being able to find a target could be a

direct result of the following conditions:
1. Network failure occurs when packets from the cluster

head, which is currently monitoring the target, fails to
reach the next cluster head. This results in a lost
acknowledgement.

2. Prediction failure of the next location where the
animal is heading. For example, the animal may
suddenly change its path resulting in an inaccurate
predicted location.

 6

3. Failure to recognize multiple targets at once. For
example, a cluster might be monitoring two moving
horses, which are standing next to each other. The
cluster nodes might be mistakenly recognizing the two
horses as one entity. When the horses are about to
leave the monitored area and enter another cluster
group, the horses decide to split up. This split results
in two distinct directions and different cluster groups.
The current sensor nodes realize there is more than
one target, but they do not notify the second cluster
head. Hence, one of the two targets is not monitored.

4. The sensor node hardware may malfunction or the
battery is weakening. Someone must be available to
perform routine maintenance checks on the deployed
hardware to ensure the integrity of the system.

We propose a recovery algorithm to take advantage of

hierarchical clustering. The algorithm establishes a search
region and wakes up the relevant nodes. Simultaneously
waking up the necessary nodes at one particular region will
reduce the network traffic and avoid the unnecessary extra
energy cost.

Figure 11: Each grid visually represents a group of

clusters

Establishing a search area is much simpler if the nodes
positions are known. GPS might be required to determine the
precise position of each node. However, our proposed
algorithm does not require prior knowledge of the node
positions or GPS. Additionally, targets are not exactly tagged
as in ZebraNet [6] because the tag also functions as a node
that wakes up every sensor node on its path. The tag sends a
signal to wake up sensor nodes, which are currently
surrounding the target. Therefore, tagging the target actually
removes the risk of prediction failure of where the target’s
next location and thus, the recovery procedure for lost targets
will not be necessary. This approach is less opportune
because it is not practical to tag every animal in wildlife and
potentially disturb the life of the animals. Moreover, tagging
animals defeats the purpose of the habitat monitoring.

 Figure 11 illustrates the idea of having one cluster head per
cluster, or grid. Each cluster consists of a randomly selected
number of nodes, one of which is the cluster head. The
cluster head is shown in blue, while all other nodes are white.

A. Clustering
Our proposed algorithm takes advantage of hierarchical

clustering structures for more efficient utilization of
resources, simpler routing protocol, and management [19].
Clustering also allows some nodes to play watchdog or
managerial roles over other nodes. This manager node is
called the cluster head CH. Each cluster head joins another
cluster and selects another cluster head. This process
continues until it forms a tree with one root, as shown in
figure 12. This approach is known as hierarchical clustering
technique.

Figure 12: Hierarchical Clustering Technique

After the initial deployment, sensor nodes often are

compelled to organize themselves into a group of clusters and
select a leader for every cluster. Several protocols exist on
how to form a cluster. The initial step in forming a cluster is
to select a cluster head. Once a cluster head is selected, each
node can join the cluster by contacting their closest cluster
head. The distance from the sensor node to the cluster head is
the number of hops between them. For instance, a sensor
node might prefer the cluster head that can be reached in three
hops rather than another cluster head ten hops away. The
cluster head selection protocol is based on unique node
identifiers. This identifier can initially be assigned randomly
to the nodes [29] [30]. In selecting a cluster head, a node may
declare itself as the cluster head if it possesses the highest ID
among other nodes that have not been claimed by another
existing cluster head. Several cluster heads closest to the base
station may become the gateway. Currently there is no
theoretical proof that guarantees the quality of clustering.
Clustering is just a constant bound to measure the
effectiveness of reaching and discovering all nodes in the
network.

Some may argue that the disadvantage of becoming a

cluster head is a bit more energy consuming because the
cluster head has more responsibility than other ordinary
nodes. The author describes in [20] that every node should

CH CH

d

d

CH

First level

Master CH

 7

take turns being a cluster head during every periodic cycle.
The hierarchical clustering approach could be implemented
without significant extra energy costs if a node would not
repeatedly be selected as the cluster head. Hence, they
recommended the formula below where each node in the
cluster takes turns becoming the cluster head with probability
P1 and c = 3.06a√λ with parameter a.

2

2
1

3
)42733272(

)42733272(3
2

3
1

3

22

22

3

1

3
1

3
1 




•

+++
+

+++
+


=

c
ccc

ccccc
p

[22] [23] [24] A tree-based clustering approach is also used
to improve energy consumption and reduce traffic simply by
having only a cluster of nodes monitor the activities of a
moving target. The subordinates only report to their leader,
the cluster head. Data is routed among the cluster heads to the
base station or a designated destination. Kung also proposed a
model that characterized the nodes into geographical group
and weighted the edges to represent the movement of the
target. Zhang and Cao also proposed that the trees are
actively modified, pruned, and expanded to accommodate the
network traffic, density of the network, and the routing path.
However, our recovery algorithm would work best with less
frequent reconstruction and modification.

There are also [24] [25] [26] a number of proposed

algorithms to determine the location and radius of the
monitored region by a cluster of nodes. We modify the
algorithm such that after the initial deployment process, every
cluster head reports the radius of its monitored region to its
immediate parent. The parent computes the radius of its
region based on the information from its subordinates and it
propagates its newly computed region radius until it reaches
the root. For example, all city governors report their respected
city size to their immediate superior, the county governor. All
county governors compute the size of their county based on
information from their subordinates and report the radius of
their area to a higher superior, the state governor. The process
is repeated until it reaches the president, the root of the
hierarchy tree.

The missing target can be recovered quickly by performing

Space Decomposition Search. The basic concept of this
algorithm is to take advantage of hierarchy clustering and
wake up all of the nodes in the area at once and perform a
single simultaneous search. The root will wake up its
subordinates and the order will be propagated to leaf level.
Then those leaf nodes perform an instantaneous search and
will propagate the finding result to their superior until it
reaches root level. The running time of this search algorithm
is O (log N).

B. Computing Velocity
The radius of the search region and the number of nodes

involved in the search event are determined by how far the
target would travel. One of the challenges is determining the
speed of the target. In [15], the author proposes a method of
computing the target’s speed based on the detection time
between sensors and the position of nodes. Another approach
described in [16] shows how sensors should determine the
underlying target state of its position and velocity based on
the sensor measurements up to time t. A prediction-based
tracking algorithm is described in [17] where the authors use
the velocity estimation of the target to select which sensors to
query. Other approaches have been developed using Kalman
Filters, which assume Gaussian observation models and linear
state dynamics, and Bayesian Filtering techniques.

Once the velocity of the target is acquired, travel distance

of the target can be computed with distance d = velocity v *
time t. The question is how to decide the condition of the
velocity. For instance, it is very difficult to determine if the
target is running, walking slowly, or moving in regular speed.
It also depends on the radius and the type of animal. A horse
runs much faster than a cow. Velocity changes are
unpredictable. Determining the condition of the target’s speed
will be easier if the target carries a wireless collar or tag like
in ZebraNet [6]. Hence, more helpful target information can
be downloaded from the tag to the local sensor and velocity
computations become more precise. Target information also
includes the maximum speed and behavior of the target.
However, tagging the target with some type of wireless
device can be very costly and difficult.

Without proper information it is difficult to determine the

type of target’s speed, whether the target is running or
moving in its regular speed. We make an assumption that
there is no secondary party or adversary who might alter the
speed of the target, like running away from its predator. In
addition, the current cluster head, which is the leader of the
current cluster monitoring the target, might get more target
description information from the previous cluster head. Even
then, such information is not enough to determine the speed
condition and it can vary between target types, whether the
target is a horse, cow, deer, etc.

Hence we need to compute the velocity Vrunning if the target

decides to run. A CH has information of the current velocity
Vcurrent from its subordinates and Vprevious from the previous
CH. Therefore, the current CH will use the highest velocity
value.

); V, max(V V previouscurrentcurrent =

Vcurrent is bounded by at most 2 * Vcurrent , where Vcurrent < 2

* Vcurrent. We assume that a target increases its speed by at
most twice the current speed as long as the target does not
feel threatened and Vcurrent is the average velocity when the
target is in the current cluster monitored area. In the non-

 8

threatening situation, the target is more likely moving in
constant speed. Therefore, the probability Prunning is likely to
be less than ½. We can compute the expectation of Vrunning
using Bernoulli random variable.

() currentunningcurrentunningrunning VVVE rr P2P1][+−=

for Prunning < ½

Next we compute distance d using Vcurrent.

tVd current •=

The target may accelerate over 2 * Vcurrent and maximum

velocity Vmax > 2 * Vcurrent. Naturally, no living being could
run forever without stopping, so at some point, it will
eventually stop. The longer or the faster they run, the more
likely they will stop. Thus, if a target runs with maximum
speed for a long period of time, then the probability of the
target stopping increases. We apply the finite Markov Chain
to compute the probability the likelihood of a target will stop
moving. Suppose Pv is the probability when the target reaches
the maximum speed before it stops and v is the initial speed
as the target enters the monitored region by a designated
cluster of nodes. Paccelerate is the probability of increasing the
velocity and (1 - Paccelerate) is the probability of decreasing the
velocity, where Paccelerate < ½.

Let I be an event when the target increase its velocity at time
t = 1.

Let R be an event when the target runs with full speed for Vmax
≥ 2 * Vcurrent.

Let Vi be the velocity at time t.

)1|Pr()1()1|Pr(
)|Pr()1()|Pr(

)|Pr()|Pr()|Pr()|Pr(
)|Pr()|Pr(

)|Pr(

10

00

000

00

0

−=−++==
=¬−+==

=¬=¬+===
=¬+==

==

vVRPvVRPP
vVIRPvVRPP

vVIRvVIvVIRvVIP
vVIRvVIRP

vVRP

accelerateacceleratev

accelerateacceleratev

iv

v

v

Ι
ΙΙ

ΙΙ

Since (I ∩ V0 = v), (R | V1 = v + 1), and (R | V0 = v –1)

then

11

00

)1(
)1|)(1()1|Pr(

−+ −+=
−=−++==

vacceleratevacceleratev

accelerateacceleratev

PPPPP
vVRPvVRPP

Then,
 01 11 =−++= −+ vacceleratevvacceleratev PPPPPP

where 00 =P and 1max =P

Applying the linear recurrence will uncover the

characteristic equation regardless of the indexing scheme. The
characteristic equation of this recurrence is:







 −

=

=−+−

accelerate

accelerate

accelerateaccelerate

P
Pr

PrPr
1

0)1(2

Providing the characteristic of the equation (1 - Paccelerate) /

Paccelerate, we compute the probability of the target completely
stopping at some point in time t. Let a be the acceleration
where S maximum speed = a + current velocity Vi.

(

(







−

−







−

−





−

==

=−





−

+==





−

=−





−

+=





−

=





−

S

P
P

S

P
Pa

P
P

VP

VP
S

P
PVP

a

P
P

VP
S

P
PVP

P
Pa

P
P

accelerate

accelerate

accelerate

accelerate

accelerate

accelerate

accelerate

accelerate

accelerate

accelerate

accelerate

accelerate

accelerate

accelerate

accelerate

accelerate

11

11

)0(

))0(111)0(1

))0(11)0(
011

0

00

00

From the formulas, the higher S gets, the more likely the

target will eventually stop.

The most important aspect of determining the radius search

area is the time t and distance d that a target will travel. Time
t is a parameter and a deciding factor of the distance length.
Parameter t depends on many factors, such as the node’s
computing power, network traffic, and the furthest distance a
target can travel from the last seen position. Naturally, any
living being cannot continue running without stopping, but
the question is how far the animal will travel before it decides
to stop. Hence P(V0 = 0) can be utilized to determine time t.
The lower the value of P(V0 = 0), the more likely the target
will travel more distance and value t should be increased.

C. Popular Place
Once value d is determined, then d needs to be multiplied

by 2 simply because there are two opposing possible
directions and the target may select either one of these
directions. Next, that 2d value is propagated from the CH,
where the target was last seen, to its superior. The superior
compares the value of d with the diameter of its region. If the
diameter of its region is roughly equal to 2d, then it will wake
up all of its subordinates and leaf nodes to perform a search
event. Otherwise, the 2d information is propagated to the
higher superior until the proper region is found. Figure 13
shows the 2d value with the black circle being the last
position the animal was seen, and the orange circles being the
next popular places with their hop counts denoted.

 9

Figure 13: Tracking Algorithm based on popularity

Once the proper region is acquired at a high-rank CH, it

sends request to its subordinates to find the popular place.
One might ask what characterizes a popular place. Take for
instance, tourists visiting Boston, MA. A popular place
would be where the tourists tend to go. Touristy places
would include Faneuil Hall, Boston Common, New England
Aquarium, or the USS Constitution. Now that we have four
of the most popular places, we can try to locate a tourist by
first asking these four places. By asking the most popular
places, you are minimizing the amount of energy in a sensor
network by avoiding the energy-consuming operation of
turning all sensors on. This is the convention of popular
place.

A larger scale example of popular place focuses not only

on one city in one state, but in one country with numerous
states. Consider tourists visiting the United States of
America. First time visitors may want to visit three or four
states, including Massachusetts, Florida, California, and
Illinois. By using the popular place convention, if a tourist
got lost, we would ask these 4 states first. If the tourist had
visited one of these states, then we would traverse through the
chain of further investigating which county, city, or
neighborhood the tourist was last seen. This is how the
popular place tree can grow very quickly but at the same time
reduces energy of every sensor in all fifty states being
activated.

We apply this approach to wildlife animals since they tend

to visit places where food and water is available. Other
factors which commonly dictate animals’ locations are those
which provide ideal climate or some degree of safety from
predators. This is where animals typically prefer to rest, nest,
or reproduce.

D. Broadcasting
Once the popular places are defined, then each CH of

popular places send beacon packets and computes the
distance, or the number of hops, to the CH where the target
was last seen. Each beacon packet contains the descriptions of
the targets.

After receiving packet from the CHs of popular place, the

CH where the target was last seen broadcast packets with the
life span equal to the distance or hops from one of the popular
places. The purpose of broadcast is to establish and wake
every node in the search region. Packet life span is decreased
by one in every forward event. Flooding based mechanisms in
the hierarchy tree are described in [11] [12] and the authors
claim performing search operations with flooding based
techniques is energy efficient. In fact, the flooding technique
in [12] is specifically designed to support querying
information in sensor networks for bird habitat monitoring.

Rules of broadcasting:
1. A node only forwards packet p if and only if the new

packet sequence is greater than the previously received
packet sequence.

2. The packet sequence is decreased by one at each node.

ω(u, v) is the packet sequence from u to v. s(n) is the

current sequence value of the packet at node k.

Lemma 1
Let G = (V, E) be an undirected graph with source vertex s,

and all edge (u, v) ∈ E. Cycles are avoided when ω(u, v) >
s(v).

Proof:
We prove the lemma by using contradiction. Let us say that

there is no cycle between u and v and ω(u, v) < s(v). If
packet p travels between node u and v for s(u) = n and ω(u, v)
= n-1, then ω(v, u) = ω(u, v) - 1 = n – 2. u forwards p to v and
ω(u, v) = ω(v, u) –1 = n-3. There is clearly a contradiction in
our earlier assumption when ω(u, v) = n-3 and s(u) = n, so
ω(u, v) < s(u) and cycle is exist. Hence, contradiction
establishes the claim.

Here is the second proof by contradiction. Let us say that
there is no cycle between u and v and ω(u, v) < s(v). ∃ z such
that edge (z , u) ∈ E. Initially, u forwards packet p to v.
Packet p travels and reaches z. Later, v receives packet p
from z and u forwards packet p to v. Since s(u) = n and ω(u,
v) = n-1, then ω(z, u) is at most n-3. Therefore, ω(z, u) < s(u)
and cycle occurs. Hence, this contradicts the earlier
assumption.

Once the broadcast operation is executed, the search region
is established and all the leaf level nodes are awake. For some
period of time, all leaf nodes perform a simultaneous search
operation to find the lost target based on target description.
Subsequently, all leaf nodes will report their findings to their
cluster head and then this information will be propagated to

2D

1h

4h

2h

 10

the cluster head responsible for the area where the target was
last seen. If the target cannot be found, this “master” cluster
head will report these results to the base station. Otherwise, it
will hand off the monitoring task to the new group, which
will attempt to find the target.

E. The Recovery
In this section, we discuss the recovery procedure when the

search region fails to capture the target and the target’s actual
position is outside the search region.

 Figure 14: X is the actual position of the target.

These failure occurrences are caused by the lack of proper

information in finding popular places, especially when nodes
are recently deployed in the new environment. Performing a
recovery operation by finding the parameters of where the
lost target might go is not effective if the nodes are recently
deployed because there is not enough data to capture the
places that have been previously visited. For example, during
the first minute after the deployment of nodes, a zebra passes
the monitored region and most sub-regions are at most visited
once. Hence, every place has the potential in becoming the
popular stopping place for the zebra and it is difficult to
determine the popular place given very limited information.

Our approach is to perform another search using the

maximum search area to find the popular place. The 2D
search region is Vrunning * t * 2. All nodes in the radius 2d are
activated and perform the search. The success of the search
relies heavily on time t. Thus, finding the proper t is very
critical for a successful search. Figure 14 illustrates 2D as the
maximum search area, X as the actual location of the animal
hiding, and the yellow region as the location the animal was
last seen.

V. SIMULATION

A. Overview
We simulated and compared Yang’s and Sikdar’s [15]

battery utilization algorithm against ours. The purpose of
comparing these two algorithms is to demonstrate the

improvement of energy efficiency. Yang and Sikdar offered a
simple, straightforward solution to find the missing target: in
order to locate the missing target, a group of sensors, of
radius X meters from where the target was last seen, is
activated. There is no clear description whether it is a group
clusters or just one single cluster that is selected and
activated. Hence, we simulate two circumstances and
compare the energy cost when:

1. A single cluster per round is activated.
2. A group cluster per round is activated: 3 nodes per

group since the minimum number of required nodes per
cluster is 3.

We made several assumptions that both algorithms require

equal amounts of time to perform a search, and the same
hardware is used. Therefore, both algorithms need the same
amount of energy to activate a node and to execute the search.

The simulation is categorized into several scenarios and we
compare the performance between both algorithms. The
scenarios are:

1. Both algorithms have the equal amount of nodes to
perform the search task.

2. When our algorithms miss the target, they retry using
the maximum predicted number of nodes needed (all
nodes in 2D region).

3. The actual number of required nodes is less than the
predicted number. Hence, the search region computed
by our algorithm might be too large compared to
Yang’s and Sikdar’s. We compare the cost of energy
usage when the number of nodes generated by their
algorithm is 1/3, 1/6, and 1/10 less than ours.

4. Comparing the worst case scenario in which the entire
nodes in the monitored region have to be activated.
Our algorithm will perform the default task - 2D task -
and space decomposition. The algorithm will continue
expanding its search region until the entire nodes are
awake.

B. Equations
The first assumption that Yang and Sikdar introduce is

expanding the search region by only activating one cluster
group at a time. Let E be the variable for energy, n is the
actual number of nodes activated or required to perform a
successful search, m nodes per cluster, time t needed to
activate a sensor node, and all sensors consume Π of energy
for every t. The formula to compute cost energy for Yang’s
and Sikdar’s algorithm is:

E = Π t Σ i , where 0 ≤ i ≤ n/m,

The second assumption is the region expansion by a group
of clusters.

E = Π t Σ mi , where 0 ≤ i ≤ n/m;

Our algorithm activates nodes simultaneously. Hence,

2D region

Search Region

X

 11

E = Π t n

In our simulation, for the purpose of simplicity, Π and t are

equal to 1.

C. Simulation Environment
The simulation is developed and runs in the UNIX

environment, Pentium 4, and is written in Ansi-C.

D. Results
In this section, we compare and contrast how much energy

is utilized by using both recovery algorithms. First, we
compare the energy savings when Yang’s and Sikdar’s
activate a single cluster per round. Each chart below
demonstrates the energy consumption based on the number of
nodes involved during the recovery operation. Each line in
the graphs represents how much energy is used when X
number of nodes is involved1.

0

1000

2000

3000

4000

5000

6000

7000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

RPI
Ours

Figure 15: A single cluster per round is activated

We believe that simultaneously activating the entire nodes

in the search region will significantly minimize the energy
consumption, as it is shown in figure 15. The energy used
amplifies as the number of nodes involved increases; however
our algorithm consumes much less energy.

1 In all graphs shown, the x-axis represents the number of experiments
performed, while the y-axis represents the units of energy used.

(a)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

1 2 3 4 5 6 7 8 9 10 11 12 13

"1/3"
"1/6"
"1/10"
"ours"

(b)

0

50000

100000

150000

200000

250000

300000

350000

400000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

"1/10"
"Ours"

Figure 16: Worst case scenario

The worst-case scenario is when a computation error occurs

and our search region is 10, 6, and 3 times larger than Yang’s
and Sikdar’s. Figure 16 (b) shows the worst case scenario
despite the error calculating search region, where our
algorithm still manages to outperform the other approach.
Figure 16 (a) also shows that, with more nodes involved, the
energy used by our algorithm remains low compared to the
search by region, which is 10 times smaller than our
algorithm’s search region.

0

200

400

600

800

1000

1200

1400

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97

RPI
Ours

Figure 17: A group cluster per round is activated

Secondly, consider a different scenario in which Yang’s

and Sikdar’s algorithm activates a group of clusters per

 12

round. Figure 17 shows that our algorithm consumes less
energy.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99

RPI
Ours
Number of Nodes

Figure 18: Entire 2D region utilized

However, if our algorithm fails to establish the proper

search region and requires 2D region to find the target, then
our algorithm will consume more energy than Yang’s and
Sikdar’s algorithm, as shown in figure 18.

E. Observations
One of our biggest challenges is to determine the

characteristic and behavior of the targets. Since we focus on
larger sized wildlife animals (such as a horse or cow), their
velocity change is more predictable than smaller animals.
Smaller and lighter animals like rabbits have the ability to
make an abrupt halt after running full speed without
deceleration. In contrast, heavier and larger animals like
horses need some time to decelerate before making a
complete stop. Hence, it is very unlikely that our algorithm
will make such a significant error computing the search
region.

Another obvious observation is that simultaneous node

activation significantly reduces energy cost compared to that
of increment node activation.

The key to a successful recovery operation determining the

appropriate time t to compute distance d = time t * velocity
v.
Parameter t depends on many conditions such as the
processor power, network traffic, target’s behavior, and so on.
The target’s behavior can vary depending on the condition of
the environment. There are many factors that could drive the
target to behave differently and it is very difficult to make
such a prediction with very limited information. That is why
another discipline, such as machine learning, could be quite
valuable in learning the pattern behavior of a particular target.

VI. CONCLUSION
Tracking wildlife has been a hot topic for the

past few years. There has even been talk [27]
from lawmakers to force the government to

track livestock nationwide. An identification system has been
introduced to implant an RFID chip – VeriChip – into the
animals. The first implanted chip on a human happened soon
after 9-11-2001. The purpose of tracking livestock is to track
infected livestock. This syringe-injected chip is the size of a
grain of rice.

In this paper, we proposed another approach in tagging

animals not only for tracking diseases, but also to find out
more about the animal and its behavior. We analyzed the
tracking methods for mobile sensor networks and proposed a
recovery method to search the system when the target is lost.

VII. FUTURE WORK
We are currently working on testing our algorithm and

making any improvements as we see fit. We would like to
discover whether there is a softer tradeoff between energy
consumed and prediction accuracy. In addition, we are also
interested in collaborating our study with other disciplines
such as Machine learning or Artificial Intelligence to compute
a more precise search region. These disciplines offer different
approaches to solve problems by analyzing a data set
collected from particular events and learning the pattern of
certain behaviors. Our biggest goal is minimizing energy
consumption when searching for the target. By having most
sensor nodes in the system in hibernation, the risk of losing
the target may increase. Another possible area of work is
testing this on the field and seeing how multiple animal tags
interact with the sensor network we have described. This
could be a truly fun and active task.

ACKNOWLEDGMENT
We would like to thank all those who participated in our

wildlife tracking efforts. Special thanks to Edwin for his
continuous assistance in this project.

REFERENCES
[1] D. Ganesan, A. Cerpa, W. Ye, Y. Yu, J. Zhao, and D. Estrin. Networking
Issues in Wireless Sensor Networks. UCLA, 2003.

[2] A. Mainwaring, J. Polastre, R. Szewcyk, D Culler, and J. Anderson.
Wireless Sensor Networks for Habitat Monitoring. Berkeley, 2002.

[3] A. Cerpa, J Elson, M. Hamilton, and J. Zhao. Habitat Monitoring:
Application Driver for Wireless Communications Technology. UCLA, 2000.

[4] R. Szewczyk, J Polastre, A. Mainwaring, and D. Culler. Lesson From A
Sensor Networks Expedition. University of California at Berkeley, 2004.

[5] H. Wang, D, Estrin, and L. Girod. Preprocessing in a Tired Sensor
Network for Habitat Monitoring. UCLA, 2002.

[6] P. Juang, H. Oki, Y. Wang, M. Martonosi, L. Peh, D. Rubenstein.
Energy-Efficient Computing for Wildlife Tracking: Design Tradeoffs and
Early Experiences with ZebraNet. Princeton University, 2002.

 13

[7] J. R. Polastre. Design and Implementation of Wireless Sensor Networks
for Habitat Monitoring. University of California at Berkeley, 2003.

[8] J. Elson and D. Estrin. Sensor Networks: A Bridge to the Physical World.
UCLA, 2004.

[9] D.Estrin, D. Culler, K. Pister, and G. Sukhatme. Connecting the physical
world with pervasive networks. IEEE Pervasive Computing, Pages 59-69,
January 2002.

[10] J. Anderson. Pilot survey of mid-coast Maine seabird colonies: An
evaluation of techniques. In Report to the State of Maine Department of
Inland Fisheries and Wildlife. Bangor, ME, 1995.

[11] Y. Baryshnikov, E. Coffman, P. Jelenkovic, P. Momcilovic, and D.
Rubenstein. Flood Search Under the California Split Rule. Operations
Research Letters, Volume 32, Number 3, May 2004.

[12] N. Sadagopan, B Krishnamachari, and A. Helmy. The ACQUIRE
Mechanism for Efficient Querying in Sensor Networks. In Proc. IEEE
International Workshop on Sensor Network Protocols and Applications
(SPNA), [ages 149-155, 2003.

[13] J.J. Liu, J. Liu, J. Reich, P. Cheung, and F. Zhao. Distributed Group
Management for Track Initiation and Maintenance in Target Localization
Applications. Proceedings of 2nd International Workshop on Information
Processing in Sensor Networks (IPSN'03), April, 2003.

[14] J. Shin, L. Guibas, F. Zhao, A Distributed Algorithm for Managing
Multi-Target Identities in Wireless Ad-Hoc Sensor Networks. Proceedings of
2nd International Workshop on Information Processing in Sensor Networks
(IPSN'03), April, 2003.

[15] H. Yang and B. Sikdar. A Protocol for Tracking Mobile Targets using
Sensor Networks. RPI, 2003.

[16] F. Zhao, J. Liu, J. Liu, L. Guibas, and J. Reich. Collaborative Signal and
Information Processing: An Information Directed Approach. Proceedings of
the IEEE, 91(8):1199-1209, 2003.

[17] R.R, C. Grin, and D. S. Friedlander. Self-organized distributed sensor
network entity tracking. International J. of High Performance Computing
Application, 16(3) 2002.

[18] L.Guibas, Sensing, tracking, and reasoning with relations. IEEE Signal
Processing Mag., vol. 19, pp. 73-85. Stanford University, March 2002.

[19] S. Marti, T. J. Giuli, K. Lai, and M. Baker. Mitigating Routing
Misbehaviour in Mobile Ad Hoc Networks. In Proc. 6th Annual International
Conference on Mobile Computing and Networking (MobiCom 2000), pages
255-265, Boston, AM, ACM Press, August 2000.

[20] S. Bandyopadhyay and E. Coyle. Minimizing Communication Cost in
Hierarchically Clustered Network of Wireless Sensors. Purdue University,
2004.

[21] W. Zhang and G. Cao. Optimizing Tree Reconfiguration for Mobile
Target Tracking in Sensor Networks. University of California, 2004.

[22] W. Zhang and G. Cao. Dynamic Convoy Tree-Based Collaboration for
Target Tracking in Sensor Networks. IEEE Volume 3, Number 5, 2004.

[23] H. T. Kung and D Vlah. Efficient Location Tracking Using Sensor
Networks. IEEE wireless Communication and Networking Conference
(WCNC 2003), March 2003.

[24] C. Savarese, J. M. Rabaey, and J. Beutel, Location in Distributed Ad-hoc
Wireless Sensor Networks. Acoustics, Speech, and Signal Processing, 2001.
Proceedings. (ICASSP '01). 2001 IEEE International Conference on Volume
4, 7-11 May 2001 Page(s):2037 - 2040 vol.4.

[25] W. Chen, J. C. Hou, and L. Sha, Dynamic Clustering for Acoustic Target
Tracking in Wireless Sensor Networks. Network Protocols, 2003.
Proceedings. 11th IEEE International Conference on 4-7 Nov. 2003 Page(s):
284 – 294.

[26] R. Iyengar and B. Sikdar. Scalable and Distributed GPS Free
Positioning for Sensor Networks. Communications, 2003. ICC '03. IEEE
International Conference on Volume 1, 11-15 May 2003 Page(s):338 - 342
Volume 1.

[27] Sherrie Gossett. 'Spy chips' for nation's livestock? February 28, 2004.
© 2004 WorldNetDaily.com

[28] J. Aslam, Z. Butler, F. Constantin, V. Crespi, G. Cybenko, D. Rus.
Tracking a Moving Object with a Binary Sensor Network. Dartmouth
College, CSU Los Angeles.

[29] S. Basagni. Distributed clustering for ad hoc networks. In Proc. ’99
International Symposium on Parallel Architectures, Algorithm, and Network
(ISPAN’99). Northeastern University.

[30] J. Gao, L Guibas, J. Hershberger, and L. Zhang. Discrete mobile centers.
Discrete and Computational Geometry, 2003. Stanford University.

