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Abstract

Gyan Tatiya

ADVISOR: Prof. Jivko Sinapov, Tufts University

Integrating personal and service robots into real-world environments neces-

sitates a deep understanding of complex object properties beyond visual attributes.

The field of robotics has showcased the capabilities of robots in executing interactive

perception tasks involving physical interactions with objects and the acquisition of

implicit object properties through non-visual sensory signals such as audio, tactile,

and haptic feedback. While learning-based approaches for interactive perception

tasks have yielded success, a critical limitation is the time-intensive nature of indi-

vidual robot learning, impeding the deployment of algorithms across large collections

of robots with subtly different morphologies, as in warehouse or factory automation

settings. To address this challenge, this dissertation introduces innovative frame-

works, both theoretically and practically, facilitating the transfer of multi-sensory

object representations among robots, ensuring that newly developed robots can

build upon existing knowledge rather than starting from scratch. These frameworks

encompass generating features for newly deployed robots by leveraging insights from

experienced robots, developing shared latent feature spaces among robots, and ac-

quiring unified multi-sensory object property representations that are transferable

across different tasks. This dissertation contributes to advancing robot perception

capabilities by enabling robots to share their perceptual knowledge and publishes

three large object exploration datasets by robots to facilitate further investigations.

Future work should extend the research horizon by delving into autonomous learn-

ing mechanisms for exploratory behaviors, refining adaptability with learning-based

policies for handling complex tasks, and automating object selection algorithms to

enhance the efficiency of perceptual knowledge transfer models across diverse robots.
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Chapter 1

Introduction

1.1 Motivation

The integration of personal and service robots into real-world settings such as homes

and offices has long been a vision of the artificial intelligence and robotics commu-

nities [Sin13, Sho17, Fra22]. This vision includes the ability of robots to perform

daily tasks, such as lifting heavy boxes, cleaning up after a dinner party, or picking

up toys from the floor. To achieve this, robotics researchers have been develop-

ing object manipulation-based AI tasks, including object grasping pose estimation

[DWLZ21], object rearrangement [ZFT+21], and even folding clothes [DSP+16]. An

essential aspect of performing these tasks is having a natural understanding of ob-

ject properties. While most research in this area uses vision to recognize several

object properties, such as color and shape, this is not sufficient as there are implicit

properties that cannot be perceived with only a visual input. By “implicit proper-

ties,” we refer to attributes like weight, surface texture, and sound, which require

physical interaction to be learned and understood. For example, a robot that is

asked to take out empty food containers from the fridge can detect the containers

using vision, but cannot determine if they are empty without physically interacting

with them and processing non-visual sensory modalities such as haptic force. It is,

therefore, essential to interact with objects and observe the resulting outcomes using

multiple sensory modalities to learn about these properties. Moreover, interacting
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with objects can help a robot to understand their properties better, as the interac-

tion reveals sensory signals that are otherwise not observable. For instance, a water

bottle does not make any sound on its own, but shaking it produces a sound that

can be useful in determining whether it has water or not.

Research in the field of robotics has demonstrated that robots are capable

of completing various interactive perception tasks that require physical interaction

with objects, perception of the outcome of these interactions, and the acquisition

of implicit object properties that are grounded in non-visual sensory signals such

as audio, tactile, and haptic feedback [HXJ+23, FKL+22]. For example, Sinapov et

al. [SSS+14a] demonstrated an object category recognition framework in which an

upper-torso humanoid robot used multiple exploratory actions (e.g., grasping, lift-

ing, shaking, pushing) and multiple sensory modalities (e.g., vision, proprioception,

and audio) to learn machine learning models that categorize 100 household objects

to 20 categories (e.g., cups, cans, bottles, balls). This work demonstrated that using

multiple sensory feedback and exploratory actions improves the recognition perfor-

mance of the robot, indicating that different combinations of behavior and sensory

modality contain information useful for category recognition. Additionally, Sinapov

et al. [SSS14b] proposed a framework that enables robots to learn and describe the

relations between objects, such as “heavier than,” by performing exploratory be-

haviors on objects and training recognition models for multimodal perception. This

work also showed that this capability to estimate relations between objects boosts

the recognition performance of the robot when learning a new category. Similarly,

Gemici and Saxena [GS14] presented a learning system that uses haptic data, such

as force and tactile data, to manipulate deformable food objects (e.g., tomatoes,

bread, cheese, lettuce) and infer a set of material properties, including hardness,

brittleness, elasticity, and adhesiveness. The learned models were then used to

recognize the properties of the food and decide an appropriate action to perform

on a given food item. Learning-based approaches for interactive perception tasks

in robots have shown significant success. However, in each of these works, each

robot requires excessive time to perform the necessary object exploration to learn
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interactive perception tasks, which prohibits rapid learning of non-visual object rep-

resentations in practice and, by extension, limits the possibility of real-world robot

deployments [PGH+16].

To address these limitations, we might consider transferring the represen-

tation of object properties to a new robot to enable it to learn faster and com-

plete downstream tasks more efficiently. However, there are no directly transferable

general-purpose representations for non-visual features, as these representations are

specific to each robot’s kinematics properties, including joint configurations, degrees-

of-freedom, and dynamic properties such as mass, center of mass, and inertia, as

well as different sensors and physical interaction capabilities. Consequently, a robot’s

machine learning model cannot be naturally applied to another robot especially for

interactive perception tasks that requires understanding of non-visual object prop-

erties. Therefore, transferring perceptual knowledge of non-visual object properties

from one robot to another is challenging, and each individual robot needs to learn

its task-specific sensory models from scratch, which is a time-consuming process.

While transfer learning has witnessed significant advancements in various do-

mains, including computer vision [ZYZ+20] and natural language processing [BPT+22],

as well as in the realm of reinforcement learning, with notable techniques such as

learning from demonstrations [KGS+20], policy distillation [YP17], and learning

inter-task mapping [GDL+17], the challenges associated with transferring non-visual

object representations for interactive perception tasks in robotics persist and require

further attention. To address this challenge, in this dissertation, we aim to accel-

erate the learning of a newly deployed robot by transferring perceptual knowledge

from an experienced robot that has exhaustively explored objects.

1.2 Dissertation Overview and Research Questions

This dissertation focuses on the transfer of multi-sensory perceptual knowledge ac-

quired through interactions with objects between robots. The primary hypothesis

is that by leveraging the common objects explored by robots, a projection function
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can be learned to facilitate the transfer of knowledge from a more experienced source

robot to a less-experienced target robot. This knowledge transfer enables the target

robot to learn about object properties faster and with fewer object interactions,

leveraging the perceptual knowledge of other robots instead of relying solely on its

own object exploration experience. The central research question addressed in this

dissertation is:

How can robots transfer perceptual knowledge acquired through ob-

ject interactions across heterogeneous robot embodiments, behaviors, sen-

sors, tools, and downstream tasks?

To provide a comprehensive answer to this question, we break it down into

four subsidiary research questions, each contributing to the development of theoreti-

cal problem formulations and practical frameworks that collectively provide insights

into this central research question.

1.2.1 How can we use multimodal deep neural networks for object

categorization by leveraging interactive behavior?

In understanding how humans learn about object properties, it is evident that chil-

dren acquire the ability to discern object categories and recognize objects through

physical exploration. This process involves not only visual perception but also in-

corporates the knowledge of object movement, texture, and sound [Pow99]. It is

crucial to note that many commonly used nouns and adjectives have non-visual

components, highlighting the importance of multimodal understanding in object se-

mantics [LC09]. Motivated by these cognitive processes, Chapter 4 introduces a deep

learning methodology for object category recognition, in which a robot interacts with

objects and processes multi-sensory data to predict the category of the object. Our

methodology combines visual, auditory, and haptic sensory data with exploratory

behaviors such as grasping, lifting, and pushing. Remarkably, our approach sur-

passes previously published baselines on the dataset, which relied on handcrafted

features for each modality. Moreover, our findings emphasize that robots do not

require complete sensory data throughout the entire interaction. Instead, accurate
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predictions can be made early on during the execution of these behaviors, showcasing

the efficiency and effectiveness of our approach.

1.2.2 How can robots transfer perceptual knowledge about objects,

acquired through interactive behaviors and multimodal per-

ception, from a source robot to a target robot?

Robots have significantly advanced in acquiring knowledge about objects through in-

teractive behaviors and multimodal perception [SBS+11, ANN+12, TSS+16, KR23,

ZAS+23]. However, a fundamental challenge arises when transferring this acquired

knowledge to other robots with different physical attributes, interaction capabilities,

and sensor models. If the new robot possesses different interaction capabilities, such

as distinct sensor models or a unique physical embodiment, the implicit knowledge

gained by the previous robot is not directly applicable. This challenge persists,

although object properties remain invariant, regardless of variations in robot mor-

phologies and sensing capabilities. Chapter 5, 7 and 8 are dedicated to addressing

this challenge by proposing frameworks that leverage the potential of generative

models to map the sensory data observed by a source robot to a semantically simi-

lar feature space for a target robot. A vital aspect of this mapping process involves

establishing source-target correspondences based on the invariant object labels or

properties provided by humans. Object properties, considered as intrinsic features,

form a stable foundation for effective knowledge transfer. This human-provided

information about invariant object properties facilitates the establishment of corre-

spondences, proving crucial for effective knowledge transfer between robots, even in

the presence of variations in their physical attributes. Consequently, the target robot

can learn about objects without requiring direct physical interactions, enabling it

to perform tasks like category recognition on novel objects. This research explores

the capabilities of generative models, including Encoder-Decoder Networks (EDN),

β-Variational Encoder-Decoder Networks (β-VED), and β-Variational Autoencoder

Networks (β-VAE), in facilitating seamless knowledge transfer across robots, behav-
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iors, and perceptions, laying the foundation for the development of more versatile

and adaptable robotic systems in various domains.

1.2.3 How can robots transfer implicit perceptual knowledge, par-

ticularly non-visual object properties, among each other us-

ing a shared latent feature space?

Humans rely on various non-visual sensory modalities, such as auditory and hap-

tic, and exploratory behaviors to comprehensively understand objects and their

properties [TVCO04a, WWCM07, EB04, CHPS21]. While robots can utilize visual

data for tasks like shape and color recognition, they cannot often discern non-visual

characteristics, such as texture or weight, solely through visual inputs. Instead,

they must physically interact with objects and use non-visual sensory modalities to

learn about non-visual object properties. However, sharing this knowledge among

robots with varying physical attributes and sensor configurations presents a chal-

lenge. Traditionally, each robot would need to learn task-specific sensory models

through object interaction, which is time-consuming and impractical for wide-scale

deployment. Chapters 6 and 9 introduce frameworks, incorporating techniques like

kernel manifold alignment (KEMA) and supervised metric learning via triplet loss,

aimed at facilitating the transfer of implicit knowledge of non-visual object prop-

erties across multiple heterogeneous robots. Our approaches involve the creation

of a common latent space derived from the sensory data of multiple “teacher” or

“source” robots during interactions with objects, enabling more efficient training

of recognition models for various tasks on “student” or “target” robots. This re-

search strives to enhance the efficiency and practicality of transferring non-visual

object knowledge among robots, promoting broader applications in robotics, such

as facilitating large-scale robot fleet deployments in factories and warehouses.
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1.2.4 How can a robot acquire a task-independent, unified multi-

sensory object property representation, transferrable across

various tasks, via distillation from large pre-trained models,

such as foundation models?

In robotics, achieving a holistic understanding of object properties is pivotal for

numerous tasks, from object categorization to intricate manipulation. Inspired by

the profound role of multi-sensory integration in human perception, Chapter 10 in-

troduces MOSAIC (Multimodal Object Property Learning with Self-Attention and

Integrated Comprehension), an innovative framework designed to expedite the ac-

quisition of unified multi-sensory object property representations. These represen-

tations encompass insights from diverse sensory modalities such as visual, auditory,

and haptic inputs, recognizing that many essential object properties extend be-

yond the visual domain. MOSAIC accomplishes this by distilling knowledge from

large-capacity Vision-Language Models (VLMs), such as the Contrastive Language-

Image Pre-training (CLIP) model [RKH+21], aligning these representations not only

across visual but also language, haptic and auditory sensory domains. By leveraging

language, MOSAIC empowers robots to learn better representations via language

grounding and receive instructions from humans, making human-robot interaction

more intuitive and efficient. MOSAIC’s novel integration of natural language pro-

cessing and multi-sensory perception constitutes a major stride towards developing

more versatile and capable autonomous systems, paving the way for broader ap-

plications across various robotic tasks, including language-conditioned fetch object

tasks and enhanced object property recognition. This pioneering research introduces

CLIP-based sensory grounding, marking a significant advancement in enhancing the

multi-sensory perceptual capabilities of autonomous systems while harnessing the

power of language.

1.2.5 Outline and Contributions

The remaining of this dissertation is structured as follows:
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Chapter 2: Related Work

In this chapter, we provide a review of relevant literature, exploring object explo-

ration in psychology, the integration of multi-sensory perception in robotics, and the

application of transfer learning to facilitate knowledge transfer and enhance robot

perception, laying the foundation for the core contributions of this dissertation.

Chapter 3: Robotic Platform and Datasets

This chapter offers a detailed overview of the experimental infrastructure, encom-

passing robots, sensors, exploratory behaviors, objects, and tools employed in this

research, providing valuable insights into the diverse robotic platforms and datasets

utilized for multi-sensory knowledge transfer experiments.

Chapter 4: Multimodal Object Category Recognition

This chapter introduces a multimodal deep learning methodology for object cate-

gory recognition. It harnesses visual, auditory, and haptic sensory data combined

with exploratory behaviors. This chapter underscores the necessity of transferring

perceptual knowledge across robot platforms.

Chapter 5: Knowledge Transfer with EDN

Chapter 5 unveils a framework based on Encoder-Decoder Networks (EDN) for

knowledge transfer across different behaviors, specifically targeting grounded cat-

egory recognition. This approach excels in generating features for novel objects,

introducing the “accuracy delta” metric for evaluating knowledge transfer tasks.

Chapter 6: Haptic Knowledge Transfer with KEMA

Here, we present a method employing Kernel Manifold Alignment (KEMA) to fa-

cilitate knowledge transfer of haptic information between heterogeneous robots in

simulation environments. The results demonstrate accelerated object recognition

and improved performance in recognizing novel objects through knowledge sharing.

Chapter 7: β-VAE for Cross-behavior and Cross-perception Transfer

Building upon Chapter 5, this chapter enhances knowledge transfer using the β-

Variational Autoencoder Network (β-VAE). It addresses two knowledge transfer

scenarios: cross-behavior and cross-perception, with applications in object category

and object identity recognition. An innovative algorithm for efficient object selection
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for knowledge transfer model learning is provided.

Chapter 8: Learning Projection Functions

Chapter 8 evaluates the effectiveness of two projection functions, EDN and KEMA,

for building object property-based and object identity-based correspondences. Real-

world heterogeneous robots are employed for tasks related to object properties and

identities. A novel data augmentation technique is proposed to enhance knowledge

transfer performance.

Chapter 9: Shared Latent Feature Space via Triplet Loss

This chapter introduces the concept of a shared latent feature space using supervised

metric learning via triplet loss. Knowledge transfer is applied across different tools

and behaviors, with a focus on object identity recognition.

Chapter 10: MOSAIC Framework for Unified Multimodal Representa-

tions

Chapter 10 introduces the MOSAIC (Multimodal Object Property learning with

Self-Attention and Integrated Comprehension) framework, incorporating a contrastive

loss mechanism. This multi-sensory integration system distills foundation models

and aligns them with real-world robotic data, enhancing perception capabilities.

MOSAIC creates unified representations transferable across various tasks, as demon-

strated by its remarkable performance in zero-shot learning scenarios.

Chapter 11: Conclusion and Future Directions

The final chapter summarizes the key findings of this dissertation and proposes

avenues for future research.

9



Chapter 2

Related Work

In this chapter, we delve into the body of literature that underpins the contribu-

tions of this dissertation. Our exploration begins by surveying the field of object

exploration in psychology and cognitive science, which provides the foundational

understanding of how humans interact with and learn about objects. We then

transition into the realm of multi-sensory object perception in robotics, where we

discuss the pivotal role of non-visual sensory modalities in expanding the capabilities

of robotic systems. Following this, we introduce the concept of transfer learning, a

fundamental principle in machine learning, which will serve as a bridge to migrate

knowledge from one robot to another in the context of interactive object percep-

tion. This chapter is intricately connected to the subsequent chapters, where we

delve into specific methodologies and frameworks designed to facilitate knowledge

transfer across robots, ultimately enhancing their perceptual capabilities.

2.1 Object Exploration in Psychology and Cognitive

Science

In psychology and cognitive science, the exploration of objects holds a foundational

role in our understanding of human perception and learning. Research within these

disciplines has illuminated the pivotal role of interactive object manipulation in ac-

quiring knowledge about objects’ tactile, haptic, proprioceptive, and auditory prop-
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erties. Groundbreaking studies, such as those by Gibson and Power [Gib88, Pow99],

have shown that this interactive process commences early in human development,

with infants engaging in a form of exploration that is less goal-oriented and more

focused on gaining insights into how objects feel, sound, and move [ST99]. As in-

dividuals mature, this ability evolves into a more purpose-driven endeavor, aligning

with the desire to acquire specific knowledge about an object’s properties.

Central to this exploration is the integration of multiple sensory modalities.

Fusing visual, tactile, auditory, and kinesthetic inputs is pivotal in enabling humans

to recognize and interact with objects effectively [EB04]. This interplay of sen-

sory modalities, as beautifully articulated by David Katz in 1925, underscores the

intrinsic connection between interaction and the revelation of tactual properties:

“The tactual properties of our surroundings do not chatter at us like their

colors; they remain mute until we make them speak [Kat25]”.

This profound insight highlights the necessity of human engagement with objects

for a rich understanding of their attributes, as the sensory dimensions of touch are

unveiled through these interactive encounters.

This deep-rooted understanding of object exploration in psychology and cog-

nitive science has been a rich source of inspiration for robotics and artificial intelli-

gence [HXJ+23, FKL+22]. The exploration of objects and the utilization of diverse

sensory signals promise to allow robots to acquire comprehensive knowledge about

the objects they encounter in their environments. Just as human cognition benefits

from multiple sensory modalities when dealing with object recognition, robotic sys-

tems aspire to harness these insights for their learning and task-execution processes.

However, the challenge lies in scaling the knowledge acquired by robots via object

exploration to many robots, each with a unique set of capabilities encompassing its

embodiment and sensory modalities. This uniqueness results in distinct interactions

with and perceptions of the world.

As we progress through this dissertation, we explore methodologies and

frameworks for transferring this invaluable knowledge across robots, enabling them

to share their knowledge, reducing the need for new robots to learn from scratch,
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and minimizing the time spent exploring objects. This collective knowledge sharing

has the potential to advance the field of robotics, pushing its current boundaries.

2.2 Multi-sensory Object Perception in Robotics

Traditionally, the realm of object category acquisition and recognition primarily

revolved around the visual domain, leveraging models trained on expansive image

datasets without the need for direct physical interaction with objects [ZZC+12,

LWL+10, LZD15, Zha16, Cha14]. However, this approach’s limitations become

apparent when faced with objects that cannot be fully comprehended through visual

data alone. Categories like “soft” or “empty” might sound simple, but visually

identical objects’ materials, internal states, and compliance can differ significantly.

Visual data alone may not capture the essence of these distinctions.

The field of robotics recognizes the potential inherent in expanding our per-

ception beyond visual cues. While most object recognition methods in robotics have

traditionally been anchored in visual sensing, several innovative research studies have

focused on embracing multiple sensory modalities, often coupled with exploratory

actions [BHS+17, PGH+16]. This approach advocates that robots, like humans,

should harness the richness of sensory information offered by non-visual modalities

for an enhanced understanding of object properties. The incorporation of auditory

[SWS09, EKSW18], haptic [BRK12a], and tactile feedback [SSSS11, LCL19] has

enabled robots to delve into the realm of recognizing objects and their properties.

Furthermore, incorporating non-visual sensory modalities has demonstrated

remarkable potential in the learning of object categories [SSS+14a, HBMK16, ECK17,

TS19]. This extends to encompassing the comprehension of object relations [SKSS16],

enabling robots to not only categorize objects but also understand how these ob-

jects relate to each other. Beyond these capabilities, this integration has extended

its reach to grasping the nuances of human language in describing objects — a leap

in human-robot interaction [RK19]. These additional sensory dimensions, com-

plementing visual perception, significantly enrich the learning process of robotic
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systems.

Although significant advances have been made in incorporating multi-sensory

cues into robotics, transferring object exploration knowledge across robots remains

a considerable challenge [FKL+22]. While some research has been conducted on

the transfer of vision-based knowledge [HMG+22, NLWS20], the domain of trans-

ferring interactive perception knowledge still needs to be explored. This is akin to

robots acquiring a wealth of knowledge about objects through their various senses

but unable to share this hard-earned wisdom effectively. In this dissertation, we

investigate the underexplored territory of transferring interactive perception knowl-

edge across robots, with the goal of expediting robots’ learning of object properties

and expanding the horizons of robotic perception. This exploration includes as-

pects such as language grounding and distilling knowledge from foundation models,

crucial elements for acquiring robust multisensory object representations.

2.3 Enhancing Robotic Perception: A Transfer Learn-

ing Approach

Transfer learning is a fundamental concept in machine learning, often necessitated

by the impracticality of obtaining large, consistent training datasets in real-world

scenarios [ZG22, WLL+22, ZLQ+22, YXL22]. This technique relaxes the traditional

assumption that training data and test data must be drawn from the same distribu-

tion. Instead, transfer learning leverages knowledge learned in one domain, known

as the source domain, to improve performance in a related but different domain, re-

ferred to as the target domain. This approach substantially diminishes the demand

for extensive training data and reduces the time required for data collection in the

target domain. Analogously, it mirrors how humans can transfer knowledge across

domains. For example, someone with expertise in playing the guitar can efficiently

learn to play the piano, as the musical knowledge transfers. Likewise, in transfer

learning, the goal is to transfer knowledge from a source domain to enhance learning

in a target domain. In this context, the source domain represents a domain where
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Figure 2.1: Intuitive examples of transfer learning.

learning has occurred, and the target domain is where we aim to apply this learned

knowledge. Fig. 2.1 shows some intuitive examples of transfer learning.

Transfer learning has demonstrated remarkable efficacy in numerous com-

puter vision applications [ZYZ+20] like image classification [OSSP23, ZZW+20,

CLS+18], human activity classification [LSSVG23, YXC+22, YHSS22], event recog-

nition [DXC12], and face recognition [HYW14], as well as in natural language pro-

cessing applications [BPT+22] encompassing text sentiment classification [CBL+23,

LSJJ19, GBB11], text summarization [TT22, HW17, WC13], and speaker-independent

speech recognition [RQD00]. Additionally, there have been several breakthroughs

in transfer learning in the context of reinforcement learning, such as learning from

demonstrations [KGS+20], policy distillation [YP17], learning inter-task mapping

[GDL+17]. However, specific challenges related to transferring non-visual object

representations for interactive perception tasks in robots, especially in the context

of different morphologies, have yet to be fully addressed. These challenges occur in

scenarios where data collection by the target robot proves expensive, and collecting

data from scratch for each robot is infeasible. In such situations, the prudent choice

is to facilitate knowledge transfer from a source robot to alleviate the resource-

intensive task of independent data collection. This dissertation explores how trans-

fer learning can bridge this gap and empower robots to enhance their interactive

perceptual capabilities. This dissertation proposes three novel frameworks aimed at

addressing the challenges associated with transferring object property representa-

tions for interactive perception tasks in robots. Each framework, discussed in detail
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below, contributes to advancing the field and lays the foundation for more robust

and adaptable robotic systems.

2.3.1 Transfer using Projection to Target Feature Space

In the realm of transfer learning for robotic systems, a pivotal focus of this disser-

tation lies in addressing the challenge of seamlessly transferring acquired knowledge

about objects from one robot to another with disparate physical attributes, inter-

action capabilities, and sensor models. This framework introduces a novel approach

inspired by domain adaptation principles. Encoder-decoder networks, proven suc-

cessful in various domains [MKK+18, GFL19, HZ93, SVL14], serve as a fundamental

component of this framework. The objective is to map sensory data observed by

a source robot to a semantically similar feature space for a target robot. Unlike

traditional models assuming identical feature spaces, our approach acknowledges

potential differences between source and target domains, emphasizing the impor-

tance of semantic similarity [BDBC+10, MMR09]. By establishing correspondences

based on invariant object labels or properties provided by humans [ZAS+23], our

framework capitalizes on intrinsic features, such as object properties, as a stable

foundation for effective knowledge transfer. This mapping process, explored in

Chapters 5, 7, and 8, facilitates the transfer of multisensory object knowledge, en-

abling the target robot to learn about objects without necessitating direct physical

interactions [KR23]. Through this research, the capabilities of generative models, in-

cluding Encoder-Decoder Networks (EDN) [HS06], β-Variational Encoder-Decoder

Networks (β-VED) [LBL19], and β-Variational Autoencoder Networks (β-VAE)

[LWL+17], are harnessed to lay the foundation for more versatile and adaptable

robotic systems across diverse domains. This framework uniquely contributes to

the field by emphasizing the nuanced challenges of transferring knowledge in the

context of interactive object exploration by robots [TSS+16, ZAS+23].
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2.3.2 Transfer using Projection to Shared Latent Feature Space

Domain adaptation, a crucial facet of transfer learning, addresses shifts in feature

spaces between a source domain (training set) and a related but different target

domain (test set). This framework focuses on leveraging kernel manifold alignment

(KEMA) for domain adaptation, a method capable of aligning multiple domains of

varying dimensionality without the need for paired examples. KEMA, successfully

applied in visual object recognition, facial expression recognition, and human ac-

tion recognition [TCV16, LLL+18], introduces a novel application to haptic data

for object recognition in robots. While robots excel at visual tasks, discerning non-

visual characteristics like texture or weight often requires physical interaction and

exploration. Traditional methods would necessitate individual robots to learn task-

specific sensory models, impractical for wide-scale deployment. Chapters 6 and 9 de-

tail our frameworks, incorporating KEMA and metric learning via triplet loss. These

approaches create a shared latent space derived from sensory data during interac-

tions, enhancing the efficiency of transferring non-visual object knowledge among

robots with varying physical attributes and sensor configurations. Our work strives

to contribute to the broader field of robotics by promoting practical and efficient

transfer of non-visual object knowledge among heterogeneous robots, addressing a

crucial gap in existing methodologies [TVCO04a, WWCM07, EB04, CHPS21].

2.3.3 Transferable Unified Multi-sensory Object Property Repre-

sentations

Recent strides in contrastive learning, particularly Contrastive Language-Image Pre-

training (CLIP) [RKH+21], have demonstrated its efficacy in generating generalized

representations for both text and images, excelling in diverse tasks such as zero-

shot image classification and image retrieval via text. While CLIP’s knowledge has

been extended to audio [WSKB22], our MOSAIC (Multimodal Object Property

Learning with Self-Attention and Integrated Comprehension) framework stands as

the pioneering effort to ground sensory data obtained through robotic object explo-
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ration. MOSAIC introduces a novel approach to learning unified multi-sensory ob-

ject property representations by distilling knowledge from the extensive pre-trained

CLIP text model. In Chapter 10, MOSAIC aligns representations not only across

visual but also haptic and auditory sensory domains, recognizing the importance of

encompassing diverse sensory modalities. By leveraging language, MOSAIC empow-

ers robots to acquire better representations and receive instructions from humans,

enhancing human-robot interaction intuitively and efficiently. This pioneering re-

search in CLIP-based sensory grounding contributes significantly to advancing the

multi-sensory perceptual capabilities of autonomous systems, marking a crucial step

toward versatile and capable robotic systems with applications across various do-

mains.

2.4 Summary

In this chapter, we reviewed the relevant literature that informs the core contribu-

tions of this dissertation. We commenced our exploration by delving into the world of

object exploration in psychology and cognitive science, highlighting the importance

of interactive engagement with objects to understand their attributes and integrate

multiple sensory modalities in this process. This foundational understanding in-

spired the integration of multi-sensory perception in robotics, where we discussed

the significance of moving beyond visual recognition alone to enhance robotic object

perception and understanding. To facilitate knowledge transfer across robots and

expedite their learning processes, we introduced the concept of transfer learning, a

powerful tool borrowed from machine learning. This chapter serves as the backdrop

for our subsequent investigations into transferring interactive perception knowledge

across robots and advancing the field of robotic perception.
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Chapter 3

Robotic Platform and Datasets

This chapter offers an overview of the robotic platform and datasets employed in the

research detailed in this dissertation. The study leveraged a diverse array of robotic

platforms, encompassing both simulation-based and real-world robotic systems, each

equipped with sensors for data recording. These robots and their sensors played a

pivotal role in collecting multiple datasets. These datasets, comprising sensory data

recorded during interactions with various objects, were crucial in conducting ex-

periments related to multi-sensory knowledge transfer. All datasets generated as

part of this research have been thoughtfully curated and are made publicly avail-

able, serving as valuable resources for future research endeavors. Importantly, the

datasets curated for this research have been extensively used in experimental evalua-

tions of the knowledge transfer methodologies detailed in Chapter 6, Chapter 8, and

Chapter 9. These experiments focus on various aspects of multi-sensory knowledge

transfer among robots, utilizing the rich and varied data collected from the robotic

platforms. The subsequent sections delve into the specifics of the robots, the array

of sensors at their disposal, and a detailed exploration of the datasets collected for

this dissertation.
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Figure 3.1: The three simulated robots employed for object exploration - (A) Baxter,
(B) Fetch and (C) Sawyer.

3.1 Robots and Sensors

3.1.1 Simulated Robots

In the context of tabletop manipulation, this research employed three simulated

robots—Baxter, Fetch, and Sawyer, as depicted in Fig. 3.1. Baxter has dual arms,

with the left arm utilized for object interactions, while Fetch and Sawyer each have

a single arm configuration. All three robots, including two grippers, have 9 degrees

of freedom (DOF). To enable data collection, these robotic platforms had an array

of sensors, encompassing effort, position, and velocity sensors at each joint and the

end-effector. Baxter’s sensory data acquisition rate was set at 50Hz, while Fetch

and Sawyer operated at 100Hz. For a more comprehensive understanding of the

objects explored by these robots and the specific exploratory behaviors employed,

additional details can be found in Chapter 6.

3.1.2 Real-world Robots

Our research also engaged two real-world robots, Baxter and UR5, in a tabletop

manipulation environment (illustrated in Fig. 3.2). Baxter had dual 7-degree-of-

freedom arms and a 2-finger gripper. For object exploration, we used Baxter’s left

arm. UR5, on the other hand, possessed a 6-DOF structure and a 2-finger Robotiq

85 gripper.

Baxter: Baxter was equipped with a PrimeSense camera* mounted on its head,

*https://en.wikipedia.org/wiki/PrimeSense
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which captures images at a resolution of 640×480. Additionally, an Audio-Technica

PRO 44 microphone� was positioned on its workstation. The Baxter hand camera

recorded images at a resolution of 480×300. Baxter’s sensory suite includes force-

torque sensors, measuring effort at each joint and torque at the end-effector.

UR5: UR5 utilized a Seeed Studio ReSpeaker microphone� on its workstation.

UR5, in the course of object exploration for Chapter 8, employed an Orbbec Astra

S 3D Camera§. For Chapter 9, we transitioned to using an Intel RealSense Depth

Camera D455¶. Both of these cameras, securely affixed to UR5’s frame, captured

images at a resolution of 640×480. Additionally, in Chapter 9, UR5 incorporated

the use of the DIGIT tactile sensor�, which captures vision-based tactile images at

a resolution of 320×240. This sensor was mounted on one of the gripper’s fingers.

Sample tactile images captured by UR5 while holding various tools can be seen

in Fig. 3.3. UR5 also has force sensors that measure effort at each joint and a

force-torque sensor at the end-effector.

In summary, Baxter had 14 sensors, while UR5 had 12, covering diverse

modalities. A list of these sensory modalities, coupled with their respective sampling

rates, can be found in Table 3.1.

3.2 Datasets for Multisensory Knowledge Transfer

This section encompasses an overview of the datasets utilized in this dissertation,

where robots explore objects and record their sensory signals. We begin by describ-

ing publicly available datasets employed in this research, followed by the introduc-

tion of new datasets collected to facilitate our investigations.

�https://www.amazon.com/dp/B0002BBOOS
�https://www.amazon.com/dp/B07ZGZSBS4
§https://www.amazon.com/dp/B07484SMB8
¶https://store.intelrealsense.com/buy-intel-realsense-depth-camera-d455.html
�lambeta2020digit
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Figure 3.2: The two real-world robots employed for object exploration - (A) Baxter
and (C) UR5.

Figure 3.3: Tactile images captured by UR5 holding various tools: (A) metal scissor,
(B) metal whisk, (C) plastic knife, (D) plastic spoon, (E) wooden chopstick, and
(F) wooden fork.
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Table 3.1: Sensors with sampling rates for Baxter and UR5.

Modality Baxter UR5

Accelerometer 100 Hz -
Audio 44.1 kHz 16 kHz
End-Point State (Force) 100 Hz 125 Hz
End-Point State (Torque) 100 Hz 125 Hz
Gripper State (Force) 20 Hz -
Gripper State (Position) 20 Hz 30 Hz
Gripper State (Velocity) - 30 Hz
Hand Camera (RGB) 6 Hz -
Head Camera (Depth) 30 Hz 30 Hz
Head Camera (Point-Cloud) 30 Hz 30 Hz
Head Camera (RGB) 30 Hz 30 Hz
Joint State (Effort) 140 Hz 135 Hz
Joint State (Position) 140 Hz 135 Hz
Joint State (Velocity) 140 Hz 135 Hz
Range 100 Hz -
Tactile Images (RGB) - 30 Hz

3.2.1 Existing Public Datasets

In our research, we have made use of two publicly available datasets: Sinapov14

[SSS+14a] and Sinapov16 [SKSS16]. These datasets present valuable resources for

understanding multi-sensory knowledge transfer in robotic systems.

Sinapov14 Dataset: Sinapov14 consists of data collected using the Barrett hu-

manoid robot equipped with a 7-DOF arm. This dataset encompasses interactions

with 100 household objects from 20 distinct categories. Ten exploratory behaviors

were executed, each named as Look, Press, Grasp, Hold, Lift, Drop, Poke, Push,

Shake, and Tap. The Look behavior primarily captures visual data, while the in-

teractive behaviors encompass visual, audio, vibrotactile, and haptic sensory data

gathered through the robot’s sensors. For each object, each behavior was repeated

five times, yielding a total of 5,000 interactions (10 behaviors x 5 trials x 100 ob-

jects). We have leveraged this dataset in our experiments detailed in Chapters 4, 5,

7 and 10.

Sinapov16 Dataset: Sinapov16 employs the Kinova MICO robot, which explored

32 common household objects using eight distinct exploratory actions: Look, Grasp,

Lift, Hold, Lower, Drop, Push, and Press. Similar to Sinapov14, the Look behavior
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focused on visual data, while the other behaviors integrated audio, proprioceptive

(finger positions for grasp), and haptic (i.e., joint forces) data acquired during in-

teractions with the objects. Each of the eight behaviors was conducted five times

on each of the 32 objects, resulting in a total of 1,280 interactions (8 behaviors x

5 trials x 32 objects). This dataset has been used in our experiments outlined in

Chapter 7.

3.2.2 Newly Collected Datasets

In the pursuit of conducting research for this dissertation, we recognized the need

for datasets specifically tailored to our experimental objectives. We present three

novel datasets: Tatiya20 [TSES20], Tatiya23 [TFS23], and Tatita24 [TFS24].

Tatiya20 Dataset: Tatiya20 dataset revolves around interactions with three sim-

ulated robots: Baxter, Fetch, and Sawyer. These robots feature heterogeneous

embodiments, as described in Section 3.1.1. The dataset encompasses four distinct

behaviors - Grasp, Pick, Shake, and place - executed on 25 block objects, each

varying in weight from 0.01 kg to 1.5 kg. The robots’ behaviors are encoded as

joint-space trajectories with joint values randomly sampled within specified ranges

for each joint, aiming to simulate real-world variability. Effort feedback from all

joints is recorded during each behavior. Each behavior is repeated 100 times on

each object, resulting in an extensive dataset of 30,000 examples (3 robots x 4 be-

haviors x 25 objects x 100 trials). This dataset underpins the experiments detailed

in Chapter 6.

Tatiya23 Dataset: Tatiya23 involves interactions with two real-world robots, UR5

and Baxter, each having heterogeneous characteristics, as described in Section 3.1.2.

These robots execute eight behaviors: Look, Grasp, Pick, Hold, Shake, Lower, Drop,

and Push. The Look behavior records visual modalities (RGB, Depth, and Point-

Cloud) from their head camera and serves as a non-interactive behavior. The re-

maining behaviors are interactive and are encoded as joint-angle trajectories. For all

behaviors, Point-Cloud data is recorded for the first 5 frames. The dataset includes

95 objects (cylindrical containers) with variations in color, content, and weight.
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Both robots explore these objects, performing five trials on each, resulting in a com-

prehensive dataset of 7,600 interactions (2 robots x 8 behaviors x 95 objects x 5

trials). This dataset plays a pivotal role in the experiments outlined in Chapter 8.

Tatita24 Dataset: Tatiya24 centers around interactions with the UR5 robot, as

described in Section 3.1.2. The robot employs six tools: metal-scissor, metal-whisk,

plastic-knife, plastic-spoon, wooden-chopstick, and wooden-fork, to execute six be-

haviors: Look, Stirring-slow, Stirring-fast, Stirring-twist, Whisk, and Poke. Look is

a non-interactive behavior, whereas the others involve dynamic movements encoded

as joint-angle trajectories. The robot explores 15 granular food-like objects (e.g.,

salt, wheat) stored in cylindrical containers. Ten trials are conducted on each object

using a tool, resulting in a dataset of 5,400 interactions (6 tools x 6 behaviors x 15

objects x 10 trials). This dataset plays a pivotal role in the experiments outlined in

Chapter 9.

For detailed insights into the behaviors, objects, sensory features, and tasks

of each dataset, please refer to the specific chapter where each dataset is utilized.

These datasets, while distinctive in terms of robot platforms and explored objects,

have provided a rich foundation for our research into multisensory knowledge trans-

fer. Table 3.2 provides a summary of both the existing datasets employed and the

new datasets we have meticulously collected to facilitate our knowledge transfer

experiments.

3.3 Summary

This chapter presents the foundational elements of the research, detailing the robotic

platforms and their sensors pivotal to the dissertation’s core investigations. The

robotic platform comprises both simulated and real-world agents, including Baxter,

Fetch, Sawyer, and UR5, each endowed with a unique array of sensory modalities

essential for data collection during object interactions. These robots are pivotal in

the multi-sensory knowledge transfer explored throughout the dissertation.

The chapter also introduces a critical component - the datasets. It classifies
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Table 3.2: This table provides an overview of the sensory modalities captured in
each dataset used in this dissertation, along with the number of robots involved,
objects explored, distinct behaviors performed, types of tools employed, the number
of trials conducted, and the total count of interactions recorded for each dataset.

Datasets Modalities RobotsObjects Behaviors Tools Trials Interactions

Existing Public Datasets
Sinapov14 vision, auditory,

haptic, tactile
1 100 10 - 5 5,000

Sinapov16 vision, auditory,
haptic

1 32 8 - 5 1,280

Newly Collected Datasets
Tatiya20 haptic 3 25 4 - 100 30,000
Tatiya23 vision, auditory,

haptic
2 95 8 - 5 7,600

Tatiya24 vision, auditory,
haptic, tactile

1 15 6 6 10 5,400

these datasets into two categories: existing public datasets, including Sinapov14

and Sinapov16, and newly collected datasets, encompassing Tatiya20, Tatiya23,

and Tatita24. Table 3.2 shows an overview of each dataset used in this dissertation.

These datasets play a pivotal role in the empirical investigations detailed throughout

the dissertation. These datasets not only aid in deepening our comprehension of

knowledge transfer but also stand as valuable resources for the broader research

community, spanning domains beyond the specific investigations in this work. They

hold the potential to benefit research in robotics, machine learning, and related

fields, extending their usefulness beyond the scope of this dissertation.
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Chapter 4

Deep Multi-Sensory Object Category

Recognition Using Interactive

Behavioral Exploration*

4.1 Introduction

Learning to classify objects into categories is an important skill for a wide variety

of robot tasks and an open research challenge in the fields of robotics and computer

vision. For example, a domestic service robot that has to clean up a dining table

needs to identify semantic categories of objects, like “glass”, “full”, “open”, etc.

While some categories can be identified using visual input alone, others cannot

and thus satisfactory performance in real-world applications remains a challenge

[ZZC+12, LWL+10, LZD15, Zha16, Cha14].

Children learn to discern object categories and recognize objects through

physical exploration, where they not only learn what objects look like, but also

how they move, feel, and sound [Pow99]. This knowledge is crucial for learning

object semantics as the majority of the most common nouns and adjectives humans

*This chapter is based on the following paper: Gyan Tatiya and Jivko Sinapov, “Deep
multi-sensory object category recognition using interactive behavioral exploration”, IEEE Interna-
tional Conference on Robotics and Automation (ICRA), pages 7872–7878. IEEE, 2019. [TS19]
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use have a non-visual component [LC09]. Yet, most robots today rely on pre-

trained computer vision models, e.g., [RDGF16], and thus are unable to reason

about semantics that cannot be detected using vision alone.

To address these limitations, we propose a deep multimodal learning method-

ology that enables a robot to categorize novel objects by performing exploratory

interactions and processing multi-sensory data input, shown in Figure 4.1. The pro-

posed method is evaluated on a publicly available dataset in which a humanoid robot

explored a set of 100 objects using 9 different exploratory behaviors while recording

visual, haptic, and auditory data. For all behaviors, the proposed multimodal net-

work architecture either substantially outperformed the previously published base-

line, or produced comparable recognition rates. Furthermore, we demonstrate that

our approach can produce accurate category estimates with only a fraction of the

data produced by an individual behavior, suggesting that exploratory behaviors can

be designed to be shorter in duration, allowing a robot to learn multi-sensory object

properties quicker in a deployed, realistic setting.

In the context of the broader dissertation, this chapter introduces specialized

architectures for processing raw multi-sensory data to predict object categories.

However, the models learned in this chapter cannot be directly used by other robots,

and each robot must learn its own model by object exploration from scratch, a

time-consuming process. Chapters 5 and 7 propose methods for Transfer using

Projection to Target Feature Space, which were evaluated on the same robot as in this

chapter. Chapter 10 introduces a method for learning Transferable Unified Multi-

sensory Object Property Representations and outperforms the method proposed in

this chapter for the object category recognition task. Overall, this chapter lays the

foundation for the need to develop knowledge transfer methodologies.

4.2 Related Work

Object category acquisition and recognition has been studied extensively in the

visual domain, where models can be trained on large image datasets with no need
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Figure 4.1: Overview of the proposed categorization pipeline.

for robotic interaction with objects [ZZC+12, LWL+10, LZD15, Zha16, Cha14]. For

many semantic object categories (e.g., “soft”, “empty”), visual information alone

may not be sufficient as visually identical objects can differ in material, internal

state, and compliance.

To address these cases, several research lines use proprioceptive, haptic,

auditory, and/or tactile feedback of robot interaction with objects for category

recognition [NANI11, SSS+14a, SSS14c, GZ16]. For example, Nakamura et al.

in [NANI11] proposed a method that enables the acquisition of object concepts

from multiple modalities, such as visual, auditory, and haptic information gathered

by robots. Sinapov et al. [SSS+14a] demonstrated a category recognition frame-

work in which the robot uses multiple exploratory actions (e.g., grasping, lifting,

shaking, pushing) to learn object category models and categorize 100 objects. More

recently, Thomason et el. [TSS+16, TPS+17, TSMS18] demonstrate how the cate-

gory recognition method proposed in [SSS14c] can be deployed on a service robot to

learn object semantics extracted from human-robot dialog. These examples of multi-

sensory perception used hand-crafted features for different modalities and require

some amount of feature engineering, especially when adding new sensory modalities.

Several works have explored deep learning methods for tasks like surface

material classification and tactile understanding using visual and haptic modalities

[ECK17, GHKD16, ZFJ+16]. Erickson et al. [ECK17] presented a semi-supervised
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learning approach for material recognition with Generative Adversarial Networks

(GANs) that enables a robot to learn from haptic features such as force, temperature,

and vibration data from interactions with everyday objects and classify them into

six material categories. Gao et al. [GHKD16], proposed a deep learning method for

tactile understanding using haptic and visual signals. First, individual visual and

haptic prediction networks were trained and then they used activations from these

networks to train a multimodal network. They demonstrated that combining data

from both modalities improves performance. We note that further research work

is necessary to use modern learning techniques, which is relatively unexplored in

object category recognition. In particular, we present an architecture that uses a

larger number of diverse exploratory actions, and consider three types of sensory

feedback at the same time: visual, haptic, and auditory.

4.3 Learning Methodology

For each sensory modality, we investigated several network configurations to find

ones that achieve high performance on object categorization tasks using visual,

audio, and haptic data in a multimodal setting*. Next, we describe these networks

along with notation and problem formulation.

4.3.1 Notation and Problem Formulation

Let B be the set of exploratory behaviors, let O be the set of objects, and let

M = {v, a, h} be the set of modalities (vision, audio, and haptics). During each

object exploration trial, the robot applies all of its exploratory behaviors on an

object o ∈ O and records the 3 different sensory data signals for each modality.

Thus, during the ith exploration trial, for each behavior b ∈ B, the robot observed

features:

*Datasets and source code for study replication are available as Jupyter Notebooks at: https://
github.com/gtatiya/Deep-Multi-Sensory-Object-Categorization. Development environment
and network hyper-parameters details are discussed in the README file of the repository. Some
alternative network configurations are also discussed with the source code.
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Figure 4.2: The architecture of CNN used for sound classification.

Xv
i ∈ Rw×h×tvi ,Xa

i ∈ Rf×tai ,Xh
i ∈ Rd×thi (4.1)

where w and h are the width and height of each image, f is number of frequency

bins in the sound spectrogram, d is the number of channels (e.g., number of robot

joint-torque sensors) in haptic data, and tvi , tai , and thi are the number of frames

(e.g., number of images) produced over the course of the interaction for each of the

three modalities.

Let the function label (o) → y be a labeling function that given an object

o outputs a label y ∈ Y , where Y is the set of category labels. It is important to

note that the labels assigned to objects are provided by a human supervisor. The

task of the robot is to learn a category recognition network for each behavior b ∈ B,

that predicts the correct label y, given a sensory signal from modality m ∈ M

detected while interacting with object o using b. In addition, for each behavior,

the robot also learns a multimodal neural network that takes all the modalities of

an interaction with an object as input and predicts its category label. Each of the

networks estimates a probability for each of the category labels as described below:

Pr(ŷ = y|xmi ), for a single modality

Pr(ŷ = y|xvi , xai , xhi ), for all the modalities (4.2)
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Figure 4.3: The architecture of CNN used for haptic classification.

4.3.2 Visual Network Architecture

4.3.2.1 Image Sequence Pre-processing

For each behavior b ∈ B, we calculated the average number of image frames per

interaction and extracted that many equally-spaced frames from each interaction’s

image sequence, where each frame was resized to 120 x 90 pixels.� For example,

the video of a press interaction took 48 frames on average for each of 500 trials

(100 objects with 5 trials each), so we extracted 48 frames from all the videos of

press interactions. These pre-processing steps were applied to all the videos of each

interaction.

4.3.2.2 Video Network Architecture

Convolutional neural networks (CNNs) have been highly successful in image classifi-

cation tasks [KSH12, SZ14, LdADSOS17] and Recurrent Neural Networks (RNNs)

have been shown to perform well in classifying sequential data [BCB14, SVL14,

GJM13, SMS15]. Much work uses the combination of a CNN and an RNN by

processing each frame using CNN before feeding it to RNN for video classification

[XHD16, MSPGiN16, DAHG+15]. This approach turned out to be impractical for

our dataset because the combination of a CNN and an RNN makes a network very

deep, which requires a large number of examples to learn all the parameters of the

network during training; however, our dataset is very small - there are only 20 ex-

�Experimentation with the original image resolution (320 x 240) was also performed, but there
was no improvement in accuracy. However, training took a longer time.
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amples per category as each object was explored 5 times and the model was trained

on 4 out of the 5 objects per category.

We used Tensor-Train Gated Recurrent Unit (TT-GRU), a type of RNN,

for video classification proposed by Yang et al. [YKT17], which has been shown to

achieve results very close to the state-of-the-art networks on various video datasets,

despite having a very simple architecture. To reduce the number of weight matrix

parameters to be learned, TT-GRU factorizes the input-to-hidden weight matrix

using Tensor-Train decomposition which is trained with the weights at the same

time. For each frame, a large group of pixel inputs are mapped to the RNN as a

latent vector, which is usually lower in dimensionality. This latent vector is then

enriched by its predecessor at the last time step recurrently for hidden-to-hidden

mapping. In this manner, the RNN is able to learn the inter-frame transition pat-

terns to extract the representation of the entire sequence of frames, and captures the

correlation between spatial and temporal patterns because the input-to-hidden and

hidden-to-hidden mappings are trained simultaneously. For more details on tensor

factorization models and tensor train-decomposition, see [Ose11, NPOV15].

4.3.3 Auditory Network Architecture

4.3.3.1 Sound Pre-processing

We used librosa 0.6.0 [MRL+15], a python package for music and audio analysis,

to generate log-scaled mel-spectrograms of the wave files with FFT window length

of 1024, hop length of 512 and 60 mel-bands. In addition to the spectrogram, we

computed its derivative as a second channel using the default librosa settings. To get

the fixed length input, we interpolated both channels of the spectrogram, so that the

rate of the audio frames was consistent with that of the visual frames. Specifically,

for each frame in a video, we interpolated 5 frames for the corresponding audio file.

For example, the video of a press interaction has 48 frames, so we interpolated 240

(48 x 5) frames from its audio data.
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4.3.3.2 Sound Network Architecture

While CNNs are largely used on image data, they have also shown strong perfor-

mance in speech [AHMJ+14, AHMJP12] and music analysis [DBS11, VdODS13].

There is abundant research that demonstrates that the ability of finding local fea-

tures can be successfully applied in sound classification [Pic15, OOF18, SAP17].

Therefore, we used CNN� for the sound dataset depicted in Figure 4.2 and described

as follows. The CNN consisted of a total of 6 learned layers including 2 convolutional

ReLU, 2 max-pooling and 2 fully connected layers. The first convolutional ReLU

layer consisted of 20 filters of kernel size 57 x 6 and stride 1 x 1, and max-pooling

with a pool shape of 4 x 4 and stride of 4 x 4. The second convolutional ReLU

layers consisted of 40 filters of kernel size 1 x 3 and stride 1 x 1, with max-pooling

of shape 4 x 4 and 4 x 4 pool stride. Both the first and the second fully connected

layer consisted of 256 nodes.

4.3.4 Haptic Network Architecture

4.3.4.1 Haptic Pre-processing

In our dataset, the haptic signals from 7 joints were sampled at 500 Hz. To get the

fixed size input and to synchronize the haptic signals with video and sound data,

we interpolated each haptic feedback to 50Hz§. For example, the press interaction

takes 4.8 seconds, so we interpolated 240 (4.8 x 50) frames for each haptic signal of

a press interaction.

4.3.4.2 Haptic Network Architecture

Several works in the literature have used CNNs to exploit the haptic signal for ma-

terial classification [ZFJ+16, KANW17]. CNN performed very well because haptic

feedback is expected to have temporal correlations with repeating local features in a

hierarchical order of scales. For this reason, we used a CNN illustrated in Figure 4.3

�Experiments were also performed using an RNN as well as a CNN-RNN combination, but both
produced lower accuracy recognition rates.

§Experimentation with the original sampling rate (500Hz) was also performed, but there was no
improvement in accuracy. However, training took a longer time.
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for the haptic data, which consists of 5 layers that includes 2 convolutional ReLU,

2 max-pooling and 1 fully connected layers. The first convolutional ReLU layer’s

kernel dimensions are 20 x 5 with 32 filters, and the second convolutional ReLU

layer has kernel size 1 x 3 and 64 filters. Both first and second max-pooling layers

have a pool size of 10 x 1 and stride of 2 x 2. The fully connected layer has 1024

neurons.

4.3.5 Multimodal Network Architecture

The multimodal network inputs the same pre-processed video, audio and haptic data

as described above. We used the same network architecture for each modality and

in addition, added a fusion layer shown in Figure 4.4. For each modality-specific

network, the last layer outputs 20 values for the 20 categories in the dataset. We

activated these 20 outputs for each network using ReLU activation and concatenated

them to get a layer of 60 neurons. We again activated these 60 neurons using ReLU

activation and connected it to a linear layer of 20 outputs for final predictions.

ReLU activation function gives a non-linear component to the network and lets

the network find useful patterns, while suppressing the irrelevant features. For

example, a hold interaction does not produce relevant sound, so the network learns

to give more importance to vision and haptic feedback than audio. The multimodal

network was trained from scratch which produced better results than training the

modality-specific networks first, and then only training the fusion layer. We also

considered combining the outputs of the modality-specific networks using a uniform

combination, but using a fusion layer increased category recognition accuracy.

4.4 Evaluation and Results

4.4.1 Dataset Description

We used the publicly available dataset of the experiment performed by Sinapov

et al. [SSS+14a], in which an upper-torso humanoid robot (shown in Figure 4.1)

explored 100 different household objects belonging to 20 different categories (shown
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Figure 4.4: The architecture multimodal network.

Figure 4.5: The exploratory interactions that the robot performed on all objects.
From top to bottom and from left to right: (1) Press, (2) Grasp, (3) Hold, (4) Lift,
(5) Drop, (6) Poke, (7) Push, (8) Shake and (9) Tap.
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Figure 4.6: The robot along with the 100 objects, grouped in 20 object categories.

in Figure 4.6) using 9 exploratory behaviors performed with its left arm: Press,

Grasp, Hold, Lift, Drop, Poke, Push, Shake and Tap (shown in Figure 4.5). During

each interaction, the robot recorded visual feedback in the form of RGB images

at 10 fps, auditory feedback in the form of a waveform at 44.1 KHz, and haptic

feedback consisting of the joint-torque values sampled at 500Hz. Each behavior

was performed 5 times on each object, resulting in a total of 9 x 5 x 100 = 4,500

interactions.

4.4.2 Evaluation

We evaluated how well the trained networks perform when recognizing the category

of objects that are not found in the training set, via 5-fold object-based cross vali-

dation. During each round of evaluation, the training set consisted of the data from

4 objects from each category and the test set consisted of the remaining object for

each category. Since the robot explored each object 5 times, there were 400 (80 x

5) examples in the training set, and 100 (20 x 5) examples in the test set. This pro-

cedure was repeated 5 times, such that each object was included four times in the

training set and once in the test set. We used two metrics to evaluate the category

recognition performance. The first metric was accuracy (%) as defined below:

Accuracy =
correct predictions

total predictions
× 100%.
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Figure 4.7: An illustrative example of the multimodal network category probability
estimates as the robot performs the tap behavior on one of the blue container objects.
The robot’s category estimates converges to the correct category after about 0.7
seconds of interaction.

The second metric was the F -score, which is defined as the harmonic mean

between the precision and recall for a given category label. The F -score is given by:

F = 2 × precision× recall

precision + recall
.

The F -Score is always in the range of 0.0-1.0. For a given category, a high

value of the F -Score indicates that the category is easy to recognize, while a low

value shows the opposite.

4.4.3 Results

4.4.3.1 Illustrative Example

An example of the multimodal network category probability estimates as the robot

performs a behavior on an object is shown in Figure 4.7. The robot’s category

estimate converges to the correct category after about 0.7 seconds of interaction.

The figure plots the estimates for only 5 of the 20 categories to prevent clutter.
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Table 4.1: Category recognition accuracy (%) rates for each behavior
Behavior SVM Baseline [SSS+14a] Multimodal Network

Grasp 65.2 71.4
Hold 67.0 76.8
Lift 79.0 77.8

Drop 71.0 78.0
Poke 85.4 73.8
Push 88.8 67.4
Shake 76.8 83.6
Tap 82.4 81.6

Press 77.4 58.8

4.4.3.2 Accuracy Results of Category Recognition

Table 4.1 shows the accuracy for each behavior, compared with the baseline Sup-

port Vector Machine (SVM) machine learning approach presented by Sinapov et al.

[SSS+14a], which used hand-crafted auditory, haptic features, and visual features

(bag-of-word SURF and a histogram of optical flow). In general, the multimodal

network yields comparable performance to the baseline (chance accuracy is 5%).

In addition, we tested the accuracy of networks trained on individual sensory

modalities as a function of time over the course of each interaction. For example,

the hold behavior’s duration was 1.2 seconds but we hypothesized that the robot

would not need all 1.2 seconds of sensory signals to make a good prediction. Fig-

ure 4.8 shows the accuracy curve for every combination of interaction and sensory

modality. The results show that for many behaviors, accurate predications can be

made without needing to execute the entire behavior. This result is important as

behavioral exploration of objects can be costly in terms of time and suggests that in

future work, exploratory behaviors can be designed not only to maximize accuracy

but also to minimize their duration such that a robot can learn object properties

quicker.

4.4.3.3 F-Score Results of Category Recognition

F-scores shown in Figure 4.9 indicate which modality and behavior work better for

each category. For categories in which all the objects have similar shape and color,
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Figure 4.8: Accuracy curve for all the interactions and sensory modalities. The
x-axis is duration (seconds) and the y-axis is accuracy.

Figure 4.9: Recognition F -score for each category behavior, and sensory modality:
(v)isual, (a)uditory, (h)aptic and (m)ultimodal.
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the visual modality network performs better than the auditory and haptic models.

For hold and lift interactions, the haptic network detects categories better than the

sound network. Overall, the results show that different modalities and behaviors

are relevant for different categories and suggests that robots need to purposefully

select relevant actions when learning new categories.

4.5 Summary

Recognizing the category of objects is an important task for robots operating in

human inhabited environments. We proposed deep learning techniques for object

categorization using visual, auditory and haptic data acquired through behavioral

interactions that a humanoid robot can perform on objects. We demonstrated how

the robot learns to detect an object’s category using a neural network for each of

the sensory modalities individually. In addition, we propose a novel strategy that

efficiently combines sensory modalities in a single classifier. Furthermore, unlike pre-

vious work, we showed that a robot does not need data from the entire interaction,

but instead can make a good prediction early on during behavior execution.

In ongoing and future work, we are investigating the spectrum of early vs.

late sensory integration in the context of category learning. In our experiments, we

found that adding a fusion module, consisting of one layer, increased performance

as compared to training separate modality-specific networks and combining their

outputs; yet, it is an open question how deep the fusion module should be to achieve

optimal performance. Another open question to be pursued in future work is how

to incrementally learn new categories instead of learning all categories at the same

time. The ability to acquire new categories on the fly would enable this approach to

be used in grounded language learning settings, where a robot in a human inhabited

environment encounters new words describing objects over time as it interacts with

the people around it. Finally, to test the proposed method in a more complex

scenario, we can keep multiple objects in the working space of the robot.
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Chapter 5

Sensorimotor Cross-Behavior

Knowledge Transfer for Grounded

Category Recognition*

5.1 Introduction

From an early stage in development, humans and many other species use exploratory

behaviors (e.g., shaking, lifting, pushing) to learn about objects [Pow99]. Such

behaviors produce not only visual but also auditory and haptic feedback [SS08],

which is fundamental to grounding the meaning of many nouns and adjectives that

cannot be represented using vision alone [LC09]. For example, to perceive whether

an object is full or empty, a human may lift it; to perceive whether it is soft or hard,

a human may press it [Gib88]. In a sense, the behavior acts as the question which

is subsequently answered by the sensory signal produced during its execution.

Recent advances in robotics have shown that robots too can use such ex-

ploratory actions for a variety of tasks, including object recognition [SBS+11], cat-

egory acquisition [ANN+12], and language grounding [TSS+16]. Despite the sig-

*This chapter is based on the following paper: Gyan Tatiya, Ramtin Hosseini, Michael
C. Hughes, and Jivko Sinapov, “Sensorimotor cross-behavior knowledge transfer for grounded cate-
gory recognition”, International Conference on Development and Learning and Epigenetic Robotics
(ICDL-EpiRob), IEEE, 2019. [THCHS19]
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nificant advancement in interactive and multisensory object perception for robots

[BHS+17], one challenge is that multisensory representations such as haptic, pro-

prioceptive, auditory, and tactile perceptions cannot be easily transferred from one

robot to another, as different robots may have different behaviors, bodies, and sen-

sors. Since each robot has a unique morphology and sensor suite, each individual

robot needs to learn its task-specific multisensory models of objects from scratch and

cannot use models learned by a robot with different embodiment. Even in the case

of two physically identical robots, it is not always possible to transfer multisensory

object models as the robots’ behaviors may be different.

To address these existing limitations, this chapter proposes using an encoder-

decoder neural network to project sensorimotor features that the source robot has

observed when interacting with an object to a semantically similar feature space that

the target robot would observe when it interacts with the same object. For example,

if the source robot and the target robot had observations of what the same objects

feel like when grasped and shook, the pair of datasets would be used to learn a shared

latent space which in turn can be used to generate observations of new objects using

the source robot’s observations to teach the target robot. This generated feature

space can be used to train a task-specific recognition model allowing the target

robot to identify objects of novel classes that it has not previously interacted with.

The benefit of this approach is that the target robot would not have to learn the

recognition task from scratch, but instead could use the generated features obtained

from the source robot.

The proposed method is evaluated on a dataset in which a humanoid robot

explored a set of 100 objects, corresponding to 20 categories using 9 exploratory

behaviors while recording haptic and auditory data. The results show that certain

combinations of the sensory modality and the behavior performed by the source

and the target robot to learn the encoder-decoder network can generate features

that achieve recognition accuracy almost as good as if the target robot learned by

actually interacting with the objects.

In the context of the broader dissertation, this chapter proposes an Encoder-
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Decoder based method for Transfer using Projection to Target Feature Space and

evaluates it on knowledge transfer across different behaviors. Furthermore, in Chap-

ter 7, the architecture proposed in this chapter is improved to support multiple

source robots that performed different behaviors to generate the target robot’s fea-

tures.

5.2 Related Work

5.2.1 Object Exploration in Cognitive Science

Cognitive neuroscience shows that it is important for humans to interact with objects

in order to learn their tactile, haptic, proprioceptive and auditory properties [Gib88,

Pow99, CSS+04]. Studies show that infants start learning how objects feel, sound,

and move at an early stage and this ability becomes more goal-driven as we grow

older [ST99]. Research has also shown that humans are able to integrate multiple

sensory modalities to recognize objects and each modality contributes to the final

decision [WWCM07, EB04]. Inspired by these findings, we propose a method of

knowledge transfer from the source robot to the target robot to facilitate the learning

process of the target robot, as collecting multiple sensory data by interacting with

objects is an expensive process.

5.2.2 Multisensory Object Perception in Robotics

While most of the object recognition methods in robotics use visual sensing, sev-

eral research studies have considered multiple sensory modalities coupled with ex-

ploratory actions [BHS+17]. A number of approaches and feature extraction tech-

niques have been proposed for recognizing objects and their properties using audi-

tory [SWS09, EKSW18], haptic [BRK12a], and tactile feedback [SSSS11, LCL19].

Besides recognizing objects, non-visual sensory modalities have also proven useful

for learning object categories [SSS+14a, HBMK16, ECK17, TS19], object relations

[SKSS16], and more generally, grounding language that humans use to describe ob-

jects [RK19]. Despite all of these advances, current work in this area is limited
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by the fact that each new robot is required to learn object models from scratch

as different robots have different embodiment and sensors, resulting in excessive

time required for individual robots to carry out the necessary object exploration,

prohibiting rapid learning. In our work, we propose a method that would enable

multisensory object knowledge learned by one robot to be transferred to another,

thus reducing time spent on object exploration.

5.2.3 Encoder-Decoder Networks

Encoder-decoder networks consist of two feed-forward neural networks: an encoder

and a decoder [HZ93, HS06]. The encoder transforms an input feature vector (the

sensory input from the source robot) into a fixed-length code vector. The decoder

takes a code vector as input and produces a target feature vector as output (e.g.

the sensory information for the target robot). Often, encoder-decoder architec-

tures are used for dimensionality reduction by forcing the intermediate code vector

to be a much smaller size than either input or output. When input and output

vectors are identical, they are referred to as “autoencoder” networks [LWL+17].

When inputs and outputs differ, the more general term “encoder-decoder” applies.

Encoder-decoder approaches have enjoyed success in applications such as translating

sentences written in two different languages [SVL14] or learning multi-scale features

for image representation tasks [KSB+10]. We propose using encoder-decoder net-

works to predict sensorimotor features produced by an interaction with an object

by one robot (the target robot) given such features produced by another robot (the

source robot). Such an ability enables the target robot to use sensorimotor expe-

rience from the source robot and drastically reduce the amount of interaction and

data collection needed for learning multisensory recognition models.
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5.3 Learning Methodology

5.3.1 Notation and Problem Formulation

For the source robot, let Bs be the set of exploratory behaviors (e.g. push, drop),

let Ms be the set of sensory modalities (e.g. audio, haptic), and let Cs be the set

of sensorimotor contexts such that each context cs ∈ Cs refers to a combination of

a behavior bs ∈ Bs and a sensory modality ms ∈ Ms (e.g., each context cs could be

push-audio, drop-haptic, etc.). Similarly, for the target robot, let Bt be the set of

exploratory behaviors, let Mt be the set of sensory modalities, and let Ct be the set

of sensorimotor contexts.

For each exploration trial, the source robot and the target robot perform

exploratory behaviors bs ∈ Bs and bt ∈ Bt, respectively, on a specific object and

record a sensory signal for each modality in Ms and Mt, respectively. Thus, during

the ith exploration trial, the source robot observed features xcsi ∈ RDcs and the

target robot observed features xcti ∈ RDct . Here, Dcs and Dct are the dimensions of

the features observed by the source robot and the target robot, respectively, under

contexts cs and ct.

We divide our total set of possible object categories Y into two mutually ex-

clusive subsets: Yshared and Ysource-only. Categories in Yshared are shared ; both source

and target robots have access to multiple examples from these categories during the

exploration or training phase. Categories in Ysource-only are only experienced by the

source robot during the training phase. The goal of our work is to effectively train

the target robot to recognize an object at test time from one of the categories in

Ysource-only, even though it has never experienced any object from these categories

before.

5.3.2 Knowledge Transfer Model

Our proposed encoder-decoder approach is designed to transfer knowledge from the

source robot to the target robot. First, the encoder neural network transforms the

observed feature vector of the source robot xcsi , to a lower-dimensional, fixed-size
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code vector zi ∈ RDz of size Dz. We denote this non-linear mapping by an encoder

function f : zi = fθ(x
cs
i ), which takes network parameter weights θ. Next, a decoder

neural network maps an input code vector zi to create a vector of “reconstructed”

target feature vector x̂cti . We denote this non-linear mapping by a decoder function

g: x̂i
ct = gϕ(zi), which takes network parameter weights ϕ.

Training the encoder-decoder for a context pair cs, ct requires observing fea-

tures from both source and target robot across a set of N total objects. Given

a dataset of source-target feature pairs {xcsi , xcti }Ni=1, we wish to find parameters

(θ, ϕ) that minimize the error between the real features xcti observed by the target

robot and the model’s “reconstructed” target features x̂cti obtained by applying the

encoder-decoder to the corresponding source features xcsi . We use root mean square

error (RMSE) as the error to minimize:

θ⋆, ϕ⋆ = arg min
θ,ϕ

√√√√√√√√
1

N

N∑
i=1

(xcti − gϕ(fθ(x
cs
i )︸ ︷︷ ︸

zi

)

︸ ︷︷ ︸
x̂
ct
i

)2 (5.1)

We emphasize that the objects used to train the encoder-decoder come from the set

of shared categories Yshared.

5.3.3 Category Recognition Model using Transferred Features

Given a pre-trained encoder-decoder for a source context cs (e.g. push-audio or drop-

haptic), we can train the target robot to classify objects from several categories it

has never experienced before, as long as examples of these categories are seen by

the source robot under context cs. We denote this set of categories Ysource-only. We

assume the source robot has seen J total feature-label pairs from these categories:

{xcsj , yj}Jj=1, where yj ∈ Ysource-only. We can transfer this labeled dataset to the

target robot by creating a “reconstructed” training set: {gϕ(fθ(x
cs
j )), yj}Jj=1. This

dataset can be used to train a standard multi-class classifier. Then, when the target

robot is deployed in an environment with novel objects without category label, the
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target robot can measure observed features xct and feed these features into its pre-

trained classifier to predict which category within the set Ysource-only it has observed.

Throughout, we will assume that at test time, only categories from Ysource-only are

possible for the target robot to encounter. However, it is straightforward to extend

our approach for the combined set of possible categories Ysource-only and Yshared by

combining a target robot’s real and reconstructed training datasets.

5.4 Experiments and Results

5.4.1 Dataset Description

We used the dataset described in [SSS+14a], in which an upper-torso humanoid

robot used a 7-DOF arm to explore 100 different objects belonging to 20 different

categories using 9 behaviors: Crush, Grasp, Hold, Lift, Drop, Poke, Push, Shake

and Tap (shown in Fig. 5.1). During each behavior the robot recorded auditory

and haptic feedback using two sensors: 1) an Audio-Technica U853AW cardioid

microphone that captures audio sampled at 44.1 KHz, and 2) joint-torque sensors

that capture torques from all 7 joints at 500 Hz. Each behavior was performed

5 times with each of the 100 objects, resulting in a total of 9 x 5 x 100 = 4,500

interactions.

We used the auditory and haptic features computed from raw sensory signals

as described in [SSS+14a]. For audio, the discrete Fourier transform was performed

using 129 log-spaced frequency bins and a spectro-temporal histogram was computed

by discretizing both time and frequencies into 10 equally spaced bins, resulting in

a 100-dimensional feature vector. Haptic data was similarly discretized into 10

temporal bins, resulting in a 70-dimensional feature vector (the arm had 7 joints).

Fig. 5.2 shows an example of audio and Fig. 5.3 shows an example of haptic features.
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Figure 5.1: The exploratory interactions that the robot performed on all objects.
From top to bottom and from left to right: (1) Press, (2) Grasp, (3) Hold, (4) Lift,
(5) Drop, (6) Poke, (7) Push, (8) Shake and (9) Tap.

Figure 5.2: Example audio features using shake behavior performed on an object
from the medicine bottles category.
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Figure 5.3: Encoder-decoder network architecture and an example of a shake-haptic
to hold-haptic projection.

5.4.2 Knowledge Transfer Model Implementation

The encoder-decoder network* used consists of a multilayer perceptron (MLP) ar-

chitecture of three hidden layers for both encoder and decoder, with 1000, 500,

250 hidden units and Exponential Linear Units (ELU) [CUH16] as an activation

function, and a 125-dimensional latent code vector as depicted in Fig. 5.3. The

network parameters are initialized randomly and updated for 1000 training epochs

using Adam optimization [KB15] with learning rate 10−4, and was implemented

using TensorFlow 1.12 [ABC+16].

5.4.3 Category Recognition Model Implementation

At test time, we performed classification of objects into categories from the set

Ysource-only via a multi-class Support Vector Machine (SVM) [Bur98]. Using the

kernel trick, an SVM maps training examples to an (implicit) high-dimensional fea-

ture space where examples from different classes may be closer to linearly separable.

We used the Radial Basis Function (RBF) kernel SVM implementation in the open-

source scikit-learn package [PVG+11], with default hyperparameters. We also tested

a k-nearest neighbors classifier (not shown) [AKA91], which performed similarly to

the SVM.

*Datasets and source code for study replication are available at: https://github.com/gtatiya/
Knowledge-Transfer-in-Robots. The experiment pipeline is visually explained and complete re-
sults of SVM and K-NN are available on the GitHub page of the study.
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5.4.4 Evaluation

We assume that the source robot interacts with all 20 object categories, but the

target robot interacts with only 15 randomly selected object categories. The objects

of the 15 categories shared by both robots are used to train the encoder-decoder

network that projects the sensory signal of the source robot to the target robot.

Since the dataset we used has only one robot, we assume that the source and the

target robots are physically identical, but they perform different behaviors on shared

objects.� Subsequently, the trained encoder-decoder network is used to generate

“reconstructed” sensory signals for the other 5 object categories in Ysource-only that

the target robot did not interact with. Each sensory signal from objects in these

categories experienced by the source robot is thus “transferred” to a target feature

vector.

We consider two possible category recognition approaches: our proposed

transfer-learning pipeline using the projected data from the source context (i.e.,

how well it would do if it transferred knowledge from the source robot), and a non-

transfer ideal baseline using ground truth features produced by the target robot (i.e.,

the best the target robot could do if it had explored all the objects itself during the

training phase). In both cases, real features observed by the target robot are used

as input to the classifier at test time. We used 5-fold object-based cross-validation,

where the training set consisted of 4 objects from each of the 5 categories the target

robot did not interact with and the test set consisted of the remaining objects. Since

the robot explored each object 5 times, there were 100 (4 objects x 5 categories x

5 trials) examples in the training set, and 25 (1 objects x 5 categories x 5 trials)

examples in the test set. This procedure was repeated 5 times, such that each object

was included 4 times in the training set and once in the test set.

We used two metrics to evaluate the category recognition performance of the

target robot on the object categories it did not explore. First, we consider accuracy,

�Note that the proposed transfer learning method makes no such assumption and is applicable in
situations where the two robots are physically different and/or use different feature representations
for a given modality.
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Figure 5.4: Projections where the Accuracy Delta (SVM) is minimum.

Figure 5.5: Projections where the Accuracy Delta (SVM) is maximum.

defined as A = correct predictions
total predictions (often reported as a percentage). The process of

selecting 15 categories randomly to train the encoder-decoder network, generating

the features of the other 5 categories, training two classifiers using projected and

ground truth features, and computing accuracy for both classifiers on ground truth

features by 5-fold cross validation is repeated 10 times to compute statistics for each

projection.

The second metric was accuracy delta (%), which measures the drop in clas-

sification accuracy as a result of using the projected features for training as opposed

to the ground-truth features. We define this loss as A∆ = Atruth−Aprojected, where

Atruth and Aprojected are the accuracies obtained when using real and projected fea-

tures, respectively. Smaller accuracy delta indicates that it is easy for the source
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Figure 5.6: Target robot’s hold-haptic ground truth features (left) and the projected
features (right) in 2D space using Principal Component Analysis.

robot to project its sensory features in the target robot feature space, and the target

robot can use these projected features to learn a classifier that can achieve compa-

rable performance as if the target robot actually explored the objects.

5.4.5 Results

5.4.5.1 Illustrative Example

Consider the case where the source robot performs shake behavior and the target

robot performs hold behavior. Projecting haptic features from shake to hold, enables

the target robot to achieve 58% recognition accuracy�, compared with 57.36% when

using features from real interactions (shown in Fig. 5.4). In other words, the target

robot’s category recognition model is as good as it would have been had it been

trained on real data.

To visualize shake-haptic to hold-haptic projection, we reduced the dimension

of the ground truth and the projected features of the 5 categories the target robot

did not interact with into 2D space (shown in Fig. 5.6) by Principal Component

Analysis implemented in scikit-learn [PVG+11]. As shown in Fig. 5.6, the clusters

of projected features look very similar to the ground truth features indicating that

the “reconstructed” features generated by the source robot are realistic.

�Chance accuracy for 5 categories is 20%. Note that accuracy can be boosted to nearly 100% by
combining multiple behaviors and sensory modalities [SS10] but this is out of scope for this chapter.
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Figure 5.7: Accuracy (SVM) achieved by the target robot for different number of
shared objects classifier for shake-haptic to hold-haptic projection.

To find the minimum number of object categories both robots need to interact

with to train an encoder-decoder network that achieves good performance, we varied

the number of shared categories for shake-haptic to hold-haptic projection. As shown

in Fig. 5.7, performance saturates at about 7 shared object categories (i.e., using 5

objects per class, the robot needs 35 shared objects out of 100 possible).

Figure 5.8: Accuracy Delta (SVM) for 4 mappings: audio to audio, audio to haptic,
haptic to audio, haptic to haptic. Darker color means smaller Accuracy Delta (better)
and lighter color means larger Accuracy Delta (worse).

5.4.5.2 Accuracy Results of Category Recognition

Since there are 2 modalities (audio and haptic) there are 4 possible mappings from

the source to the target robot: audio to audio, audio to haptic, haptic to audio,

and haptic to haptic. Each of the 9 behaviors are projected to all of the other 8
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behaviors, so for each mapping, there are 72 (9 x 8) projections. Fig. 5.4 shows

the 5 projections where the accuracy delta is minimum, and Fig. 5.5 shows the 5

projections where the accuracy delta is maximum among all 288 (4 x 72) projections.

Overall, mappings within same modality (audio to audio and haptic to haptic)

achieve higher accuracy than mapping to a different modality. This is intuitive, as

knowing what an object feels like when performing a behavior can inform what it

would feel like better than what it will sound like given another behavior.

5.4.5.3 Accuracy Delta Results

Fig. 5.8 shows the accuracy delta for all 4 possible modality mappings. Darker color

indicates smaller accuracy delta, thus the diagonal is black as there is no accuracy

drop when both robots perform the same behavior. Comparatively, haptic to haptic

projections achieve smallest accuracy delta. Audio to audio is the second best per-

forming mapping, indicating that mappings within the same modality achieve less

accuracy delta. Some specific projections that support this observation are shown

in Fig 5.4. However, when both robots perform actions using different modalities,

the accuracy delta is relatively higher. For example, drop-haptic to tap-audio and

hold-haptic to tap-audio are the two projections where the accuracy delta is highest.

When both robots perform behaviors that capture similar object properties,

the projected features are more realistic. For example, lifting an object provides a

good idea how it would feel to hold that object as indicated by smaller accuracy

delta. Producing hold-audio features from most of the source robot’s features is an

easy task, possible because holding an object does not produce much sound.

The relation between the RMSE loss of features used to train the encoder-

decoder network and the accuracy delta is shown in Fig. 5.9 for all of the mappings.

RMSE is the Euclidean distance between the ground truth and the projected fea-

tures. Each dot in the plot corresponds to a projection from the source to the target

robot. Generally, the accuracy delta increases with the increase in RMSE loss. This

means when the “reconstructed” features are more realistic, the accuracy delta is

expected to be smaller, and as the reconstruction gets worse, the accuracy delta
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Figure 5.9: Relation between RMSE Loss of the features on the training set and
Accuracy Delta (SVM) computed using the trained encoder-decoder network. The
solid line represents a polynomial with degree 3 that fits all the dots.

increases.

5.5 Summary

Non-visual sensory object knowledge is specific to each robot and depends on its

unique embodiment, sensors, and actions. We proposed a framework for knowledge

transfer that uses an encoder-decoder network to project sensory features from one

robot to another robot across different behaviors. The framework enables a target

robot to use knowledge from a source robot to classify objects into categories it has

never seen before. In this way, the target robot does not have to learn a classifier

from scratch, but instead starts immediately with a model nearly as accurate as

what can be achieved if the target robot could afford to collect its own labeled

training set via exploration. This result addresses some of the biggest challenges

in deploying behavior-grounded multi-sensory perception models, namely that they

require a lot of interaction data to train and cannot be easily transferred from one

robot to another.

In future work, we will test our proposed framework on robots that not
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only perform different actions, but also are morphologically different and use unique

feature representations. Extending the framework to allow for more than two robots

to share information is also an outstanding challenge which has the potential to

enable any new robot to use multi-sensory knowledge transferred from other robots

that had previously interacted with a shared set of objects.
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Chapter 6

Haptic Knowledge Transfer Between

Heterogeneous Robots using Kernel

Manifold Alignment*

6.1 Introduction

To recognize objects and their properties, humans use a variety of non-visual sen-

sory modalities coupled with exploratory behaviors. While robots can use vision to

recognize the shape and color of an object, camera input alone cannot determine

its haptic and tactile properties, such as whether it is soft or hard, or whether it is

full or empty. To perceive non-visual information, a robot must interact with the

object and interpret the feedback to detect the object’s characteristics. Previous

works have indeed shown that robots can use non-visual sensory feedback of inter-

action with objects such as haptic, tactile, and/or auditory senses to perform tasks,

including object recognition, object category acquisition, and language grounding

(see [BHS+17, LKS+20] for a review).

A major challenge when learning non-visual object representations is that

*This chapter is based on the following paper: Gyan Tatiya, Yash Shukla, Michael Edeg-
ware, and Jivko Sinapov, “Haptic knowledge transfer between heterogeneous robots using ker-
nel manifold alignment”, IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), IEEE, 2020. [TSES20]
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Figure 6.1: Overview of the proposed framework. Feature space of different robots
depict datapoints collected during object interaction. Each shape represents a robot
and each color represents an object. Once each datapoint is projected into a common
latent space, the decision function for a classifier is grounded in the latent space
rather than the robot’s own feature space.

each robot requires excessive time to perform the necessary object exploration for

data collection, which prohibits rapid learning and makes it difficult to deploy non-

visual object representations in practice. There is no general purpose sensory knowl-

edge representations for non-visual features as different robots have different embod-

iments and sensors. As a result, it is not easy to transfer knowledge of non-visual

object properties from one robot to another, so each individual robot needs to learn

its task-specific sensory models from scratch.

To address this challenge, we propose a framework for haptic knowledge

transfer, shown in Fig. 6.1, using kernel manifold alignment (KEMA) for sharing

knowledge between multiple, heterogeneous robots. Our method projects the sen-

sorimotor features of object interaction from multiple robots into a common latent

space and use this latent space to train the recognition models to solve various

tasks, as opposed to using each robot’s own sensorimotor feature space. To test our

method, we collected a dataset of 3 simulated robots that performed 4 behaviors on

25 objects, and we used this dataset to transfer knowledge from two source robots
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to a target robot for training the target robot with less examples. The results of our

experiments show that robots can bootstrap their haptic object perception skills by

leveraging experience from other robots in a way that speeds up learning and allows

the target robot to recognize novel objects that it has not interacted with before

test time.

In the context of the broader dissertation, this chapter proposes a KEMA-

based method for Transfer using Projection to Shared Latent Feature Space and

evaluates it on the dataset collected by three simulated robots described in Chapter

3. Additionally, the method proposed in this chapter serves as the baseline for

comparison with methods proposed in Chapter 7, Chapter 8, and Chapter 9.

6.2 Related Work

Research in psychology and cognitive science has highlighted the significance of

multiple sensory modalities used by humans to recognize objects [WWCM07, EB04]

and interact with them in order to learn their haptic and tactile properties [Gib88].

Traditionally, object recognition approaches are based solely on the visual modality.

More recently, several lines of recent research have proposed integrating exploratory

actions with haptic modality, which has also been shown useful for learning object

categories [SSS+14a, HBMK16, ECK17, TS19, JLWS19, BGS+20], object relations

[SKSS16, TSS+20], and grounding language used to describe objects [CMR+15,

TSMS18, RK19]. A remaining challenge is that non-visual sensory representations

cannot be easily transferred from one robot to another, as each robot has a unique

embodiment in terms of its morphology and sensor suite. As a result, each robot

must interact with objects to learn its models from scratch. This work presents

a knowledge-transfer framework for multiple robots that enables them to not only

recognize objects with less interactions, but also to recognize novel objects without

exploratory training.

To transfer knowledge, Tatiya et al. [THCHS19] proposed using encoder-

decoder neural network to project sensorimotor features from a source robot’s fea-
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ture space to a target robot’s feature space, allowing the target robot to classify

novel objects into categories using the source robot’s knowledge. One limitation

was that the dataset used contained only a single robot, and thus they transferred

knowledge between two physically identical robots across different behaviors. Fur-

thermore, the method proposed would work only for two robots: the source and the

target. To deal with these shortcomings, we propose a method that enables more

than two robots of different embodiments to project their sensory features into a

common latent space, such that the decision function for a given recognition task is

grounded in the latent space rather than each individual robot’s own feature space.

Domain adaptation is a transfer learning method that deals with shifts in

the feature spaces of a source domain (training set) and a different but related tar-

get domain (test set). The main goal of such methods is to reduce the domain

shift so that a machine learning classifier trained on the source domain can make

better predictions about the target domain. Manifold alignment is a domain adap-

tation strategy that aligns datasets and projects them into a common latent space.

Manifold alignment preserves the local geometry of each manifold and captures the

correlations between manifolds, which allows knowledge transfer from one domain

to another. The projected datapoints are comparable and can be used to train a

single classifier for different domains.

We propose to use the kernel manifold alignment (KEMA) [TCV16] for do-

main adaptation, which can align an arbitrary number of domains of different dimen-

sionality without needing paired examples. KEMA [TCV16] has been successfully

applied to visual object recognition [TCV16], facial expression recognition [TCV16],

and human action recognition [LLL+18]. However, KEMA has never been applied

to the haptic data that robots can use for object recognition. We evaluated the

performance of KEMA to adapt the sensory signals of multiple robots and obtain

their aligned feature representations in a common latent space.
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6.3 Learning Methodology

6.3.1 Notation and Problem Formulation

Let a robot perform a set of exploratory behaviors (e.g., grasp, pick), B, on a set of

objects, O, while recording a non-visual sensory modality m (e.g. effort). Let the

robot perform each behavior n times on each object. Let us consider R such robots’

datasets with Br, mr and nr, where r = 1, ..., R. Each robot interacts with the same

set of objects O. During the ith exploratory trial, the robot r observation feature is

represented as xir ∈ RDr , i = 1, ..., nr where Dr is the dimensionality of the feature

space for robot r.

Our main goal is to learn a common latent feature space for all the R robots,

such that the robots can be trained to recognize objects in that latent space, as

opposed to each robot’s own feature space. This will enable an individual robot to

use the observation features collected by other robots to learn a recognition model

and perform better than a model trained only using its own observation features.

In addition, learning a common latent feature space would also enable a robot to

recognize objects it has never interacted with, as long as other robots have. While

learning the latent space, it is assumed that all the robots perform the same behavior

and interact with the same set of objects.

6.3.2 Kernel Manifold Alignment (KEMA)

KEMA [TCV16] extended the work of Wang et al. [WM11] by kernelization of

the original data by transforming it into a high dimensional Hilbert space H with

the mapping function ϕ(.) : x 7→ ϕ(x) ∈ H to ensure that the transformed data is

linearly separable. Due to the high dimensional feature space, the computational

load would increase significantly and thus, kernel trick is used in which the problem is

expressed in terms of dot products within H. A Kernel function Kij = K(xi, xj) =<

ϕ(xi), ϕ(xj) > is used to compute the kernel matrix that encodes the similarity

between training examples using pair-wise inner products between mapped examples

without computing ϕ(.) directly. We adopted Radial Basis Function (RBF) kernel
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as the kernel function. As there are multiple robots, R different robots’ datasets

are mapped into R different Hilbert spaces of dimension Hr, ϕr(.) : x 7→ ϕr(x) ∈

Hr, r = 1, ..., R.

KEMA constructs a set of domain-specific projection functions, F = [f1, f2, ...fR]T

that project data from R robots into a common latent space such that the examples

of a same object class would locate closer while examples of different object classes

would locate distantly. To achieve this, KEMA finds the data projection matrix F

that minimizes the following cost function:

{f1, f2, ...fR} = arg min
f1,f2,...fR

(C(f1, f2, ...fR))

= arg min
f1,f2,...fR

(
µGEO + (1 − µ)SIM

DIS

) (6.1)

where geometry (GEO) and class similarity (SIM) terms are minimized and class

dissimilarity (DIS) term is maximized. The parameter µ ∈ [0, 1] controls the con-

tribution of the geometry and the similarity terms. The three terms are explained

as follows:

1. Geometry (GEO) is a matrix that represents the geometry of a domain.

GEO is minimized to preserve the local geometry of each domain by penalizing

projections in the input domain that are far from each other:

GEO =
R∑

r=1

nr∑
i,j=1

W r
g (i, j)

∥∥∥fT
r ϕr(x

i
r) − fT

r ϕr(x
j
r)
∥∥∥2

= tr(F TΦLgΦTF )

(6.2)

where W r
g in a similarity matrix representing the similarity between xir and xjr, which

is typically computed by k-nearest neighbor graph (k-NNG). Lg ∈ R(
∑

r nr)×(
∑

r nr)

is a graph Laplacian matrix computed by Lg = Dg − Wg, where Dg is a diagonal

matrix with entries Dg(i, i) =
∑

j Wg(i, j).

2. Similarity (SIM) is a matrix that represents the class similarity of a
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domain. SIM is minimized to encourage examples with the same object class to be

located close to each other in the latent space by penalizing projections of the same

object class far from each other:

SIM =

R∑
r,r′=1

nr,nr′∑
i,j=1

W r,r′
s (i, j)

∥∥∥fT
r ϕr(x

i
r) − fT

r′ϕr′(x
j
r′)

∥∥∥2
= tr(F TΦLsΦ

TF )

(6.3)

where W r,r′
s in a similarity matrix that has components set to 1 if the two examples

from robots r and r′ belong to the same object class, and 0 otherwise. The graph

Laplacian matrix is computed by Ls = Ds−Ws, where Ds is a diagonal matrix with

entries Ds(i, i) =
∑

j Ws(i, j).

3. Dissimilarity (DIS) is a matrix that represents the class dissimilarity

of a domain. DIS is maximized to encourage examples with different object classes

to be located far apart in the latent space by penalizing projections of the different

object class that are close to each other:

DIS =

R∑
r,r′=1

nr,nr′∑
i,j=1

W r,r′

d (i, j)
∥∥∥fT

r ϕr(x
i
r) − fT

r′ϕr′(x
j
r′)

∥∥∥2
= tr(F TΦLdΦTF )

(6.4)

where W r,r′

d in a dissimilarity matrix that has components set to 1 if the two exam-

ples from robots r and r′ belong to different objects, and 0 otherwise. The graph

Laplacian is computed by Ld = Dd−Wd, where Dd is a diagonal matrix with entries

Dd(i, i) =
∑

j Wd(i, j). By combining Eqs. (6.2), (6.3), and (6.4), the optimization

problem can be formulated as:

arg min
f1,f2,...fR

tr

(
F TΦ(µLg + (1 − µ)Ls)Φ

TF

F TΦLdΦTF

)
(6.5)

The latent features that minimize the cost function C(f1, f2, ...fR) are given
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by the eigenvectors corresponding to the last eigenvalues of the generalized eigen-

problem derived from Eq. (6.5) [WM11]:

Φ(µLg + (1 − µ)Ls)Φ
TF = λΦLdΦTF (6.6)

where Φ is a block diagonal matrix containing the datasets Φr = [ϕr(x1), ..., ϕr(xnr)]T ,

F contains the eigenvectors organized in rows for the particular domain defined in

Hilbert space Hr, where F = [f1, f2, ...fH ]T , H =
∑R

r=1Hr, and λ is the eigenvalues

of the generalized eigenproblem. F is in a high dimensional space that might be

costly to compute. Thus, the eigenvectors are expressed as a linear combination of

mapped examples using the Riesz representation theorems [RN55] as fr = Φrαr (or

F = ΦΛ in matrix notation). By multiplying both sides by ΦT in Eq. (6.6) and

replacing the dot products with the corresponding kernel matrices, Kr = ΦT
r Φr, the

final problem is formalized as:

K(µLg + (1 − µ)Ls)KΛ = λKLdKΛ (6.7)

where K contains kernel matrices Kr in a block diagonal form. The projection

matrix Λ can be expressed in a block structure of size n× n:

Λ =


α1

...

αR

 =



α1,1 . . . α1,n

...
. . .

...

αn1,1 . . . αn1,n

αn1+1,1 . . . αn1+1,n

...
. . .

...

αn,1 . . . αn,n


(6.8)

where the eigenvectors are highlighted in bold for the first domain, and n =
∑

r nr

is the total number of examples in the kernel matrices. A new test example xir can

be projected to the new latent space by first mapping it to its corresponding kernel

form Ki
r and then applying the corresponding projection vector αr formulated as:
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P (xir) = fT
r Φi

r = αT
r ΦT

r Φi
r = αT

r K
i
r (6.9)

where Ki
r is a kernel evaluations vector between example xir and all examples of rth

robot used to compute the projections αr. For more details on KEMA, readers can

refer [TCV16, WM11].

6.3.3 Object Recognition Model using Latent Features

Once the data is transferred to the latent space from multiple robots, we used

the transferred data on the latent manifold to train a multi-class Support Vector

Machine (SVM) [Bur98] model with the RBF kernel to recognize different object

classes. We trained two types of models: speeding up object recognition model and

novel object recognition model.

To build the manifold alignment for the speeding up object recognition

model, we used two source robots that are assumed to have explored the objects

extensively and one target robot that is assumed to have relatively less experience

with objects. To train this model, we used the transferred data from all the robots,

but incrementally varied the number of examples per object used for the target

robot. To test this model, we used the examples of the target robot that were not

used to build the manifold alignment.

To build the manifold alignment for the novel object recognition model, we

used two source robots that are assumed to have explored all the objects and one

target robot that is assumed to have never explored a few objects. To train this

model, we used the transferred data from two source robots of the objects that the

target robot never explored. To test this model, we used the examples of the objects

that are novel to the target robot.
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Figure 6.2: Examples of effort features using shake behavior performed on an 0.62
kg block object by Baxter, Fetch, and Sawyer (right to left).

6.4 Evaluation

6.4.1 Data Collection and Feature Extraction

A dataset was collected in which 3 simulated robots (Baxter, Fetch and Sawyer)

perform 4 behaviors (grasp, pick, shake and place) on 25 block objects (each vary by

weight from 0.01 kg to 1.5 kg). The behaviors of each robot were encoded as joint-

space trajectories where the joint values are randomly sampled within a specified

range of joint values for each joint of the robot. Thus, each interaction of the robot

is expected to be different, which is what we would expect in the real world. During

each behavior the robots recorded effort feedback from all joints *. Each behavior

was performed 100 times on each object, resulting in a total of 10,000 examples (4

behaviors x 25 objects x 100 trials) per robot. Effort data was discretized into 10

temporal bins, where each bin consists of mean of effort values in that bin. Fig. 6.2

visualizes examples of effort features of all the robots.

6.4.2 Evaluation

To evaluate the performance of manifold alignment for knowledge transfer, we con-

sidered two tasks. In the first task, the target robot has less interaction with objects,

and in the second task, the target robot has never interacted with a few objects. In

both tasks, we assume both source robots have explored all the objects extensively.�

*The sampling rate of Baxter is 50Hz, and Fetch and Sawyer is 100Hz. All the robot’s arm have
9 joints including 2 grippers.

�Datasets, source code and complete results for study replication are available at: https://

github.com/gtatiya/Haptic-Knowledge-Transfer-KEMA.
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6.4.2.1 Speeding up object recognition

In this task, the main goal is to improve the object recognition performance of

the less experienced target robot, by aligning the data from all the 3 robots, and

then using this aligned data to train the target robot. For the baseline condition,

the target robot is trained to recognize objects by using its own data collected

during object interactions. For the transfer condition, the target robot is trained to

recognize objects by using the aligned data in the latent feature space corresponding

to all the 3 robots. We incremented the number of examples per object used to train

the target robot from 1 to 80, and we used the held-out 20 examples for testing.

For both conditions, we performed 5-fold cross validation such that each example

is included in test set once and computed accuracy A = correct predictions
total predictions %, and

reported average accuracy of all the folds.

6.4.2.2 Novel object recognition

In this task, the goal is to enable the target robot to recognize n objects it never

interacted with. Both source robots interact with all the 25 objects, while the target

robot interacts with only 25 − n randomly selected objects. The 25 − n objects

shared by all 3 robots are used to build the manifold alignment that transfers the

sensory signal of the robots to the latent space. Then a classifier is trained using

the transferred data of the source robot corresponding to the objects that are novel

to the target robot. Subsequently, to test this classifier, the transferred data of the

n objects that the target robot did not interact with is used that were not used

to build the alignment. Similar to speeding up object recognition, we reported the

accuracy of this classifier to evaluate its performance and compared it with the

chance accuracy of the classifier. The process of selecting 25 − n objects randomly

to build the manifold alignment, training the classifier using transferred data of the

source robots and testing the classifier on n novel objects was repeated 10 times to

produce an accuracy estimate.
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6.5 Results

6.5.1 Illustrative Example

Figure 6.3: Original sensory features of (A) Baxter and (B) Fetch for place-effort
performed on 5 objects in 2D space, and first 2 dimensions of corresponding features
in the common latent feature space (C).

Consider the case where the 3 robots perform the place behavior on all 25

objects 10 different times while recording effort signals, which were used to build

the manifold alignment using KEMA and generate latent features. We plotted the

first two dimensions of the latent features, and reduced the dimensionality of the

original sensory signal to 2 by Principal Component Analysis. As shown in Fig. 6.3,

the datapoints collected by the 3 robots of 5 different objects are clustered together

in the common latent space.

6.5.2 Speeding up object recognition results

Fig. 6.4 shows the object recognition performance, where Baxter and Sawyer serve

as the source robots and Fetch serves as the target robot. To build the manifold

alignment, we incrementally varied the number of interactions of the target robot

from 1 to 80, and to test the classifier, held-out 20 examples are used. Note that

to choose the amount of source robot data for building alignment and number of

dimensions of latent features used to train the model, we performed a grid search,

in which we experimented with different amount of source robot data and different

number of dimensions and used the optimal parameters for the final results. Gen-

erally, if the target robot interacts less with objects, using more source robots’ data

generates better latent features, and using the first 1 or 2 dimensions of the latent

features achieves high accuracy as they are the most correlated dimensions among
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Figure 6.4: Accuracy of the baseline and transfer conditions, where Fetch serves as
the target robot, and Baxter and Sawyer serve as the source robots.

all the robots.� Fig. 6.4 compares the recognition accuracy of the baseline condition,

where the target robot learns to recognize objects using only its own features, and

the transfer condition, where the target robot learns to recognize objects using its

own as well as the source robots’ latent features. In both conditions, the recognition

accuracy is computed by performing a weighted combination of all the behaviors

based on their performance on the training examples.

For most behaviors, the transfer condition performs consistently better than

the baseline condition. A significant boost in performance is observed with a fewer

number of the target robot’s interactions per object. Fig. 6.4 shows that by perform-

ing all the behaviors with each object only once, the target robot achieves around

0% accuracy in the baseline condition, whereas it achieves 36.28% accuracy in the

transfer condition. This result indicates that in cases where the target robot has

limited time to learn the task, transferring knowledge from other robots can speed

up as well as improve the classification performance. We also experimented with

Baxter and Sawyer as the target robot, and the other 2 robots as the source robot,

and observed similar boost in performance in the transfer condition.

�Note that using entire source robots’ data and latent features for training the target robot did
not perform better than using optimal amount of source robot data and number of latent features.
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Figure 6.5: Visualization of the training and testing datapoint used to train the
target robot (Fetch) to detect 2 novel objects in 2D space. (A) shows the training
data in squares corresponding to the source robots (Baxter and Sawyer) latent fea-
tures of place behavior, and the test data in circles corresponds to the true labels of
the target robot (Fetch). (B) shows the predictions of the test data, which is 100%
correct.

6.5.3 Novel object recognition results

For a case where the Fetch robot has not interacted with 2 of the objects, we

trained a classifier using the latent features of the source robots (Baxter and Sawyer)

performing the place behavior on those objects. Fig. 6.5 visualizes the data used to

train and test the classifier. In Fig. 6.5A, squares with blue and red outline show

the source robots’ training data and circles show the true labels of the target robot’s

data used to test the classifier. Each color represents a different object. Fig. 6.5B

shows the predictions of the classifier, which is able to correctly classify 100% of the

test data.

Fig. 6.6 shows the results when the target robot (Fetch) was trained to

recognize 2 and 5 novel objects by incrementing the number of objects explored

by the target robot used to build the manifold alignment. To build the manifold

alignment, 30% of the source robots’ data (Baxter and Sawyer) was used. In most

cases, the target robot achieves better than chance accuracy, and as the target robot

interacts with more objects, its performance to recognize novel objects improves.

Thus, the target robot can learn to recognize objects it never interacted with by

using the knowledge transferred by the source robots. Similar results were observed

when the Baxter and Fetch serve as the target robot.
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Figure 6.6: Accuracy curve of the target robot (Fetch) for detecting 2 and 5 novel
objects (left to right) for different number of objects explored by it using the knowl-
edge transferred by the source robots (Baxter and Sawyer).

6.5.4 Heterogeneous Feature Representation

A robot’s sensory features can be represented in different ways depending on the

feature extraction method. To evaluate our framework with different feature rep-

resentations used by the individual robots, we discretized the effort data into 15

temporal bins, where each bin consists of effort values’ range computed by subtract-

ing the minimum effort value from the maximum effort value in that bin. Fig. 6.7

shows the results of the speeding up object recognition and the novel object recogni-

tion tasks on this new representation, where Baxter and Sawyer serve as the source

robots and Fetch serves as the target robot. Fig. 6.7A indicates that the transfer

condition enables the target robot to perform better than the baseline condition

especially with less experience with objects. Moreover, Fig. 6.7B suggests that the

target robot learned to recognize novel objects with knowledge transferred by the

source robots. These results are consistent with the results of the previous fea-

ture representation we presented, which means knowledge can be transferred using

KEMA for different representations.

6.6 Summary

To enable robots to work in human-inhabited environment, they would need to

recognize objects’ properties through interaction. Non-visual sensory signals (e.g.

haptic) collected by a robot’s interaction cannot be used to train another robot as
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Figure 6.7: Results of a different feature representation, where Baxter and Sawyer
serve as the source robots and Fetch serves as the target robot. (A) shows the results
of the speeding up object recognition task, where predictions of all the behaviors
are combined. (B) shows the accuracy curve of 2 novel objects recognition task.

the feature space of such data is different for robots with different embodiments. In

addition, collecting interaction based sensory signals is a time consuming process.

Thus, we propose using kernel manifold alignment, to align the feature spaces of

different robots into a common feature space, and use it to train the robots. We

showed that our approach can enable the target robot to not only speed up the

learning process by learning with less interaction, but also perform better by using

aligned features from other robots rather than learning just from its own features.

Moreover, we showed that the target robot can learn to recognize novel objects by

knowledge transferred by the source robots.

A limitation of our experiment is that the dataset we used contains simulated

robots, thus in future work, we plan to test our proposed knowledge transfer method

on real robots. A kernel function that is designed to specifically capture time series

data such as haptics is also a promising avenue for future exploration. Moreover,

we would adapt our knowledge transfer method to a larger variety of non-visual

sensors other than effort such as audio, temperature, and vibration. Finally, in our

experiments, we addressed the object recognition task. In future work, we plan to

extend our method to handle sensory knowledge transfer for other tasks, such as

object manipulation, and language grounding.
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Chapter 7

A Framework for Sensorimotor

Cross-Perception and Cross-Behavior

Knowledge Transfer for Object

Categorization*

7.1 Introduction

From an early stage in cognitive development, humans, as well as other species,

use exploratory behaviors (e.g., shaking, lifting, pushing) to learn about the objects

around them [Pow99]. Such behaviors produce visual, auditory, haptic, and tactile

sensory feedback [SS08], which is fundamental for learning object properties and

grounding the meaning of linguistic categories and descriptors that cannot be rep-

resented using static visual input alone [LC09]. For example, to detect whether a

container is full or empty, a human may lift it; to perceive whether a ball is soft

or hard, a human may squeeze it [Gib88]. In other words, the behavior acts as a

medium to find the answer, in the form of a sensory signal, to a question about

*This chapter is based on the following paper: Gyan Tatiya, Ramtin Hosseini, Michael
Hughes, and Jivko Sinapov, “A Framework for Sensorimotor Cross-Perception and Cross-Behavior
Knowledge Transfer for Object Categorization”, Frontiers in Robotics and AI, 7:137, 2020.
[THHS20]
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object properties.

Recent research in robotics has demonstrated that robots can also use multi-

sensory feedback from interaction with objects (e.g., vision, proprioceptive, haptic,

auditory, and/or tactile) to perform several tasks, including language grounding

[TSS+16], object recognition [SBS+11], and object category acquisition [ANN+12].

One of the challenges in interactive multisensory object perception is that there is

no general purpose multisensory knowledge representations for non-visual features

such as haptic, proprioceptive, auditory, and tactile perceptions, as different robots

have different embodiments, sensors, and exploratory behaviors. Because each robot

has a unique embodiment and sensor suite, it is not easy to transfer knowledge of

non-visual object properties from one robot to another. In existing work, each robot

must learn its task-specific multisensory object models from scratch. Even if there

are two physically identical robots, it is still not easy to transfer multisensory object

knowledge as the two robots’ exploratory behaviors may be implemented differently.

Furthermore, sensors may fail over the course of operation and thus, an object clas-

sifier that relies on the failed sensor’s input would become unusable until the sensor

is fixed.

To address these limitations, this chapter proposes a framework for sensoir-

motor knowledge transfer across different behaviors and different sensory modalities.

The framework is designed to allow a robot to recover a failed sensor’s input given

sensor data from one or more of the robot’s other sensory modalities. The frame-

work also affords transfer from one robot to another across behaviors such that a

source robot can transfer knowledge obtained during object exploration to a target

robot that may have different actions and sensory modalities. This means that if

the source robot and the target robot had observations of what the same objects

feel like when lifted and pressed, the pair of observations could be used to learn a

function that maps observations from the source robot’s feature space to that of

the target robot. Such generated observations (i.e., features) can be used to train

task-specific recognition models for the target robot to identify novel objects that

only the source robot has interacted with. The advantage of this method is that
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the target robot does not need to learn the perceptual recognition task from scratch

as it can use the generated observations obtained from the source robot. Similarly,

knowledge can be mapped from one sensory modality to another, such that if a

sensor fails, modules that require its input can still operate, or if a new sensor is

added, the robot would not have to exhaustively explore all objects in its domain

from scratch to learn models that use the new sensor’s output.

We evaluated the proposed framework on a publicly available dataset in

which a robot explored 100 objects, corresponding to 20 categories using 9 ex-

ploratory behaviors coupled with auditory, haptic, vibrotactile and visual data. We

consider the object category recognition task in which the robot has to recognize the

category of a novel object given labeled examples on a training set of objects. The

task is closely related to grounded language learning and other applications where a

robot may need to identify object properties that cannot be inferred based on static

visual input alone. We evaluate two different approaches for knowledge transfer,

1) variational encoder-decoder networks, which allows one or more source feature

spaces to be mapped into a target feature space; and 2) variational auto-encoder

networks, which are trained to reconstruct their input features and can be used

to recover features from a missing sensor or new behavior-modality combination.

The results show that both approaches are able to effectively map data from one

or more sensory modalities to another, such that a target robot with a different

morphology or a different set of sensors can achieve recognition accuracy using the

mapped features almost as good as if it had learned though actual interaction with

the objects.

In the context of the broader dissertation, this chapter expands the prelimi-

nary framework proposed in Chapter 5 and introduces a β-Variational Autoencoder

Network (β-VAE) architecture, which is a method for Transfer using Projection

to Target Feature Space. This architecture supports multiple source robots that

performed different behaviors to generate target robot’s features. In the β-VAE ar-

chitecture, the basic idea is to learn a non-linear probabilistic mapping to construct

the target robot features from the input source features and use β to control the
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information capacity of the latent representation. β can be set to any nonnegative

value. A high β value would impose high constraint, and the latent representation

would have low capacity. This chapter addresses two knowledge transfer scenarios:

cross-behavior and cross-perception, with applications in object category and object

identity recognition, as compared to only cross-behavior and object category recog-

nition in Chapter 5. Additionally, this chapter used the Kernel Manifold Alignment

(KEMA)-based method for Transfer using Projection to Shared Latent Feature Space

proposed in Chapter 6 as a baseline for comparison.

7.2 Related Work

7.2.1 Object Exploration in Cognitive Science

Previous cognitive science studies show that it is fundamental for humans to inter-

actively explore objects in order to learn their auditory, haptic, proprioceptive and

tactile properties [Gib88, Pow99, CSS+04]. For example, in [SLM00] the effect of

perception was put into a test by presenting kids with a sponge painted to adapt

the visual characteristics of a rock. The kids perceived the sponge as a rock until

they came in contact with it by touch, at which point they recognized that it was

not a rock, but rather, a sponge. The case illustrates an example of how haptic

and tactile data can supplement visual perception in inferring objects’ character-

istics [Hel92]. Studies have also demonstrated that infants commonly use tactile

exploratory behaviors when exploring a novel object [Ruf84]. For example, [ST99]

found that 7-month-old infants can perform tactile surface recognition using tactile

exploratory strategies in the absence of visual information. In early stages of de-

velopment, object exploration is less goal driven and serves the primary purpose of

learning how objects feel, sound, and move; as we get older, we apply this learned

knowledge by performing specific exploratory behaviors to identify the properties of

interest, e.g., lift an object to perceive its weight, touch it to perceive its tempera-

ture, etc. [Gib88, ST99].

Studies have also shown that humans are capable of integrating multiple
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sensory modalities to detect objects and each modality contribute towards the final

decision [EB04]. [WWCM07] have reported that combining multiple sensory signals

such as visual and tactile with exploratory behaviors on objects produces more

accurate object representation than using only a single sensory signal. Moreover,

several lines of research in psychology have shown that object exploration, when

performed in a natural setting, is a multimodal process. For example, consider

a simple action of touching an object. In Chapter 4 of “Tactual Perception: A

Sourcebook”, Lederman writes:

“Perceiving the texture of a surface by touch is a multimodal task in which

information from several different sensory channels is available. In addition to cu-

taneous and thermal input, kinesthetic, auditory, and visual cues may be used when

texture is perceived by touching a surface. Texture perception by touch, therefore,

offers an excellent opportunity to study both the integrated and the independent ac-

tions of sensory systems. Furthermore, it can be used to investigate many other

traditional perceptual functions, such as lateralization, sensory dominance, and in-

tegration masking, figural aftereffects, and pattern recognition. [SF82]”

[LC09] have demonstrated that humans rely on multiple sensory modalities

to learn and detect many object properties (e.g., roughness, hardness, slippery, and

smooth). In their studies, that over half of the most common adjectives and nouns

have a strong non-visual component in terms of how humans represent each word.

Inspired by these findings, this chapter proposes a knowledge transfer framework so

that the robots in our factories and workplaces can appropriately learn from and

reason about multimodal sensory information produced during physical interaction

with objects.

7.2.2 Multisensory Object Perception in Robotics

Vision-based recognition of an object is the commonly adopted approach; however,

several research studies show incorporating a variety of sensory modalities is the

key to further enhance the robotic capabilities in recognizing multisensory object

properties (see [BHS+17] and [LKS+20] for a review). Previous work has shown that
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robots can recognize objects using non-visual sensory modalities such as the auditory

[TJNF05, SWS09, LZAL17, EKSW18, JLWS19, GGP20], the tactile [SSSS11, FL12,

BRK12b, KSG+19] and the haptic sensory modalities [NMS04, BSO+09, BGS+20].

In addition to recognizing objects, multisensory feedback has also proven useful for

learning object categories [SSS+14a, HBMK16, TYT18, TS19], material properties

[ECK17, ERCM18, ELCK19], object relations [SSS14c, SKSS16], and more gener-

ally, grounding linguistic descriptors (e.g., nouns and adjectives) that humans use

to describe objects [TSS+16, RK19, APR+20].

A major limitation of these methodologies is that they need large amounts of

object exploration data, which may be prohibitively expensive to collect. In other

words, the robot must perform a potentially large number of behaviors on a large

number of objects, multiple times, to collect enough data to learn accurate models.

To address this, some work has focused on learning to optimize the exploratory

behavior as to minimize the number of explorations needed to identify the object

[FL12]. Other research has proposed learning object exploration policies when at-

tempting to identify whether a set of categories apply to an object [AWZ+18]. In

addition, methods have also been proposed to select which behaviors to be performed

when learning a model for a given category based on its semantic relationship to

the categories that are already known [TSMS18].

In spite of all of these advances in robotics, a major outstanding challenge

is that multisensory information, as perceived by one robot, is not directly useful

to another robot that has a different body, different behaviors and possibly differ-

ent sensory modalities. In other words, if a robot learns a classifier for the word

“soft” based on haptic input produced when pressing an object, that classifier can-

not directly be deployed on another robot that may have a different body, different

number or type of haptic sensors, or a different encoding of the behavior. Further-

more, existing methodologies rarely try to learn the relationships between different

sensory modalities in a way that can handle sensor failure. This chapter addresses

these limitations by expanding a preliminary framework [THCHS19] as to afford sen-

sorimotor knowledge transfer between multiple sensory modalities and exploratory
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behaviors.

7.2.3 Domain Adaptation

Most machine learning models assume that both training and test data are drawn

from the same distribution and are in the same feature space. However, in many

cases, the training and the test distributions could be different, making it crucial to

adapt the examples from different distributions. The process of adapting one or more

source domains to transfer knowledge for the goal of improving the performance

of a target learner is called domain adaptation [BDBC+10, MMR09]. In domain

adaptation, the training examples are obtained from the source domain with labels,

while the test examples are obtained from the target domain with no labels or only

a few labels. In these settings, while the source and target domains are different,

they are in a semantically similar feature space. Our goal is to train a model for the

target robot using one or more semantically similar source robot feature spaces.

Encoder-decoder networks have recently shown promising results in facili-

tating domain adaptation [MKK+18, GFL19]. Encoder-decoder networks are com-

posed of two feed-forward neural networks: an encoder and a decoder [HZ93, HS06].

The encoder maps an input feature vector (the source robot sensory input) into a

fixed-length code vector. Give a code vector as input, the decoder produces a target

feature vector as output, such that it minimizes the reconstruction loss between the

produced output and a ground truth observation. Frequently, such architectures

are used for dimensionality reduction, i.e., the intermediate code vector size is much

smaller than the size of either input or output. If the input and output data points

are identical, they are referred to as “autoencoder” networks [LWL+17]. Autoen-

coders have been successfully applied to vision domains, such as image reconstruc-

tion [MM17] and image super-resolution [ZYW+15]. The term “encoder-decoder”

applies when the input and output are different. Encoder-decoder approaches have

been shown successful in applications such as language translation, in which the in-

put language is different than the output language [SVL14], as well as in extracting

multi-scale features for image representation tasks [KSB+10]. As tactile signals
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can complement visual information, both modalities have been used to learn shared

features for texture recognition problems [LYA+18], and encoder-decoder networks

have been proposed for predicting visual data from touch (and vice versa) [LBL19].

We hypothesize that encoder-decoder networks can be used to generate the sensory

features that would be produced by one robot (the target robot) when it interacts

with an object given features produced by another robot (the source robot) that

has already explored the object. This mapping would enable multisensory object

knowledge learned by the source robot to be transferred to the target robot, which

would reduce the need for exhaustive object exploration necessary for producing

multisensory observations of objects.

7.3 Learning Methodology

7.3.1 Notation and Problem Formulation

Consider the case where two or more robots are tasked with recognizing object

properties using sensory data produced when performing a behavior on an object.

For a given robot r, let Br be its set of exploratory behaviors (e.g., grasp, lift, press,

etc.). Let Mr be its set of sensory modalities (e.g., audio, tactile, vision, etc.) and

let Cr be the set of sensorimotor contexts where each context denotes a combination

of a behavior and modality (e.g., grasp-tactile, lift-haptic).

Let O denote the set of objects in the domain and let Y denote the discrete

set of categories such that each object maps to particular category y ∈ Y. When

performing an action on an object o ∈ O, the robot records sensory features for

all contexts associated with the behavior, i.e., during the ith exploration trial, the

robot observes features from context c ∈ Cr represented as xci ∈ Rnc where nc is the

dimensionality of the features space associated with context c. For a given context

c ∈ Cr, let Xc be the nc-dimensional feature space associated with that context.

For the category recognition problem, the robot needs to learn a classifier decision

function dc : Xc → Y that maps the sensory feature vector to one of the discrete

set of categories y ∈ Y. In our framework the robot learns a classifier dc for each
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sensorimotor context c using supervised learning with labeled examples.

Consider the case where one robot, the source robot, has explored all objects

in O multiple times such that it can learn accurate classifiers for the category recog-

nition task. Another robot, the target robot, however, has only explored a subset of

the objects from categories Yshared ⊂ Y and needs to learn a category recognition

model for a different set of categories Ytarget ⊂ Y where Yshared
⋂
Ytarget = ∅. In

other words, the target robot must learn to categorize objects according to the labels

Ytarget without having interacted with any objects from those categories. Below, we

describe our knowledge transfer model that enables the target robot to solve this

task.

7.3.2 Knowledge Transfer Model

To transfer sensory object representations learned by one robot to another, we need

a function that predicts what the target robot would observe in a particular feature

space when interacting with an object, given what the source robot has observed

with that object in one of its own feature spaces. More specifically, let cs ∈ Cs and

ct ∈ Ct be two sensorimotor contexts, one from the source robot s and the other from

the target robot t. Thus, the task is to learn a function mapcs,ct : Xcs → Xct which

takes as input an observed feature vector xcsi from the source context and produces

x̂cti , the estimated sensorimotor features in context ct that the target robot would

have observed if it interacted with the object that produced sensorimotor features

xcsi for the source robot. We considered two knowledge transfer scenarios:

Cross-perception transfer: A knowledge transfer model that maps the

feature spaces across different modalities of the robot performing the same behavior

is referred as cross-perception transfer. This transfer can be useful in a scenario

where one of the robot’s sensors fails and its signal is recovered from the available

set of sensors. Another application is the situation where a new sensor is added

to the robot at a time after the robot has explored an initial set of objects for a

recognition problem.
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Cross-behavior transfer: A knowledge transfer model that maps the fea-

ture spaces across different exploratory behaviors performed by the robot is referred

as cross-behavior transfer. This transfer can be useful in a scenario where a new

robot with less experience with objects is required to learn from a more experienced

robot that has thoroughly explored the objects in the recognition domain. Note

that such a mapping can also be cross-perceptual as not only the behaviors, but the

sensors as well, may be different across the source and the target robots.

We can further extend this model to take input from multiple contexts (e.g.,

tactile and visual data) and output a reconstruction for some other context (e.g.,

haptic data). Further, we also consider mappings which take inputs from a fixed

set of sensorimotor contexts and simply reconstruct the observations in the same

feature spaces. We refer to mappings whose input and output contexts are identical

as autoencoders. Mappings for which the output contexts are distinct from the

input ones are referred to as encoder-decoders. We propose that such mappings can

be learned via two probabilistic approaches, the β-variational encoder-decoder (β-

VED) and β-variational autoencoder (β-VAE), which we describe below. While the

core ideas behind the VAE [KW13] and its extension to the β-VAE [HMP+17] have

been widely-used across machine learning, we specialize them to encoder-decoder

architectures to solve transfer learning problems across robot contexts.

7.3.2.1 β-Variational Encoder-Decoder Network

Our proposed β-VED approach (shown in Fig. 7.1) is designed to transfer knowl-

edge from the source robot to the target robot. This β-VED learns a non-linear

probabilistic mapping to construct the target robot features xcti from the input

source features xcsi while compressing the data in the process to discover an efficient

representation in a “learned” latent code space. We denote the lower-dimensional,

fixed-size encoding of the data for example i by the code vector zi ∈ RDz of size Dz.

The β-VED is defined by two related probabilistic models, fully described

below. The first model is fully generative, producing latent codes and target features.

The second model is conditional, producing latent codes giving source features.
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These are trained together, related by the fact that the second model should be

an accurate approximation of the posterior over latent codes given target data for

the first model. We will describe how to coherently fit the model to observed data

using the same well-motivated training objective as [HMP+17], but specialized to

our robot context.

First, the generative model defines a joint distribution over latent codes and

target features:

p(zi) = MultivariateNormal(zi|0, IDz) (7.1)

pθ(x
ct
i |zi) = MultivariateNormal(xcti |decode(zi, θ), σ2 · Inct

) (7.2)

Here, the standard Normal prior distribution on code vectors p(zi) is designed to

encourage mild independence among its entries, while the likelihood pθ(x
ct
i |zi) is

designed so its mean is the output of a flexible “decoder” neural network with

weight parameters θ. Given each distinct latent code, the decoder will map to a

distinct mean in target feature space.

Second, the conditional model of our proposed β-VED defines a probability

distribution qϕ(zi|xcsi ), which allows probabilistic mapping from the source features

to a latent code vector:

qϕ(zi|xcsi ) = MultivariateNormal(encode(xcsi , ϕ), σ̂2 · IDz) (7.3)

Again, we use a flexible “encoder” neural network with weight parameters ϕ to

define a non-linear mapping from any source features to a mean vector in latent

code space. A specific code vector is then drawn from a Normal distribution with

that mean and a diagonal covariance with learned scale. For both encoder and

decoder neural networks, we use multi-layer perceptron architectures with non-linear

activation functions.

Training the β-VED for a context pair cs, ct amounts to learning the weight

parameters of the two neural networks, θ and ϕ, as well as the variance parameters
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σ2 and σ̂2. Henceforth, we will use notation θ and ϕ to represent all parameters we

need to learn (both the weights and the variances), for compact notation.

Our training problem requires observing features from both source and target

robot across a set of N total objects where both robots interact with each object M

times. The objects used to train the β-VED come from the set of shared categories

Yshared. Given a dataset of source-target feature pairs {xcsi , xcti }
N×M
i=1 , where each

pair comes from the same object, we find the parameters (θ, ϕ) that maximize the

following evidence lower bound variational objective function:

L(θ, ϕ;xcs , xct , z, β) =
N×M∑
i=1

Eqϕ(zi|xcs
i )[log pθ(xi

ct |zi)] − βDKL(qϕ(zi|xcsi )||p(zi))

(7.4)

This objective, which comes from the β-VAE work by [HMP+17], is based on well-

known lower bounds on marginal likelihood used to motivate variational inference

in general [BKM17]. We can interpret the two terms here in justifiable ways. The

first term seeks to maximize the likelihood that the real observed target features

xcti are similar to the model’s “reconstructed” target features x̂cti . Recall that re-

construction occurs in two steps: first sampling a code vector from the conditional

model (“encoder”), then sampling the target features from the generative likelihood

(“decoder”) given that code vector. The second term in Eq. (7.4) is a Kullback-

Leibler (KL) divergence used to quantify the distance between our learned condi-

tional distribution q over latent code vectors zi given source features xcsi , and the

prior distribution over codes, denoted p(zi). The KL-divergence acts as a regularizer

on the learned code space, encouraging the approximate posterior distribution to

be close to the prior distribution, which is a Normal with mean zero and identity

covariance.

The coefficient β > 0 was introduced to the objective by [HMP+17] to control

the model’s emphasis on the information capacity of the latent code space. Large

β > 1 lead to low capacity (but highly interpretable representations), while low

β < 1 value demphasizes the KL divergence and allows higher fidelity reconstructions

(at the expense of the interpretability of the latent space). Note that β = 1 with
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target and source domains the same recovers the standard variational inference

objective used to train VAEs by [KW13]. For implementation details, readers can

refer section 7.4.2.

Figure 7.1: The proposed β-VED network architecture. In this example, an input
data point from the shake-haptic context is projected to the hold-haptic context.

Figure 7.2: The proposed β-VAE network architecture. In this example, the network
is trained to reconstruct data points from the hold-haptic context given data points
from the shake-haptic and lift-haptic contexts.

7.3.2.2 β-Variational Autoencoder Network

The major difference between β-VED and β-VAE is that in β-VED the input is

different than the output, and in β-VAE the input is same as the output. Because

our goal is to generate the target robot’s features using the source robot’s features,

we used both source and target robot’s data as the input as well as the output for

β-VAE. The benefit of using β-VAE over β-VED is that we can have more than one

source robot projecting into the target robot’s feature space rather than just one
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source robot.

Our proposed β-VAE is shown in Fig. 7.2. First, the features of each robot go

through their private encoder and project into a common latent distribution between

all the robots. Then a code is sampled from the latent distribution, and passed

through the private decoder for each robot. The latent distribution is learned to

reflect the categorical information of the input, and the private encoder and decoder

is learned to compress and generate robot specific features. The objective function

of β-VAE is same as for the β-VED discussed in 7.3.2.1.

7.3.3 Using Transferred Features for Category Recognition

Once we have a trained knowledge transfer model (e.g. β-VED, β-VAE) for one

or more source context cs (e.g. push-haptic or drop-audio), we can then train the

target robot to recognize novel object categories it has never experienced before,

as long as examples of these categories are experienced by the source robot under

context cs. We refer to this novel set of categories as Ytarget. We assume that the

source robot has experienced a total of J feature-label pairs from these categories:

{xcsj , yj}Jj=1, where yj ∈ Ytarget. We project this labeled dataset to the target robot

by producing a “reconstructed” training set: {x̂ctj , yj}Jj=1, which is then used for

supervised training of a multi-class classifier appropriate for the target context.

We produce reconstructed features by sampling from our pre-trained probabilistic

knowledge transfer models. This involves two steps of sampling: a sample from

the encoder followed by a sample from the decoder. The resulting reconstructed

target feature vector (and its associated known label) can then be used to train a

classifier. In the experiments below, we generally found that a single sample of the

target feature vector worked reasonably well in terms of downstream classification

performance, so we use that throughout. Future work could explore how multiple

samples might improve robustness.

Subsequently, at test time when the target robot interacts with novel ob-

jects without category labels, the target robot observes features xct and feeds these

features directly to its pre-trained classifier to predict which category within the
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set Ytarget it has observed. While we assume that at test time, the target robot

encounters objects only from categories Ytarget, it is straightforward to extend our

approach for the combined set of possible categories Ytarget and Yshared by combining

the target robot’s both real and reconstructed training sets.

7.4 Experiments and Results

7.4.1 Dataset Description

We used the publicly available dataset introduced by [SSS+14a], in which an upper-

torso humanoid robot used a 7-DOF arm to explore 100 different objects belonging

to 20 different categories using 9 behaviors: press, grasp, hold, lift, drop, poke, push,

shake and tap (shown in Fig. 7.3). During each behavior the robot recorded audio,

haptic, vibrotactile and visual feedback using four sensors: 1) an Audio-Technica

U853AW cardioid microphone that captures audio sampled at 44.1 KHz; 2) joint-

torque sensors that capture torques from all 7 joints at 500 Hz, 3) vibrotactile

sensor consisting an ABS plastic artificial fingernail with an attached ADXL345

3-axis digital accelerometer, and 4) a Logitech webcam that captures 320 x 240

RGB images. Thus, there are 36 sensorimotor contexts, i.e., each combination of

a behavior and sensory modality serves as a context. The robot performed each

behavior 5 times on each of the 100 objects, thus there were 4,500 interactions (9

behaviors x 5 trials x 100 objects). We used the auditory, haptic, and visual features

as described by [SSS+14a]. The parameters regarding the feature extraction routines

(e.g., the number of frequency bins) were left identical to those in the original dataset

as to be consistent with other papers that use the same dataset. Next, we briefly

discuss the feature extraction methodology used by [SSS+14a] to compute features

from the raw sensory signal.

For audio, first, the spectrogram was computed by Discrete Fourier Trans-

formation using 129 log-spaced frequency bins. Then, a spectro-temporal histogram

was produced by discretizing both time and frequencies into 10 equally spaced bins,

thus producing a 100-dimensional feature vector. An example spectrogram of a de-
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Figure 7.3: Left: 100 objects, grouped in 20 object categories. Right: The interactive
behaviors that the robot performed on the objects. From top to bottom and from
left to right: (1) press, (2) grasp, (3) hold, (4) lift, (5) drop, (6) poke, (7) push, (8)
shake and (9) tap.

Figure 7.4: Audio features using shake behavior performed on an object from the
medicine bottles category.

Figure 7.5: Haptic features produced when the robot performed the shake behavior
on an object from the medicine bottles category.
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Figure 7.6: Vibrotactile features produced when the robot performed the shake
behavior on an object from the medicine bottles category.

Figure 7.7: Visual (SURF) features detected when the tap behavior was performed
on an object from the large stuffed animals category. The feature descriptors of the
detected interest points over the entire interaction were represented using bag-of-
words.

tected sound, and the resulting low-dimensional feature representation are shown in

Fig. 7.4.

Similar to audio, haptic data was discretized into 10 equally spaced temporal

bins, resulting in a 70-dimensional feature vector (the arm had 7 joints). Fig. 7.5

shows an example raw joint-torque data and the resulting feature representation.

Vibrotactile features were computed from the raw data using frequency-domain

analysis as described by [SSSS11]. The 3-axis accelerometer time series were con-

verted into a univariate magnitude deviation series, on which the Discrete Fourier

Transform was performed, resulting in a spectrogram with 129 frequency bins denot-

ing intensities of different frequencies over time. This spectrogram was discretized

into 5 temporal bins, and 20 frequency bins (an example representation is shown in

Fig. 7.6).

The robot also recorded the raw RGB images from its camera as it performed

a behavior on an object. For each interaction, the Speeded-Up Robust Features

(SURF) features were computed on each image (a sample set of SURF features

detected over an image are shown in 7.7). SURF consisted of 128-dimensional
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feature vector representing the distribution of the first order Haar wavelet responses

within the interest point neighborhood.

7.4.2 Knowledge Transfer Model Implementation

The β-VED network consisted of a multi-layer perceptron (MLP) architecture with

three hidden layers for both the encoder and the decoder, with 1000, 500, 250

hidden units respectively, Exponential Linear Units (ELU) [CUH16] as an activation

function, and a 125-dimensional latent code vector as shown in Fig. 7.1. The latent

layer and the output layer used a linear activation function. The network parameters

are initialized using Glorot uniform initializer [GB10] and updated for 1000 training

epochs using the Adam optimizer [KB15] with a learning rate of 10−4, implemented

using TensorFlow 1.12 [ABC+16]. The prior distribution of the latent representation

used a normal distribution with a mean of zero and a standard deviation set to one.

The β value was set to 10−4. We performed network hyper-parameter tuning by

trying different numbers of layers in the network within the range of 1 to 5 and

different numbers of units in each layer within the range of 100 to 1000. Then,

we choose the minimum number of layers and units after which increasing them

did not improve the performance. We performed this network hyper-parameter

tuning experiments on 10 randomly selected projections (e.g. shake-haptic to hold-

haptic, poke-vision to poke-haptic) and then used the selected hyper-parameters

for the entire set of projections. Note that the hyper-parameters and the network

architecture we used may not be optimal for a different dataset that may have a

much larger input dimensionality or a larger set of datapoints.

For β-VAE (shown in Fig. 7.2), we used the same network architecture for

all the private encoders and decoders as of β-VED discussed above. The output of

all the encoders were concatenated and connected to the mean and the standard

deviation vector. The sampled latent vector was used as an input to the decoders.

The rest of the implementation details and the hyper-parameters of β-VAE are same

as of β-VED.
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7.4.3 Category Recognition Model Implementation

At test time, we used multi-class Support Vector Machine (SVM) [Bur98] to classify

objects into the categories from the set Ytarget. SVM uses the kernel trick to map

the training examples to a high-dimensional feature space where the data points

from different classes may be linearly separable. We used the SVM implementation

in the open-source scikit-learn package [PVG+11], with the Radial Basis Function

(RBF) kernel and default hyperparameters.

7.4.4 Evaluation

We consider the setting where the source robot interacts with all 20 object categories,

while the target robot interacts with 15 randomly selected object categories. The

objects of the shared 15 categories experienced by both robots are used to train

the knowledge transfer model that projects the sensory signals of the source robot

to that of the target robot. Subsequently, the trained knowledge transfer model is

used to generate “reconstructed” sensory signals of the other 5 object categories in

Ytarget that the target robot never interacted with. Each sensory signal experienced

by the source robot from objects in these categories is thus “transferred” to a target

feature vector. Since the dataset we used has only one robot, we evaluated our

framework in two scenarios: cross-perception knowledge transfer, in which one of

the robot’s sensors fail and its signal is recovered from the set of available sensors,

and cross-behavior knowledge transfer, in which the source and the target robots

are physically identical, but they perform different behaviors on shared objects. *

We consider three possible category recognition training cases: (1) our pro-

posed transfer-learning framework using the generated data from the source context

(i.e., how well the target robot performs if it uses transferred knowledge from the

source robot), (2) a domain adaption method, KEMA (kernel manifold alignment)

[TCV16, TSES20] that aligns two different robots’ feature spaces into a common

*Note that the proposed transfer learning methodology does not make this assumption and is
applicable in situations where the two robots are morphologically different and/or use different
sensors and feature representations for a given modality.
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space and then trains the target robot using the aligned features, and (3) a non-

transfer baseline using the target robot’s ground truth features produced by actual

interaction (i.e., the best the target robot could perform if it had experienced all the

objects itself during the training phase). In all three cases, ground truth features

detected by the target robot are used as inputs to the category recognition model

when testing. We used 5-fold object-based cross-validation, where each training fold

consisted of 4 objects from each of the 5 object categories in Ytarget that the target

robot never interacted with, while the test fold consisted of the remaining objects.

Since the robot interacted with each object for a total of 5 times, there were 100 (5

categories x 4 objects x 5 trials) data points in the training set, and 25 (5 categories

x 1 objects x 5 trials) data points in the test set. This process was repeated 5 times,

such that each object occurred 4 times in the training set and once in the test set.

The performance of the target robot at recognizing novel categories of objects

it never explored was evaluated using two metrics. The first, accuracy, is defined as:

% Recognition Accuracy =
Correct predictions

Total predictions
.

The process of selecting the 15 random categories to train the knowledge transfer

model, generating the features of the remaining 5 categories, training the two clas-

sifiers using generated and ground truth features, and calculating accuracy for both

classifiers on ground truth observations by 5-fold object-based cross validation was

repeated for a total of 10 times to produce an accuracy estimate.

The second metric that we used was accuracy delta (%), which measures the

loss in recognition accuracy as a result of using the generated features for training

when compared to using the ground truth features. We define this loss as:

Accuracy Delta = Accuracytruth −Accuracygenerated

where Accuracytruth and Accuracyprojected are the accuracies obtained when using

ground truth and generated features, respectively. Smaller accuracy delta suggests
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that the features generated by the learned mapping are similar to the target robot’s

real features, and that the target robot can use these generated features to learn

a classifier that achieves comparable performance as if the target robot learned by

actually exploring the objects.

7.4.5 Results

7.4.5.1 Cross-Perception Sensorimotor Transfer

First, we consider the case where a robot is tasked with learning a mapping from

one of its sensory modalities (e.g., vision) to another (e.g., haptic) for the same

behavior. Such a mapping would be needed if the modality sensor associated with

the target context ct fails at test time, or if a new sensor is added such that there is

limited data produced with objects with that sensor.

Illustrative Example Consider the case where the robot performs poke behavior

while the haptic sensor is not working. Projecting haptic features from vision, en-

ables the robot to achieve 42.5% recognition accuracy using β-VED and 35.6% using

β-VAE, compared with 49.6% when using features from real interactions (shown in

Fig. 7.10). In other words, the robot’s category recognition model trained on the

reconstructed signal of a failed sensor performs very close to the model that been

trained on real signal. Chance recognition accuracy for 5 categories is 20% and the

accuracies of individual sensorimotor contexts are typically in the 40-60% range.

Note that the overall recognition accuracy can be boosted to nearly 100% by using

multiple behaviors and sensory modalities [SS10] but this is out of scope for this

chapter.

To visualize how the projected features look as compared to the ground

truth features, we plotted an example of tap-vibro to tap-haptic projection using

β-VED. Fig. 7.8 shows a feature vector from the source feature space, the projected

observation in the target features, and a ground truth feature vector captured by

performing the tap behavior on the same object. The projected and the ground truth

features are very similar. Note that this is a special case and there are certainly
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Figure 7.8: Visualizations of: (A) the source robot’s features; (B) the target robot’s
projected features using β-VED, and (C) the corresponding ground truth features
captures by performing tap behavior on an object from the bottles category.

pairs of source-target contexts which do not produce accurate projections.

Now, consider a case where the robot performs push behavior while the haptic

sensor is not working. Generating haptic features using audio and vision by β-

VAE as two sources, enables the robot to achieve 38.6% recognition accuracy. This

is a significant boost in accuracy as projecting vision alone achieves 27.8%, and

projecting audio alone achieves 23.9%.

To find the effect of the amount of data used to train a two sources β-VAE

and corresponding two single source β-VEDs on the recognition performance, we

varied the number of shared object categories for a projection. Fig. 7.9 shows the

recognition performance for different number of number of shared categories for

β-VAE push-audio and push-vision to push-haptic projection, β-VED push-vision

to push-haptic projection and β-VED push-audio to push-haptic projection. As

demonstrated combining vision and audio features improves the generation of haptic

features for most number of shared categories, and the performance of two sources

β-VAE reaches very close to the ground truth features accuracy.

Accuracy Results of Category Recognition Since there are 4 modalities (au-

dio, haptic, vibro and vision), if a sensor fails, there are 3 possible mappings that

take a single sensory modality as input, each from an available sensor to a failed

sensor, so there are 4×3 = 12 possible mappings (e.g. if the haptic sensor fails, the 3

possible mapping would be audio to haptic, vibro to haptic, vision to haptic). There

are 9 behaviors, so there are 12 × 9 = 108 projections (e.g. poke-vision to poke-

haptic, tap-vision to vision-haptic). Fig. 7.10 shows the 5 β-VED cross-perception
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Figure 7.9: Accuracy achieved by the projected features of the robot for different
number of shared objects classifier for β-VAE push-audio and push-vision to push-
haptic projection, β-VED push-vision to push-haptic projection and β-VED push-
audio to push-haptic projection.

Figure 7.10: β-VED cross-perception projections where the Accuracy Delta is min-
imum and corresponding β-VAE projections and KEMA projections.
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projections with the least accuracy delta and corresponding single source β-VAE

projections and KEMA projections. Recovering haptic features from vibrotactile

and vision was the easiest task indicating that knowing what an object’s surface

feels and looks like when interacting with it can inform how much force would be

felt when performing that behavior. Fig. 7.10 also shows that the single source

β-VAE produce comparable recognition rates as β-VED.

A statistical analysis of the projections shown in Fig. 7.10 was performed

using a two-sample t-test. The t-test produced a p-value when a knowledge transfer

method is compared with another, and p-value < 0.05 was considered statistically

significant. For all the projections the p-value is less than 0.05 when KEMA is

compared with β-VED and β-VAE except lift-haptic to lift-audio, where the p-value

is 0.94 for KEMA and β-VED, and 0.11 for KEMA and β-VAE. This shows that

the performance of encoder-decode methods is significantly better than KEMA in

most cases.

For 2 sources β-VAE, we evaluated 3 mappings: audio and vision to haptic,

audio and vision to vibro, and haptic and vibro to vision. Results in Fig. 7.11

indicate that by knowing how an object looks like and sounds like when performing

a behavior gives a good idea of how its surface would feel and how much force would

be felt performing that behavior. However, it is hard to predict how an object looks

like by knowing its haptic and vibro signal, which is intuitive as objects in different

category may have similar weights, but look very different. For all projections shown

in Fig. 7.11, the p-value is less than 0.05 when β-VAE (2 sources) is compared with

the better performing source robot among the two corresponding source robots using

β-VED method.

Accuracy Delta Results Fig. 7.12 shows the accuracy delta for all 9 behaviors

for β-VED model. Darker color indicates lower accuracy delta, and thus the diagonal

is black. If a particular sensor fails Fig. 7.12 informs which source sensor would be

better to recover its sensory signal, depending on the behavior. For example for the

poke behavior, if the haptic sensor fails, using the vision sensor to recover its signal
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Figure 7.11: Two sources β-VAE cross-perception projections where the recognition
accuracy improves as compared with corresponding β-VED projections.

would be better than other source contexts as it achieves the smallest accuracy

delta. Similarity, for the hold behavior, if the audio sensor fails, the vibrotactile

sensor is a good source context to recover its signal. These results also show that

the best source modality for reconstructing features from another modality varies

by behavior. The recognition accuracy of some of these projections is shown in Fig

7.10.

7.4.5.2 Cross-Behavioral Sensorimotor Transfer

Next, we consider the case where a robot is tasked with learning a mapping from one

of its behaviors (e.g., shake) to another (e.g., hold) for different or same modality.

Such a mapping would be useful if a new robot that has limited experience with

objects needs to learn from more experienced robots that have thoroughly explored

the objects in the domain.

Illustrative Example Suppose the source robot performs shake while the target

robot performs hold. Projecting the haptic features from shake to hold, allows the
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Figure 7.12: Cross-perception Accuracy Delta for 9 behaviors using β-VED. From
top to bottom and from left to right: (1) press, (2) grasp, (3) hold, (4) lift, (5) drop,
(6) poke, (7) push, (8) shake and (9) tap. Darker color means lower Accuracy Delta
(better) and lighter color means higher Accuracy Delta (worse).

Figure 7.13: β-VED cross-behavior projections where the Accuracy Delta is mini-
mum and corresponding β-VAE projections and KEMA projections.

target robot to attain 63.3% recognition accuracy compared with 62.5% when using

ground truth features from real interactions (shown in Fig. 7.13). In other words,

the target robot’s recognition model is as good as it could have been if it were

trained on real data.

To visualize the projection between the shake-haptic and hold-haptic con-

texts, we reduced the dimensionality of the generated and the ground truth features

of the 5 categories the target robot never interacted with to 2 (shown in Fig. 7.14)

using Principal Component Analysis [TB99] implemented in scikit-learn [PVG+11].

Fig. 7.14 shows the clusters of the ground truth features (top-left) and five plots

98



Figure 7.14: 2D visualizations using Principal Component Analysis of the target
robot’s hold-haptic ground truth features (top-left) and five β-VED projected fea-
tures’ (from shake-haptic) clusters for different β values (in increasing order from
top to bottom and left to right).

that show β-VED projected features for different β values (in increasing order from

top to bottom and left to right). The plots clearly show that, as the model was less

constrained, the model learned better representations of the 5 categories indicated

by the 5 clusters. The clusters of projected features (β = 0.0001) look structurally

very similar to the ground truth data, indicating that the “reconstructed” features

generated by the source robot are realistic. In the remaining experiments, we used

0.0001 as the β value for β-VED and β-VAE.

Now, consider a case of two source robots: one performs lift behavior and an-

other performs press behavior, while the target robot performs poke behavior. Pro-

jecting lift-haptic and press-haptic features to poke-haptic by β-VAE as two sources,

enables the target robot to achieve 39.3% recognition accuracy. This is a significant

boost in accuracy as projecting lift-haptic alone to poke-haptic achieves 30.2%, and

projecting press-haptic alone to poke-haptic achieves 28.7% (shown in Fig. 7.15).

To find the effect of the amount of data used to train a two sources β-

VAE and corresponding two β-VEDs on the recognition performance, we varied

the number of shared categories used to learn a projection. Fig. 7.16 shows the
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Figure 7.15: Two sources β-VAE cross-behavior projections where the recognition
accuracy improves as compared with corresponding β-VED projections.

recognition performance for different numbers of shared object categories for β-VAE

lift-haptic and press-haptic to poke-haptic projection, β-VED lift-haptic to poke-

haptic projection and β-VED press-haptic to poke-haptic projection. Combining

lift-haptic and press-haptic features improves the generation of poke-haptic features,

especially with more shared categories, and the performance of two sources β-VAE

reaches very close to the accuracy achieved when using ground truth features.

Accuracy Results of Category Recognition Since there are 4 modalities (au-

dio, haptic, vibro and vision) there are 4×4 = 16 possible mappings from the source

to the target robot (e.g. audio to audio, audio to haptic, audio to vibro, audio to

vision, etc.). Each of the 9 behaviors are projected to all the other 8 behaviors, so

for each mapping, there are 9×8 = 72 projections. Fig. 7.13 shows the 5 projections

where the accuracy delta is minimum among all 16 × 72 = 1152 projections using

β-VED and corresponding single source β-VAE projections and KEMA projections.

Generally, mappings within the same modality (e.g. haptic to haptic, vision to vi-

sion) achieve higher accuracy than mappings between different modalities. This
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Figure 7.16: Accuracy achieved by the projected features of the target robot for
different number of shared objects for β-VAE lift-haptic and press-haptic to poke-
haptic projection, β-VED lift-haptic to poke-haptic projection and β-VED press-
haptic to poke-haptic projection.

indicates that knowing what an object feels like when performing a behavior can

help to predict what it would feel like better than what it would sound like or look

like given another behavior. Similar to cross-perception projection results, the single

source β-VAE achieves similar recognition rates as β-VED. For all the projections

shown in Fig. 7.13, the p-value is less than 0.05 when KEMA is compared with

β-VED and β-VAE indicating that encoder-decode methods perform significantly

better than KEMA.

The β-VAE architecture requires the target robot’s features as input as well

as output. Since we assume that the target robot did not explore objects from the 5

novel categories, we cannot provide its features as input. Therefore, while training

with the 15 categories we compared feeding zero as target robot input and feeding

actual target robot’s features. We found that the performance is better when we

feed in zero (shown in Fig. 7.17). It may be due to the different training and test

conditions that causes feeding actual features as target robot’s input to perform

poor as compared to feeding it zero. Thus, while training as well as testing we feed

in zero as input for the target robot and the β-VAE learns to generate the target

robot’s features. For the first four projections shown in Fig. 7.17, the p-value is

less than 0.05 when β-VAE trained using zero as features is compared with β-VAE

trained using actual features.

For 2 sources β-VAE, we evaluated haptic and haptic to haptic mapping
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Figure 7.17: Two sources β-VAE cross-behavior projections trained with zeros for
target robot where the Accuracy Delta is minimum and corresponding β-VAE pro-
jections trained with target robot’s features.

because haptic to haptic is the best performing mapping for the single source robot

scenario. Results in Fig. 7.15 indicate by knowing how an object feels like when

performing two different behaviors provides a better prediction of how it would

feel like when a third behavior is performed. In Fig. 7.15, for the first projection

the p-value is less than 0.05 when β-VAE (2 sources) is compared with the better

performing source robot among the two corresponding source robots using β-VED

method.

Accuracy Delta Results Comparatively, mappings with target modality as hap-

tic achieve smallest accuracy delta. The accuracy delta for β-VED of all the four

possible mappings with target modality as haptic are shown in Fig. 7.18. This result

indicates that it is easier to predict what an object would feel like when performing

a behavior by knowing what it looks like or what it sounds like when performing

another behavior. In addition, when both robots perform behaviors that capture

similar object properties, the generated features are more realistic. For example,

holding an object provides a good idea about how it would feel like to lift that object

as indicated by smaller accuracy delta. Generating hold-audio features from most

of the source robot’s features is relatively easier possibly because holding an object
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Figure 7.18: Accuracy Delta for 4 mappings using β-VED: haptic to haptic, vibro to
haptic, vision to haptic, audio to haptic. Darker color means lower Accuracy Delta
(better) and lighter color means higher Accuracy Delta (worse).

would not produce much sound. However, when the target modality is vibro, the

accuracy delta is relatively higher, indicating that it is hardest to predict what an

object’s surface feels like when performing a behavior by knowing what it sounds

like or what it looks like when performing another behavior. For example, grasp-

audio to push-vibro and drop-vibro to push-vibro are the two projections where the

accuracy delta is the highest.

There are 36 sensorimotor contexts (9 behaviors x 4 modalities). To find the

combination of source and target contexts that is good for knowledge transfer, we

computed the accuracy delta matrix, which has an average of accuracy delta values

for each pair of contexts. For example, for the projection lift-haptic to hold-haptic

the accuracy delta is 3% and hold-haptic to lift-haptic the accuracy delta is 5.5%, so

the average accuracy delta of this pair of context is 4.2%. The size of the accuracy

delta matrix is 36 x 36 and the accuracy delta value of identical contexts is 0. Fig.

7.19 shows a two dimensional ISOMAP [TDSL00] embedding of the accuracy delta

matrix. Each dot in the plot corresponds to a context and the distance between a

pair of context indicate the efficiency of the transfer (i.e. a pair that is closer to each

other is better for knowledge transfer than a pair that is farther). Contexts with

the same modality appear closer to each other suggesting that projections within

the same modality comparatively perform better. Some of the most efficient pair

of behaviors are hold and lift, shake and hold, and drop and lift. This shows that

behaviors that capture similar object properties are better for knowledge transfer

as each of these pairs of behavior require the robot to keep the object between its
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Figure 7.19: Two dimensional ISOMAP embedding of the accuracy delta matrix.
Each point represents a sensorimotor context (i.e., a combination of a behavior
and sensory modality). Points close in this space represent contexts between which
information can be transferred effectively.

grippers for some moment and capture the force felt and images observed in a similar

manner by performing both behaviors.

A surprising result is that the hold-audio and lift-audio contexts are clustered

closely with the haptic contexts, far away from other audio contexts. Upon closer

examination, the volume of the sounds produced by the robot’s motors when holding

or lifting an object was correlated with the object’s weight, and thus, the audio data

served as a proxy haptic sensor for those two behaviors. The results can also be

used to detect redundant behaviors – e.g., the hold and lift behaviors are close to

each other in the haptic, audio, and vision modalities, suggesting that they provide

essentially the same information. It is important to note that these findings are

likely specific to the particular robot, behaviors, and sensory modalities used in

this dataset. We expect that the relationships between such sensorimotor contexts

will vary depending on the robot and its means of perceiving and interacting with

objects in its domain.

Object Selection for Calibration In many situations it is possible that the

source and the target robots have limited time to build the mapping function for

knowledge transfer. Therefore, it is important to efficiently select the calibration set
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of objects explored by both robots to maximize the quality of the learned mapping

in a limited time. Here we propose one such procedure.

Let Dcs
source be the dataset of observed features by the source robot in context

cs. These include features with objects from all categories Y. The goal is to select

a set of N objects Ocalibration with category labels in Yshared which can then be

explored by the target robot in some context ct in order to learn the source to

target mapping function.

1. Cluster the data points in Dcs
source into J clusters

2. For each cluster vj , compute a weight wj according to:

wj =
# of vj data points with labels in Ytarget

Total # of data points in cluster vj

3. Sample a cluster vj with probability proportional to its weight, and then uni-

formly sample an object with label in Yshared for which a data point falls into

vj in the clustering. Repeat N times (without replacement).

We tested this procedure with K-means [Llo82] to cluster 500 data-points

(100 objects x 5 trials with each object) of the source robot into J = 100 clusters,

and select objects from clusters that capture similar object properties that are more

useful for calibration. We limited the size of Ocalibration to N = 5, substantially less

than in results reported so far.

Fig. 7.20 compares the method to two naive baselines: 1) randomly selecting

a category in Yshared and then using data with all 5 objects in that category; and

2) randomly sampling 5 objects with labels Yshared. As demonstrated, selecting 5

objects using the clustering method achieves higher accuracy than randomly select-

ing 5 objects or a category. This means that the clustering method selects objects

that are similar to the 5 target categories, and can be useful when there is a budget

of the number of objects both robots are allowed to interact with.
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Figure 7.20: Comparison of three different methods of selecting 5 objects for training
β-VED. Note that each method selects 25 data-points for training β-VED.

7.4.6 Validation on a Second Dataset

We validated our knowledge transfer framework on another dataset, which is de-

scribed below along with the evaluation methodology and experimental results.

7.4.6.1 Dataset Description

We used another publicly available dataset collected by [SKSS16], in which a Kinova

MICO arm with 6-DOF explored 32 objects using 8 behaviors: grasp, lift, hold, look,

lower, drop, push and press. During the execution of each action (other than look)

the robot recorded the sensory perceptions from the haptic and the auditory sensory

modalities. The haptic signals were recorded for the robot’s 6 joints at 15 Hz while

the auditory signals was represented as the Discrete Fourier Transform computed

with 65 frequency bins. Before grasping the object, the look behavior was performed,

which produced three different types of visual sensory modalities: 1) an RGB color

histogram using 8 bins per channel; 2) Fast point feature histogram (fpfh) shape

features and 3) deep visual features produced by feeding the image to the 16-layer

VGG network. For additional details on the visual feature extraction pipelines,

please consult [TSS+16]. Each behavior was executed 5 times on each of the 32

objects, resulting in 1,280 interactions (8 behaviors x 5 trials x 32 objects). For

106



additional details regarding the dataset, readers can refer to [SKSS16].

7.4.6.2 Evaluation and Results

The evaluation procedure for this dataset was the same as that for the previous

dataset except that instead of recognizing object categories, the robot had to rec-

ognize specific objects as the objects in this dataset did not belong to any object

categories. We assume that the source robot interacts with all 32 objects, while the

target robot interacts with only 24 randomly selected objects. The objects experi-

enced by both robots are used to train the knowledge transfer model and the trained

knowledge transfer model is used to generate “reconstructed” sensory signals of the

objects that the target robot never interacted with. To train the object recognition

model, we again consider three possible training cases previously described with

a difference that here we performed 5-fold trial-based cross-validation, where the

training phase consisted of 4 trials from each of the object that the target robot

never interacted with and the test phase consisted of the remaining trial. Since

the robot interacted with each object 5 times, there were 32 (8 objects x 4 trials)

examples in the training set, and 8 (8 objects x 1 trials) examples in the test set.

This process was repeated 5 times, such that each trial was included in the training

set 4 times and once in the test set. The entire procedure of training the knowledge

transfer model and object recognition model is repeated 10 times to get an accuracy

estimate. Note that the hyperparameters and the structure of the network were kept

identical to those that were used for the previous dataset without any additional

tuning. The results of cross-perception and cross-behavioral sensorimotor transfer

are discussed as follows.

7.4.6.3 Illustrative Example

Consider a cross-behavioral sensorimotor transfer where the source robot uses the lift

behavior while the target robot uses the lower behavior. Projecting haptic features

from lift to lower, allows the target robot to achieve a recognition accuracy of 68%

compared with 52.2% when using ground truth features (shown in Fig. 7.23). In
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Figure 7.21: 2D visualizations using Principal Component Analysis of the target
robot’s lower-haptic ground truth features and β-VED projected features’ (from
lift-haptic) for the dataset in [SKSS16].

other words, the target robot’s object recognition model performs better than if it

were trained on real data.

To visualize the lift-haptic to lower-haptic projection, we reduced the dimen-

sionality of the generated and the ground truth features of the 5 objects the target

robot never interacted with into 2D space by PCA (shown in Fig. 7.21). Fig. 7.21

shows the clusters of both ground truth and projected features using β-VED. The

clusters of projected features not only look very similar to the ground truth features,

but also have less variance, which may account for the higher recognition rate when

using reconstructed features.

7.4.6.4 Accuracy Results of Object Recognition

Cross-Perception Sensorimotor Transfer Since there are 2 modalities (audio

and haptic), if a sensor fails, there is 1 possible mapping from the available sensor

to the failed sensor, so there are 2 × 1 = 2 possible mappings (e.g. audio to haptic

and haptic to audio). There are 7 interactive behaviors, so there are 2 × 7 = 14

projections (e.g. hold-haptic to hold-audio and lower-audio to lower-haptic, etc.).

There are also 3 vision based modalities (color, shape and vgg) only for look behavior,

so there 3× 2× 1 = 6 more projections (e.g. look-color to look-shape and look-vgg to

look-color, etc.). Thus, in total there are 20 cross-perception projections. Fig. 7.22

shows the 5 β-VED cross-perception projections with the least accuracy delta and
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Figure 7.22: β-VED cross-perception projections where the Accuracy Delta is min-
imum and corresponding β-VAE projections and KEMA projections for the dataset
in [SKSS16].

corresponding single source β-VAE projections and KEMA projections. Note that

the reconstructed features of these 5 projections achieve higher accuracy than the

ground truth features, however there are projections such as look-shape to look-vgg

and hold-audio to hold-haptic, where ground truth features achieve higher accuracy.

Recovering audio features from haptic was the easiest task, indicating that knowing

how forces felt when performing a behavior can inform how the object would sound

when performing that behavior.

Cross-Behavioral Sensorimotor Transfer Since there are 2 sensory modalities

(audio and haptic), there are 2 × 2 = 4 possible mappings from the source to the

target robot (e.g. audio to haptic and haptic to audio, etc.). Each of the 7 interac-

tive behaviors are projected to each of the other 6 behaviors, so for each mapping,

there are 7 × 6 = 42 projections (e.g. lift-haptic to lower-haptic and hold-audio to

lower-haptic, etc.). Thus, there are 4 × 42 = 168 projections without using vision

modalities. Since there are also 3 visual modalities (color, shape and vgg) only for

look behavior, we projected visual modalities to non-visual modalities 3 × 2 = 6

mappings, and non-visual modalities to vision modalities 2 × 3 = 6 mappings for

look behavior to other behaviors 1 × 7 = 7 projections and other behaviors to look

109



Figure 7.23: β-VED cross-behavior projections where the Accuracy Delta is mini-
mum and corresponding β-VAE projections and KEMA projections for the dataset
in [SKSS16].

behavior 7 × 1 = 7 projections. Thus, there are 6 × 7 + 6 × 7 = 84 projections

using vision modalities, making 168 + 84 = 252 total cross-behavioral projections.

Fig. 7.23 shows the 5 β-VED cross-behavioral projections where the accuracy delta

is minimum and corresponding single source β-VAE projections and KEMA pro-

jections. While the reconstructed features of these 5 projections achieve higher

accuracy than the ground truth features, there are projections such as push-haptic

to look-vgg and look-shape to hold-haptic, where ground truth features achieve higher

accuracy. Similar to previous results, mappings within the same modality (e.g. hap-

tic to haptic) achieve higher accuracy than mappings between different modalities.

One interesting similarity is haptic to haptic which is the best performing mapping

for the previous dataset and haptic to haptic is the best performing mapping for

this dataset. Moreover, the best performing combination of the source and target

behaviors are also similar. For example, in the previous dataset lift-haptic to hold-

haptic projection generated very realistic features and in this dataset lift-haptic to

lower-haptic projection has a very low accuracy delta. This shows that the source

and target behavior combination that generates realistic features can be applied to

different robots.
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Figure 7.24: Two dimensional ISOMAP embedding of the accuracy delta matrix
for the dataset in [SKSS16]. Each point represents a sensorimotor context (i.e., a
combination of a behavior and sensory modality). Points close in this space represent
contexts between which information can be transferred effectively.

7.4.6.5 Accuracy Delta Results

There are 17 sensorimotor contexts (7 behaviors x 2 non-visual modalities + 1

behavior x 3 visual modalities). To visualize the combination of source and tar-

get contexts that are good for knowledge transfer, we plotted the two dimensional

ISOMAP [TDSL00] embedding of the accuracy delta matrix (shown in Fig. 7.24)

as we did for the previous dataset. Some of the most efficient pairs of behaviors

are lift and lower and grasp and drop. Similar to previous results, contexts with the

same modality appear closer to each other indicating that projections within the

same modality perform better than projections within different modalities. More-

over, pair of behaviors such as lift and lower that capture similar object properties

are better for knowledge transfer similar to previous dataset. Some exceptions in-

clude the look-shape context which lies close to several of the contexts that use the

audio modality. The press-haptic context lies slightly outside the remaining haptic

contexts as unlike behaviors such as lift and lower, the press action does not give the

robot information about the object’s mass, but rather, it captures its compliance.
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7.5 Summary

Behavior-grounded sensory object knowledge is specific to each robot’s embodiment,

sensors, and actions which makes it difficult to transfer multisensory representations

from one robot to another. We proposed and evaluated a framework for knowledge

transfer that uses variational auto-encoder and encoder-decoder networks to project

sensory feedback from one robot to another robot across different behaviors and

modalities. The framework enables a target robot to use knowledge from a source

robot to classify objects into categories it has never interacted with before. In addi-

tion, using the proposed knowledge transfer method the target robot can recover the

features of a failed sensor from the available sensors. In this way, the target robot,

instead of learning a classifier from scratch, can start immediately with a classifier

that performs nearly as good as if the target robot learned by collecting its own

labeled training set through exploration. We also proposed a method to select a set

of objects that would be better to transfer knowledge in a time constrained situa-

tion where the robots cannot interact with a large number of objects to train the

knowledge transfer model. Moreover, we successfully validated the proposed knowl-

edge transfer framework on another dataset without any additional hyperparameter

tuning. These results address some of the major challenges in the deployment of

interaction based multisensory models, namely that they require a large amount of

interaction data to train and cannot be directly transferred across robots.

There are several closely-related research problems that can be addressed in

the future work. First, a limitation of the our dataset is that the sensory features are

dependent on the robot’s environment, so the transferred features would not apply

to the robot in a different environment. For instance, a pencil box would produce

different auditory and visual features when dropped on a wooden table than when

dropped on a soft cushion. Thus, there is a need to develop a framework to transfer

knowledge that can generalize across different environments. Moreover, the dataset

used in our experiments is relatively small (for each object category there are only

25 examples), and thus, not large enough to answer questions like “how much data is
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required to reach the optimal performance?” Thus, in future work we would collect

a relatively larger dataset that can answer this question.

Another limitation of our experiment is that the dataset we used contains

only one robot, and thus we considered the case where the source and target robots

are morphologically identical but differ in terms of behaviors and sensory modalities.

In future work, we plan to evaluate our framework on robots that not only perform

different behaviors, but also have different embodiment and feature representations.

In addition, the run-time complexity of the β-VAE model we presented increases

linearly with the increase in the number of source robots used. Having a model

that can scale with the number of robots without increasing run-time complexity

could improve the proposed method. A model that can incrementally improve per-

formance by learning from new data-points acquired by one of the robots is also a

promising avenue for future exploration. Finally, in our experiments, we addressed

a category recognition task. In future work, we plan to extend the framework to

handle sensorimotor knowledge transfer for other tasks as well, such as manipulating

objects, grounding language, etc.
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Chapter 8

Transferring Implicit Knowledge of

Non-Visual Object Properties Across

Heterogeneous Robot Morphologies*

8.1 Introduction

Humans learn about object properties by physically interacting with objects and

perceiving multiple sensory signals, including vision, audio, and touch [TVCO04a,

LK87, WWCM07, EB04, Gib88, CHPS21]. Interactions based on non-visual modal-

ities such as audio and touch are essential, because vision alone is insufficient for

detecting intrinsic object properties [McC89]: e.g., detecting whether an opaque bot-

tle is full of liquid or empty. Recent works show that learning implicit knowledge of

non-visual object properties leads to robots’ improved downstream performance, in

material classification [EXS+20], liquid property estimation [HGY22], object cate-

gorization [TS19], and human-robot dialogue interaction [TPS+17].

A robot may learn about object properties by performing exploratory inter-

actions on objects and analyzing the effects via a diverse set of sensors [MFHH22,

*This chapter is based on the following paper: Gyan Tatiya, Jonathan Francis, and Jivko
Sinapov, “Transferring Implicit Knowledge of Non-Visual Object Properties Across Heterogeneous
Robot Morphologies”, IEEE International Conference on Robotics and Automation (ICRA), IEEE,
2023. [TFS23]
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WCH+21, LLC22]. The immediate issue is that this process is time-consuming, as

it must be repeated for each robot. A natural desire may be to transfer repre-

sentation of the object properties to a new robot to enable it to learn faster and

complete its downstream tasks more efficiently. However, if the new robot has dif-

ferent interaction capabilities (e.g., different sensor models, or a different physical

embodiment or morphology), the implicit knowledge gained by the previous robot is

not directly transferable to the new one. Indeed, a robot’s machine learning model

for the interactive perception tasks cannot be naturally applied to another robot

because these models are specific to each robot’s embodiment, sensors, and environ-

ment [FKL+22]. While there is a great need to transfer implicit knowledge of object

properties across heterogeneous robot morphologies, obtaining a general-purpose

representation to facilitate rapid learning has remained challenging.

To address this challenge, we propose a framework that leverages learned

projection functions to transfer implicit knowledge of non-visual object properties

from a more-experienced source robot to a newly-deployed target robot. Specifi-

cally, we consider the general encoder-decoder network (EDN) model class [BKC17]

and the kernel manifold alignment (KEMA) method [TSES20, LLL+18, WM11] as

projection functions for learning object property-based and object identity-based

correspondences. To test our framework, we collected a dataset of two robots,

Baxter and UR5, that performed eight behaviors on 95 objects. We evaluate our

framework on two tasks: object-property and object-identity recognition tasks. The

results of our experiments show that KEMA learned using object identity-based

correspondence consistently outperforms EDN in both tasks indicating transferring

knowledge from robots to a shared latent space boosts the performance of the target

robot. Furthermore, we propose a data augmentation technique independent of the

learning task and show that using our data augmentation technique improves the

models’ generalization and prevents overfitting.

This chapter investigates how robots can transfer implicit knowledge of non-

visual object properties across diverse robot embodiments, utilizing the Encoder-

Decoder Network (EDN) from Chapter 5 and the Kernel Manifold Alignment (KEMA)
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method from Chapter 6. The dataset, collected by two heterogeneous robots (Chap-

ter 3), serves for evaluation. Unlike Chapter 5 and Chapter 7 that focused on build-

ing object-identity correspondences to learn projection functions, this chapter learns

projection functions based on building object-property correspondences rather than

object-identity correspondences. Evaluation includes object-property and object-

identity recognition tasks unlike object category recognition task in Chapters 5 and

7. This chapter builds upon the methodologies introduced in Chapters 5 and 6, ex-

tending the application of knowledge transfer to object-property and object-identity

recognition tasks.

8.2 Related Work

8.2.1 Interactive object perception

Studies in psychology and cognitive science show that humans manipulate objects in

multiple stages to extract information about their properties, such as texture, stiff-

ness, temperature, and weight [KL92, LK93, DFBP02]. In addition, the human brain

leverages a multisensory representation when recognizing object properties, enabling

flexible generalizability to unknown contexts [LCS07, LS14]. Recent advances in in-

telligent robotics consider integrating multisensory information acquired by object

exploration [BHS+17, TS19, PGGG+20, SLZ+20, NGTJJ22, LKS+20, WWW+22],

where one challenge is that the implicit knowledge acquired by one robot through

interactive perception cannot be directly transferred to another robot: the unique

nature of the robot’s embodiment drastically affects the sensed data distribution

and resultant model that each robot learns. Whereas the focus of prior work has

been limited to learning from scratch for each robot [SSS+14a, FLN+19, THCHS19],

this is prohibitively expensive at scale, e.g., for a fleet of heterogeneous robots. We

propose a framework for transferring implicit knowledge about object properties

from a source robot to a target robot.
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8.2.2 Transferring knowledge of object properties

Recent work demonstrates that implicit knowledge from the interactive object per-

ception can be transferred across sensor models and robots [FLN+19, THCHS19,

TS19, TSES20, SSS+14a, THHS20]. In [SSS+14a], a robot performed interactive

object perception to improve object category recognition. As implicit knowledge

transfer was not the focus of that work, experiments were conducted on only a single

robot. Moreover, whereas object properties may sometimes be the same for objects

in different categories (e.g., bottles and cups can have similar colors, contents, and

weights), their method encouraged unconstrained feature similarity based on object

category alone, compromising prospects for transferring the features across robots or

tasks. Our cross-robot transfer approach jointly learns to distinguish between differ-

ent categories while leveraging learned similarities across properties. In [THCHS19],

authors consider object categorization under a transfer learning paradigm, wherein

an encoder-decoder network was used to generate a “target” robot’s features from

a “source” robot’s learned representation. The authors use only a single robot in

their experiments; however, so inherent challenges introduced by different robot

morphologies remain to be studied. The approach in [TSES20] was used to project

features from 3 robots with different embodiments to a shared latent space for object-

identity recognition. However, their experiments consisted of only simulated robots

that recorded only one sensor modality (effort) during interaction with objects that

varied in only one dimension (weight). To address these shortcomings, we collect

a multisensory dataset using two real robots with different morphologies that ex-

plore 95 objects that vary by color, weight, and contents. We develop a multi-stage

projection method for implicit knowledge transfer across two heterogeneous robots,

and we evaluate our approach on object-property recognition and object-identity

recognition.
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Figure 8.1: (A) Shows projection from Baxter to UR5 using Encoder-Decoder Network
(EDN). (B) Shows projection from Baxter and UR5 to a shared latent space using Kernel
Manifold Alignment (KEMA). (C) The 8 exploratory behaviors used to learn about the
objects. (D) The 95 objects used in this study vary in: (top) colors (blue, green, red, white,
and yellow), contents (wooden buttons, plastic dices, glass marbles, nuts & bolts, pasta, and
rice), and (bottom) weights (empty, 50g, 100g, and 150g).

8.2.3 Interactive object perception datasets

Compared to existing object interaction datasets [SSS+14a, TSES20, GSC+22], ours

offers additional value for research needs. In [SSS+14a], the dataset only contained

a single robot, whereas we collected our dataset using two robots with different

morphologies. In [TSES20], simulated robots were used that collected only effort

signals during object interaction. In contrast, we used real-world robots and col-

lected multiple sensory signals, including vision, audio, and haptic. In [GSC+22],

the audio and tactile signals correspond to impact or touch behavior performed on

3D virtualized objects. However, we collected the visual and non-visual sensory

modalities while the robots performed several exploratory behaviors (e.g., grasp,

shake) on 95 real-world objects that vary in multiple dimensions (color, weight, and

content). To the best of our knowledge, our dataset contains the largest number

of objects, with the most dimensions of distinction ever explored by multiple real

robots for transferring implicit knowledge.

118



8.3 Learning Methodology

8.3.1 Notation and Problem Formulation

Consider two robots with different morphologies, represented as source and target

robots, or Rs and Rt respectively. For a given robot R, let BR be the set of ex-

ploratory behaviors (e.g., grasp, lift) and let MR be the set of non-visual sensory

modalities (e.g., audio, force). Let CR be the set of sensorimotor contexts, including

each possible combination of a behavior in BR and a sensory modality in MR (e.g.,

grasp-audio, lift-force). For an exploration trial, the robot R performs exploratory

behaviors BR on a specific object and records a sensory signal for each modality in

MR. There are nR such exploration trials on each object. For the ith exploration

trial, robot R’s observation feature is xcRi ∈ RDcR , where i ∈ {1, ..., nR}, cR ∈ CR,

and DcR is the dimension of robot R’s feature space under context cR.

Let O be the set of objects that vary in non-visual properties (e.g., weight,

sound). We assume that the source robot has explored each object nRs times,

whereas the target robot has comparatively less experience. More specifically, either

the target robot has only explored a subset Ot ⊂ O or explored an object for less

trials than nRs (i.e., nRt < nRs). Our goal is to learn a projection function to

transfer knowledge gained through object interaction, from the more-experienced

source robot to the less-experienced target robot. We learn the projection function

using the common objects experienced by both robots and transfer knowledge about

the source robot’s additional experience by using the learned projection function.

This knowledge transfer will help the target robot learn about object properties

faster, with fewer object interactions, and predict the properties of novel objects.

We consider learning two projection functions. First, the projection function

FRs→Rt , that projects the observation features from the source robot’s feature space

to the target robot’s feature space. More specifically, FRs→Rt : x
cRs
i → x̂i

cRt , where

x̂i
cRt is the projected features in the target robot’s feature space. Second, the

projection function FR→Z , that projects the observation features from each robot’s

feature space to a shared latent feature space. More specifically, FRs→Z : x
cRs
i → zcZi
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and FRt→Z : x
cRt
i → zcZi , where zcZi ∈ RDZ and represents the shared latent features

of size DZ . In the first mapping, we train the target robot in its own feature space;

for the second mapping, we train the target robot in the shared latent space.

We also consider two ways to build correspondences between the source and

the target robots, for learning the projection functions. First, object-identity corre-

spondence, in which the source-target pair corresponds to the same object identity.

It is applicable when both robots have access to the same objects. Second, object-

property correspondence, in which the source-target pair corresponds to the same

object property. It is applicable when both robots operate in different environments

and do not have access to identical objects but have access to objects with the same

properties (e.g., red and blue bowls containing rice).

8.3.2 Projection to Target Feature Space

We propose using an Encoder-Decoder Network (EDN) [THCHS19] to train the

projection function FRs→Rt , mapping observation features from the source robot’s

feature space to the target robot’s feature space (Fig. 8.1A). First, encoder fθ

transforms the observation feature of the source robot x
cRs
i into a fixed-size lower-

dimensional vector zcZi ∈ RDz of size Dz. Then, decoder gϕ uses this code vector zcZi

to generate the predicted observation feature of the target robot x̂i
cRt . We denote

this overall non-linear mapping as FRs→Rt : x̂i
cRt = gϕ(fθ(x

cRs
i )), where θ and ϕ

are network parameter weights of encoder and decoder, respectively. For training

the EDN, we use a dataset of source-target feature pairs {xcRs
i , x

cRt
i }Ni=1, with N

training samples. We optimize EDN parameters by minimizing root mean-squared

error (RMSE) between real features observed by target robot xi
cRt and “generated”

target features x̂i
cRt obtained by applying the projection to the corresponding source

features: θ⋆, ϕ⋆ = arg min
θ,ϕ

√
1
N

∑N
i=1(x

cRt
i − x̂

cRt
i )2.

Given a trained EDN, we generate the target robot’s feature to transfer

knowledge about the source robot’s additional experience; then, using a standard

multi-class classifier, we can train the target robot to recognize object properties

with the “generated” features.
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8.3.3 Projection to Shared Latent Feature Space

The projection FR→Z can be achieved through distribution alignment—organizing

observation features from each robot’s feature space within a shared representation

(Fig. 8.1B). We illustrate this mapping via Kernel Manifold Alignment (KEMA)

[TSES20], which constructs a set of domain-specific projection functions for each

robot FR = [FRs , FRt ]
T , such that the examples of the same object property would

locate closer while examples of different object properties would locate distantly.

To compute the data projection matrix FR, we minimize the cost related to the

projection functions being too dissimilar: {FRs , FRt} = arg min
FRs ,FRt

(C(FRs , FRt)). Here,

C(·) = 1
DIS

(µ∗GEO+(1−µ)∗SIM), where the geometry of a domain, class similarity,

and class dissimilarity are represented as GEO, SIM, and DIS, respectively. GEO is

minimized to preserve the local geometry of each domain by penalizing projections

in the input domain that are far from each other. SIM is minimized to encourage

examples with the same object property to be located close to each other in the

latent space by penalizing projections of the same object property mapped far from

each other. DIS is maximized to encourage examples with different object properties

to be located far apart in the latent space by penalizing projections of the different

object properties that are close to each other. The parameter µ ∈ [0, 1] regulates

the contribution of the GEO and the SIM terms. For more details on KEMA, please

see [TCV16]. Data in the latent feature space are comparable and can be used to

train a standard multi-class classifier for different robots. The target robot can use

this classifier to recognize properties of objects it has never interacted with.

8.3.4 Model Implementation and Training

Specific EDN architectures (e.g., transformers, dense convolutions, etc.) may be

chosen according to the form of the data observations; in our experiments, we used

an architecture that consists of three fully-connected layers for both encoder and

decoder, with 1000, 500, 250 units, activation via Exponential Linear Units (ELU),

and a 125-dimensional latent code vector. We use Adam [KB15] with a learning
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rate of 10−4 to compute gradients according to RMSE, over 1000 epochs. We used

Radial Basis Function (RBF) for KEMA’s kernel function, with µ = 0.5. We train

the target robot’s recognition model via a multi-class SVM with the RBF kernel. For

the EDN approach, this recognition model is trained using the “generated” features

from the source robot and the real features of the target robot used to train the

EDN; for the KEMA approach, this recognition model is trained using the shared

latent features corresponding to both robots’ datapoints used to learn the KEMA

projection function.

8.4 Evaluation

8.4.1 Experimental Platform and Feature Extraction

8.4.1.1 Robots and Sensors

We collected our dataset using two robots: Baxter [bax] and UR5 [ur5] (Fig. 8.1A).

Baxter has dual 7-degree-of-freedom (DOF) arms and a 2-finger gripper. We used

the left Baxter arm for the data collection. UR5 has 6-DOF and 2-finger Robotiq

85 gripper. Baxter had a PrimeSense camera mounted on its head, which cap-

tures 640×480 images, and an Audio-Technica PRO 44 microphone placed on its

workstation. Baxter hand camera captures 480×300 images. UR5 had an Orbbec

Astra S 3D Camera mounted on its frame, which captures 640×480 images, and

a Seeed Studio ReSpeaker microphone placed on its workstation. We recorded

data from 14 and 11 sensor modalities for Baxter and UR5, respectively. For more

dataset details, such as sampling rate, please see: https://github.com/gtatiya/

Implicit-Knowledge-Transfer.

8.4.1.2 Exploratory Behaviors and Objects

Both robots perform 8 behaviors: look, grasp, pick, hold, shake, lower, drop, and push

(Fig. 8.1C). We chose these diverse behaviors because they can capture various ob-

ject properties. Look is a non-interactive behavior in which robots record visual
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modalities (RGB, Depth, and Point-Cloud) from their head camera. All other be-

haviors are interactive, encoded as robot joint-angle trajectories. For all behaviors,

Point-Cloud was recorded for the first 5 frames. Both robots explore 95 objects

(cylindrical containers) that vary in 5 colors (blue, green, red, white, and yellow), 6

contents (wooden buttons, plastic dices, glass marbles, nuts & bolts, pasta, and rice),

and 4 weights (empty, 50g, 100g, and 150g) shown in Fig. 8.1D. There are 90 objects

with contents (5 colors x 3 weights x 6 contents) and 5 objects without any content

that only vary by 5 colors.

8.4.1.3 Data Collection

While recording sensor data, robots perform all 8 behaviors in a sequence on the 95

objects, in round-robin fashion, to minimize any transient noise effects after a single

trial on an object. Both robots perform 5 such trials on each object, resulting in

7,600 interactions, overall.

8.4.1.4 Feature Extraction

We used all interactive * behaviors in our experiments (i.e., all behaviors listed above

except look). We used audio, effort at the robot’s joints, and force at the robot’s end-

effector in our experiments, as they play crucial roles in the human somatosensory

system for recognizing non-visual object properties. For audio, we used librosa

[MRL+15] to generate mel-scaled spectrograms of the audio wave files recorded by

robots with FFT window length of 1024, hop length of 512, and 60 mel-bands.

Then, a spectro-temporal histogram was computed by discretizing both time and

frequency into 10 equally-spaced bins, where each bin consists of the mean of values

in that bin. Effort and force data were discretized into 10 equally-spaced temporal

bins for joints and axes, respectively. Thus, audio and force data are represented

as 100 and 30 dimensional feature vectors, respectively. For Baxter and UR5, effort

data is represented as 70 and 60 dimensional feature vectors, respectively. Fig. 8.2

*Experiments with look histogram features were performed, but no improvements were observed,
indicating that vision alone is insufficient.
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Figure 8.2: Examples of (A) audio, (B) effort and (C) force features when Baxter and UR5
perform shake on a blue-marbles-150g object.

visualizes both robots’ audio, effort, and force features when they perform shake

behavior on a blue-marbles-150g object.

8.4.1.5 Data Augmentation

To improve model generalization, we increase the number of object trials through

data augmentation: we compute each bin’s mean and standard deviation in the

discretized representation of all object trials and sample k = 5 additional trials of

each object. � The rationale behind augmenting data by constraining on trials

is to generate realistic data that is less likely to be impossible to produce in the

real-world. Furthermore, this data augmentation technique is independent of the

downstream task and can be applied for both object-property and object-identity

recognition.

8.4.2 Evaluation

We evaluated performance of the projection methods: 1) EDN projects source robot

features to a target robot’s feature space, and 2) KEMA projects individual robot

features to a shared feature space. To learn both projections, we evaluate two

ways to build correspondence between source-target data pairs: 1) object identity-

based pairs, wherein both source and target robots interact with the same object

identity (e.g., baxter-buttons-50g and ur5-buttons-50g); and 2) object property-based

pairs, wherein source and target robots interact with objects that share a property

(e.g., baxter-buttons-50g and ur5-dices-50g, wherein weight is same and contents are

different). In both correspondence types, we use the same behavior and modality for

both source and target robots. We consider 2 tasks: object property-recognition and

�Experiments with k = 10 showed little additional improvement.
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object identity-recognition. In property-recognition, the target robot must recognize

content and weight of the object it interacts with; there are 7 content classes and 4

weight classes, including an empty class. In object identity recognition, the target

robot must recognize the specific object identity.

8.4.2.1 Object Property Recognition Task

As a baseline condition, we train the target robot using data in its own feature

space. For the transfer condition, we train the target robot using features obtained

by applying the projections. In training each projection, we use all 95 objects for the

source robot and increment the number of objects the target robot interacts with,

from 4 (for weight-recognition) and 7 (content-recognition), to 76 objects (80% of

objects). The remaining 19 objects (20% objects) are held-out for testing target

robot performance. We randomly-sampled 76 objects for incremental training and

used remaining 19 for testing; we repeated this process 10 times, in both conditions.

For best target robot performance in the baseline condition, we train using all 95

objects and evaluate on test objects in each fold. In all cases, we use all 5 trials of

each object.

8.4.2.2 Object Identity Recognition Task

The baseline and transfer conditions of the object identity recognition task are

the same as in the property recognition task. We evaluated the target robot’s

performance to recognize 12 randomly-sampled objects from the 95 objects. When

training each projection method, we used all 5 trials of each object for the source

robot and increment the number of trial per object from 1 to 4 (80% trials) for

the target robot. The remaining 1 trial (20% trials) of each object is held-out for

testing the target robot’s performance. For both conditions, we performed 5-fold

cross-validation such that each trial of all 12 objects is included in the test set,

once. For best target robot performance in the baseline condition, we train using all

5 trials of all 12 objects and evaluate on the test trial of each object for each fold.

The process of selecting 12 objects, and performing 5-fold cross-validation for both
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Figure 8.3: Original sensory features of (A) Baxter and (B) UR5 for pick-force performed
on 20 objects in 2D space, and (C) the projected features from UR5-pick-force to Baxter-
pick-force projection using EDN, and (D) first 2 dimensions of corresponding features in the
shared latent feature space generated using KEMA.

conditions is repeated 10 times to compute performance statistics.

8.4.2.3 Evaluation Metrics

We used two metrics to evaluate the target robot’s recognition performance. First,

we consider accuracy A = correct predictions
total predictions %; the second metric is the accuracy

delta (∆A), which measures the drop in accuracy due to using projected features

(obtained by interacting with fewer objects) versus using the target robot’s own

features (obtained by interacting with all objects). We compute mean accuracy

delta of the least m number of object interactions in our experiments, defined as:

m∆A = 1
m

∑m
j=1(Aall −Aj

projected)%,

where Aall is the accuracy obtained using 100% of the target robot’s data,

Aprojected is the accuracy obtained using projected features, and m = 10 for object

property recognition, and m = 4 for object identity recognition. For both metrics,

we use recognition accuracy computed as a weighted combination of all the behaviors

and modalities used, based on their performance on the training data.
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8.5 Results

8.5.1 Illustrative Example.

Consider the case where a source robot (Baxter) and a target robot (UR5) perform

pick behavior and record force signal. Baxter interacts with all 95 objects, and UR5

interacts with only 20 objects; both robots perform 5 trials on each object. We use

Principal Component Analysis (PCA) to visualize the robots’ feature spaces (Fig.

8.3A and 8.3B) and plot object weights with different colors. In Fig. 8.3A we only

plot Baxter’s features of the common 20 objects, for comparison to original and

projected features shown in Fig. 8.3C.

We project UR5-pick-force to Baxter-pick-force, via EDN with object identity-

based correspondences, and visualize with PCA in Fig. 8.3C. Compared to Baxter’s

space (Fig. 8.3A), projected features are more tightly clustered for different weights.

We also generate the shared latent features using KEMA with object identity-based

correspondences. We plot first 2 dimensions of latent features in Fig. 8.3D: data

collected by both robots of 4 different weights are clustered together, indicating both

robots’ data distribution is aligned efficiently.

Consider another case where UR5 interacts with one object of each weight

5 times and learns to recognize the object’s weight using 20 examples (4 weights

× 5 trials). The mean accuracy computed over 10 folds using these 20 examples

is 22.31 ± 8.05. This learning process is the same as in our baseline condition,

where the robot learns using its own features. Now, we additionally use the 5 trials

with data augmentation and train UR5 to recognize the object’s weight using 40

examples: 4 weights × (5 real trials + 5 augmented). The mean accuracy computed

over 10 folds using these real and augmented data is 28.21 ± 6.09; the increased

accuracy shows that using data augmentation improves recognition performance.

Since, we consistently observed improvements from augmentation, we only report

the performance of our baseline and transfer conditions using augmentation.
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8.5.2 Object Property Recognition Results.

For the object property-recognition task, we evaluated both projection methods by

building correspondences based on object-identity and object-property. For EDN,

we built object-identity correspondences by mapping each source robot’s object trial

to all the target robot’s trials of that object. We built object-property correspon-

dences by mapping each source robot’s object with a property of the recognition

task to all the target robot’s objects with that property. For example, for the

weight recognition task, a 50g object interacted by the source robot will be mapped

to all the 50g objects interacted by the target robot. For KEMA, we build the

manifold alignment using all 95 objects of the source robot and incrementally vary

the number of objects the target robot interacts with, for both object-identity and

object-property correspondences.

Fig. 8.4 shows results of EDN and KEMA on the weight- and content-

recognition tasks, where Baxter is the source robot and UR5 is the target robot: all

transfer conditions for both approaches perform better than the baseline condition

when the target robot interacts with fewer objects. As the target robot interacts

with more objects, KEMA still performs better than baseline condition, and EDN

performs comparable to baseline condition. Overall, results indicate that the pro-

posed knowledge transfer methods can boost target robot performance, notably

when it has limited time to learn tasks and cannot interact with many objects.

We also experimented with UR5 as the source robot and Baxter as the target, and

observed a similar performance boost with transfer.

Table 8.1 shows mean accuracy delta (m∆A) results of both methods and

both correspondence types. Lower m∆A means better performance, i.e., closer to

the case where the target robot is trained using its own data with all objects. For

KEMA, object-identity correspondence yields better performance; for EDN, both

correspondences perform comparably. These findings indicate that object-identity

correspondence builds better alignment for projecting features into the shared latent

space than object property correspondence, though the correspondences yield com-
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Figure 8.4: Accuracy results of the baseline and transfer conditions, EDN (left) and KEMA
(right), on the weight (top) and content (bottom) recognition tasks, for Baxter (source)
and UR5 (target).

Figure 8.5: Accuracy results of the baseline and transfer conditions on the object identity
recognition tasks.
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parable performance for projecting features into the target feature space. KEMA

outperforms EDN in all cases, showing KEMA as more efficient in transferring im-

plicit object property knowledge across robots.

8.5.3 Object Identity Recognition Results.

For the object identity recognition task, we evaluated EDN and KEMA approaches

by building correspondences based on object-identity. We build the object-identity

correspondences in the same manner as for the object property recognition task.

Table 8.1: Mean accuracy delta (m∆A) results of EDN and KEMA for object identity-
based and property-based correspondences.

UR5 Baxter

Method (correspondence) Weight Content Weight Content

EDN (object-identity) 57.72 71.26 31.91 32.88
EDN (object-property) 58.57 72.54 30.49 32.78
KEMA (object-identity) 44.88 42.17 28.84 19.25
KEMA (object-property) 51.88 47.53 34.88 22.60

Table 8.2: Mean accuracy delta (m∆A) results of EDN and KEMA on the object identity
recognition tasks.

Method (correspondence) UR5 Baxter

EDN (object-identity) -14.29 -11.67
KEMA (object-identity) -40.67 -12.00

We emphasize that identifying specific objects in our dataset is a challenging

task. For example, if two objects have the same weight but different contents,

it would be very crucial to listen to the audio signal produced while performing

behaviors, as the force signal would not be helpful to distinguish those objects.

Thus, we used 12 randomly-sampled objects with unique weight and content for the

object identity recognition task.

Fig. 8.5 shows the accuracy results, and Table 8.2 shows the mean accu-

racy delta results of both approaches on object-identity correspondence. Overall,

both approaches perform better than the baseline condition, and KEMA performs

significantly better than EDN. These results indicate that features in the shared

latent space contain more helpful information for identifying specific objects than
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the target feature space. Negative values in Table 8.2 show that using projected

features for training the target robot leads to better performance than using 100%

of the target robot’s own features. These results indicate that using projected fea-

tures from the source robot helps the target robot to learn a recognition model that

generalizes better for object identity recognition. In addition, our baseline condition

also performs better than using 100% of the target robot’s own features, indicating

that the data augmentation technique we applied improves the generalization of the

recognition models.

8.6 Summary

For a robot to learn about implicit object properties, it must perform object explo-

ration while processing various non-visual modalities. This process is costly across

multiple robots as object feature representations are unique to a robot’s morphol-

ogy. We proposed a framework for transferring implicit object property knowledge

across heterogeneous robots and evaluated two projection methods, on two interac-

tive perception tasks; results showed that learning on a target robot is accelerated

through transfer from source robot, even if it explores fewer objects. Although our

framework expedites learning on the less experienced target robot, there are some

limitations. We encoded different behaviors in robots for object exploration.

In future work, we plan to enable robots to learn behaviors to extract different

object properties, autonomously. Moreover, we assumed that both source and target

robots explored objects using the same sensorimotor context; thus, we used this same

context while learning the projections. We plan to select sensorimotor contexts for

learning projections more efficiently. Furthermore, we plan to automate the selection

of objects to be explored, to learn the projection faster. Finally, we envision a

scenario where more than two robots explore objects with additional properties,

e.g., shape, size, material, and stiffness.
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Chapter 9

Cross-Tool and Cross-Behavior

Perceptual Knowledge Transfer for

Grounded Object Recognition*

9.1 Introduction

Humans employ specialized tools to acquire knowledge about objects’ properties

and develop a comprehensive understanding of their physical characteristics, such

as size, shape, texture, weight, and durability. For example, kitchen utensils (e.g.,

knives, spoons) can be employed to examine the properties of food, including its

texture and consistency. Robots are expected to operate effectively in human envi-

ronments; thus, the ability to estimate the physical properties of objects has become

an essential component of robotics research. Recent studies demonstrated robots

can effectively use tools to interact with objects and learn about various prop-

erties, including material composition, shape, hardness, elasticity, brittleness, and

adhesiveness [SLZ+21, GS14, LKS15, HWL+20, BLSS19, GBKS19, TSL+21, KR23,

ZAS+23, LBDC23].

*This chapter is based on the following paper: Gyan Tatiya and Jonathan Francis and
Jivko Sinapov, “Cross-Tool and Cross-Behavior Perceptual Knowledge Transfer for Grounded Ob-
ject Recognition”, Under review for IEEE International Conference on Robotics and Automation
(ICRA), 2024. [TFS24]
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Robots can use tools to execute actions on objects and observe their ef-

fects via various sensors, including visual, audio, and haptics, to acquire knowl-

edge of objects’ properties. Non-visual modalities, such as audio and haptics, are

essential, as vision alone cannot provide information about an object’s intrinsic

properties, including its weight, temperature, or hardness. One of the challenges

when representing non-visual modalities is that data collection requires significant

time for this interactive object exploration, which may delay downstream tasks

[MFHH22, LKS+20, PGGG+20, LBDC21, WWW+22, WCH+21, LLC22]. A logi-

cal solution for efficient learning would be to transfer object property representation

to a new robot. However, if the new robot possesses different interaction capabili-

ties, such as new behaviors or tools, the implicit knowledge obtained by the previous

robot cannot be directly transferred to the new one [FKL+22]. A robot’s multisen-

sory model for interactive perception tasks is unique to its sensors, behaviors, and

tools. Therefore, transferring knowledge of non-visual object properties across differ-

ent sensorimotor contexts is challenging, and each robot must learn its task-specific

sensory models from scratch.

To overcome this challenge of transferring implicit knowledge of non-visual

object properties, we propose a framework leveraging triplet loss as our primary

method to share tool-mediated behavioral knowledge across sensorimotor contexts,

i.e., a tool-behavior pair. Our method aims to learn a shared latent feature space

by utilizing the implicit knowledge of the source robot with more experience and

transferring it to the target robot with less experience. The target robot can use

the learned feature space to learn to recognize novel objects it has not previously

interacted with, given the source robot has explored them. To evaluate our method,

we collected a dataset using a UR5 robot that used 6 tools to perform 5 behaviors

on 15 granular objects. We tested our method on two tasks: cross-tool transfer

and cross-behavioral transfer. Our results demonstrate the less-experienced target

robot can bootstrap its object property learning by leveraging the source robot’s

experience. Our method enables the target robot to recognize novel granular objects

it has not interacted with before test time, thus improving its learning process’
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efficiency and accuracy.

In the context of the broader dissertation, this chapter introduces a frame-

work for transferring implicit knowledge of non-visual object properties, specifically

focusing on tool-mediated behavioral knowledge, across diverse sensorimotor con-

texts. Leveraging triplet loss as the primary method for contrastive training, our

approach aims to Transfer using Projection to Shared Latent Feature Space, enabling

knowledge transfer from a source robot with more experience to a target robot with

less experience. The evaluation utilizes a dataset collected by the UR5 robot, as

described in Chapter 3. Unlike previous chapters that focused on direct object ex-

ploration, this chapter investigates perceptual knowledge transfer for tool-mediated

object exploration tasks. Additionally, we employ the Kernel Manifold Alignment

(KEMA)-based method proposed in Chapter 6 as a baseline for comparison. The

evaluation encompasses two tasks: cross-tool transfer and cross-behavioral transfer.

By demonstrating the less-experienced target robot’s ability to bootstrap its object

property learning using the source robot’s experience, this chapter contributes to

enhancing the efficiency and accuracy of the learning process in robotic systems.

9.2 Related Work

Psychological research demonstrated that children begin to comprehend how objects

can be used as tools to develop intuition about the physical world at an early age

[BG11], often using utensils like spoons and forks to investigate food characteristics,

such as texture. Employing tools indicates intelligent adaptability: it necessitates

an understanding of the properties of the tool and the object being acted upon

[CD89]. By using tools to explore objects, infants can modify the properties of the

object being acted upon, enabling them to learn by observing the effects of their

actions [Loc00].

Robotics research demonstrated robots can likewise use tools to explore ob-

jects and learn about their physical properties. Gemici et al. [GS14] developed a

method to manipulate deformable food items (e.g., bread, tofu) using kitchen tools
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(e.g., knife, spatula), and infer their physical properties (e.g., elasticity, adhesive-

ness, and hardness); their PR2 robot executed cutting and splitting actions on food

items and used haptic data (e.g., force and tactile) to learn about food properties

by monitoring changes in the food due to actions. Sawhney et al. [SLZ+21] used

multimodal data (e.g., audio, force) to classify food materials by interacting with

them using tools. Sundaresan et al. [SBS22] deployed a multimodal policy on a

Franka robot that leveraged visual and haptic observations during interaction with

deformable food items to plan skewering motions rapidly and reactively. One chal-

lenge faced by these approaches is that implicit knowledge gained by a robot via

object interaction cannot be directly used by another robot, as each robot’s unique

sensorimotor context significantly affects the sensed data distribution and the resul-

tant model that each robot learns. These works focused on learning from scratch,

for each robot’s sensorimotor context, which is expensive at scale for robots operat-

ing under heterogeneous contexts. We propose a framework for transferring implicit

knowledge acquired during object exploration using tools, from a source robot to a

target robot, which differ in their sensorimotor contexts.

Recent studies transfer implicit knowledge across sensorimotor contexts in

interactive object perception, yet they did not use tools and were limited to rigid

objects [THCHS19, TSES20, TFS23]. In [THCHS19], an encoder-decoder network

was used to generate a “target” robot’s features from a “source” robot’s learned

representation for object categorization. This study only considered exploring rigid

objects without tools, however, hence challenges associated with granular objects ex-

plored with tools remained unaddressed. In [TFS23], a distribution alignment-based

approach was used to project features from two heterogeneous robots with different

embodiments into a shared latent space for non-visual object property recognition.

Whereas they demonstrated a shared latent space to be more effective for transfer,

compared to learning projection functions to generate target context features, this

study was also limited to exploring rigid objects without tools. Moreover, they as-

sumed heterogeneous robots had access to the same behavior in their sensorimotor

context and thus learned the shared latent space for the same behavior across dif-
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ferent robots. To overcome these limitations, we collected a multisensory dataset

using a UR5 robotic arm that performed 4,500 interactions to explore 15 granular

food-like materials using 6 tools and 5 behaviors, developed a projection method

for implicit knowledge transfer across two heterogeneous sensorimotor contexts, and

evaluated our approach on cross-tool and cross-behavioral transfer tasks.

9.3 Learning Methodology

9.3.1 Notation and Problem Formulation

Consider two robots, source and target, that explore a set of granular food-like

objects O (e.g., salt, wheat), kept in containers, by using a set of tools T (e.g.,

spoon, fork) and performing a set of exploratory behaviors B (e.g., stirring, twist),

while recording a set of non-visual sensory modalities M (e.g., audio, effort). Let

the robots use each tool to perform each behavior n times on each object. Let C be

the set of exploratory contexts, including each possible combination of a tool in T ,

a behavior in B, and a sensory modality in M, e.g., spoon-stirring-audio, fork-twist-

effort. For the ith exploratory trial, the robot’s observation feature is xci ∈ RDc ,

where i ∈ {1, ..., n}, c ∈ C, and Dc is the dimension of the robot’s feature space

under context c.

Let cs, ct ∈ C be the sensorimotor contexts of the source and target robots,

respectively, which differ either by tool or behavior, e.g., for different tools, spoon-

stirring as cs and fork-stirring as ct, and for different behaviors, spoon-stirring as

cs and spoon-twist as ct; the sensory modality remains the same for both cs and

ct contexts. Consider the case where the source robot explored all objects in O

under context cs; however the target robot under context ct only explored a subset

of the objects Oshared ⊂ O, and needs to learn an object recognition model for

the remaining set of novel objects Onovel ⊂ O, with Oshared
⋂
Onovel = ∅. Our

goal is to learn a projection function using Oshared, to transfer knowledge about

novel objects Onovel from the more-experienced source robot to the less-experienced

target robot. This knowledge transfer will help the target robot to learn about novel
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Figure 9.1: (A) Projection from source and target feature spaces into a shared latent space
using Triplet Loss. (B) Experimental platform and sensors of the UR5 robot. (C) The
6 tools used in this study: metal-scissor, metal-whisk, plastic-knife, plastic-spoon, wooden-
chopstick, and wooden-fork (left to right). (D) The 15 objects used in this study (row-wise,
left to right): cane-sugar, chia-seed, chickpea, detergent, empty, glass-bead, kidney-bean,
metal-nut-bolt, plastic-bead, salt, split-green-pea, styrofoam-bead, water, wheat, and wooden-
button.

objects without prior interaction with them.

For transferring object knowledge, we consider a projection function Fc→Z ,

that projects the observation features from source and target contexts’ feature spaces

to a shared latent feature space, such that the robots can be trained to recognize

objects in that latent space, as opposed to each robot’s own feature space. More

specifically, Fcs→Z : xcsi → zcZi and Fct→Z : xcti → zcZi , where zcZi ∈ RDZ and

represents the shared latent features of size DZ . This will enable the robots to use

the observation features collected under both contexts to learn an object recogni-

tion model and perform better than a model trained only using a specific context’s

observation features. Learning a shared latent feature space would enable the target

robot to recognize novel objects, given the source robot has explored those objects.

9.3.2 Knowledge Transfer Model

To learn the projection function Fc→Z , we employ Triplet Loss (TL) [BRPM16],

which guides our neural projection to map sensory data from both source and target

contexts (cs, ct) into a common latent space (Fig. 9.1A). The essence of triplet loss

is to ensure that embeddings of examples belonging to the same object class are

closer in the latent space than those of dissimilar examples from different object

classes:

L(A,P,N) = min(0, d(A,P ) − d(A,N) + α), (9.1)
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for anchor example A, positive example P , negative example N , and a margin

hyperparameter α that defines a minimum difference that must be maintained be-

tween the distance from the anchor to the positive sample and the distance from

the anchor to the negative sample (we set α = 1). The function d(x, y) calcu-

lates the distance between examples x and y using the Euclidean distance formula,

d(x, y) =
√∑n

i=1(xi − yi)2, where x and y are the two examples being compared,

and n is the dimensionality.

To train our projection function using triplet loss, we construct a dataset of

triplets (A,P,N) as follows: For each object o ∈ O, we designate the anchor (A) as

data from the source context (cs) for object o. The positive (P ) is either from the

same source context (cs) but a different trial or from the target context (ct) for the

same object. The negative (N) is either from the same source context (cs) or from

the target context (ct) for a different object. We randomly sample a single example

for both positive and negative cases when multiple examples are available from

source and target contexts. This triplet dataset is created using all trials of objects,

and we optimize the triplet loss function over it. By doing so, our network learns to

map sensory data from both source and target contexts into a shared latent space

(Z). In this latent space, objects of the same class are brought closer together than

objects of different classes. Consequently, when the target robot encounters novel

objects (Oshared), it can effectively recognize them by comparing their embeddings

in the shared latent space (Z), even if it has not directly interacted with them during

exploration. This process ensures that the robot builds a robust representation of

objects, capable of generalizing across diverse contexts and effectively recognizing

novel objects.

9.3.3 Model Implementation

The knowledge transfer model is constructed as a Multi-Layer Perceptron (MLP)

comprising three hidden layers with 1000, 500, and 250 units, employing the Rec-

tified Linear Unit (ReLU) activation function. This model projects sensory data

into a shared latent vector of dimension DZ = 125. To enable the target robot to
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recognize novel objects, we use shared latent features corresponding to the novel

objects in the target context projected by the source context. These shared latent

features are comparable and can be employed to train a standard multi-class clas-

sifier across different contexts. We train an MLP model with a single hidden layer

of 100 units for the recognition task, allowing the target robot to discern objects

it has not directly encountered. The knowledge transfer and classification models

are updated for 500 training epochs, leveraging the Adam optimization algorithm

[KB15] with a learning rate set at 10−4. We used PyTorch [PGM+19] for model

implementation.

9.4 Evaluation Design

9.4.1 Experimental Platform and Feature Extraction

9.4.1.1 Robot and Sensors

We collected a dataset using the UR5 robot with a 6-DOF and a 2-finger Robotiq 85

gripper (shown in Fig. 9.1B). The UR5 had a Seeed Studio ReSpeaker microphone

placed on its workstation, and a force sensor measuring effort at each joint, and a

force-torque sensor at the end-effector. We recorded audio data at a sampling rate

of 16 kHz, effort data at 135 Hz, and force data at 125 Hz.

9.4.1.2 Tools, Exploratory Behaviors and Objects

The robot used 6 tools metal-scissor, metal-whisk, plastic-knife, plastic-spoon, wooden-

chopstick, and wooden-fork (Fig. 9.1C) to perform 5 interactive behaviors: stirring-

slow, stirring-fast, stirring-twist, whisk, and poke (Fig. 9.2). We chose these specific

tools and behaviors because they capture different aspects of objects’ properties.

The interactive behaviors are encoded as robot joint-angle trajectories. The robot

explored 15 objects: cane-sugar, chia-seed, chickpea, detergent, empty, glass-bead,

kidney-bean, metal-nut-bolt, plastic-bead, salt, split-green-pea, styrofoam-bead, water,

wheat, and wooden-button (Fig. 9.1D) kept in cylindrical containers.
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Figure 9.2: The 5 behaviors used to explore objects: stirring-slow, stirring-fast, stirring-
twist, whisk, and poke (left to right).

9.4.1.3 Data Collection

While recording sensory data, the robot performed all 5 behaviors in a sequence on

an object using a tool. Once an object was explored using a tool, the same object

was not explored again until all the objects were explored using that tool to limit

any transient noise effects after a trial on an object. We used another UR5 arm only

to hold the containers (Fig. 9.1B). The robot performed 10 trials on each object

using a tool, resulting in 4,500 interactions (6 tools x 5 behaviors x 15 objects x 10

trials). Datasets download link, source code, and complete results are available on

the GitHub page of the study *. Please reference our dataset available for download.

9.4.1.4 Feature Extraction and Data Augmentation

We used the 6 tools and 5 interactive behaviors listed above to conduct our ex-

periments. We used 3 non-visual modalities (i.e., audio, effort, and force) because

they are essential for the human somatosensory perception of object properties. The

feature extraction parameters and data augmentation routines were adopted from

[TFS23]. To represent audio data, first, we used librosa [MRL+15] to generate mel-

scaled spectrograms of audio wave files recorded by robots with FFT window length

1024, hop length 512, and 60 mel-bands. Secondly, a spectro-temporal histogram

was computed by discretizing both time and frequencies into 10 equally-spaced bins,

where each bin consisted of mean of values in that bin. Similarly, we discretized

time into 10 equally-spaced bins for effort and force data, for 6 joints and 3 axes,

*https://github.com/gtatiya/Tool-Knowledge-Transfer
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Figure 9.3: Examples of audio, effort, and force features (top to bottom) when UR5 uses
metal-scissor tool to perform stirring-fast (A) and poke (C) behaviors, and uses plastic-
spoon tool to perform stirring-fast behavior (B) on a metal-nut-bolt object. Please note the
difference in the features when only the tools are different ((A) and (B)) and when only the
behaviors are different ((A) and (C)).

respectively. Thus, audio, effort, and force data are represented as 100, 60, and

30 dimensional feature vectors, respectively. Fig. 9.3 visualizes the robot’s audio,

effort, and force features when it uses different tools to perform different behaviors

on an object. To augment data, we computed the mean and standard deviation

of each bin in the discretized representation of all trials of an object, and sampled

10 additional trials of each object. These augmented data were used to train all

methods.

9.4.2 Evaluation

9.4.2.1 Transfer and Baseline Conditions

For the transfer condition, we assume the source robot interacts with all 15 objects

in O under the source context, but the target robot interacts with only 10 randomly

selected objects (66.67% of objects) in Oshared under the target context. The 10

shared objects under both contexts are used to train the knowledge transfer model

that projects the sensory signal of both contexts into a shared latent space. Sub-
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sequently, an object classifier is trained using the projected data from the source

context corresponding to the 5 objects (33.33% of objects) in Onovel that are novel

to the target context. We used the latent features corresponding to the 5 novel

objects under the target context generated by the trained knowledge transfer model

to test the object classifier. We used two baseline conditions. For baseline 1, the

target robot is trained to recognize objects using its own data collected during object

interactions under the target context. This baseline would show the target robot’s

performance if it actually explored all the objects under the target context during

the training phase. Baseline 2 is similar to baseline 1, except the target robot is

trained under the source context. The target robot’s own data observed under the

target context are used to test both baseline conditions. Baseline 2 is zero-shot

classification, as the target robot is trained under the source context and tested un-

der the target context. In each condition, the classifiers were trained on randomly

sampled 8 trials (80% of trials) from each of the 5 novel objects and tested on the

held-out 2 trials (20% of trials). The process of randomly selecting 10 objects in

Oshared to train knowledge transfer mode, training and testing the object classifiers

on 5 novel objects for the transfer and baseline conditions, was repeated 10 times

to compute performance statistics. We used a dataset with one robot; hence, we

assumed the source and target robots are physically identical, although employing

different tools and behaviors during object interaction. Nonetheless, our proposed

transfer learning methodology remains pertinent in scenarios where the two robots

are not physically identical.

9.4.2.2 Evaluation Metrics

We used two metrics to evaluate the object recognition performance of the tar-

get robot on the objects it has not explored. First is accuracy, defined as A =

correct predictions
total predictions (%). The second metric is accuracy delta (A∆), which measures the

difference in classification accuracy by using the latent features for training instead

of the ground-truth features. We define accuracy delta as A∆ = Atruth − Alatent,

where Atruth and Alatent are the accuracies obtained when using ground-truth and
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latent features, respectively. A smaller accuracy delta indicates it is easy for the

target robot to learn about the novel objects using the knowledge transferred by

the source robot. To report both metrics’ results, we use the recognition accuracy

computed by performing a weighted combination of each modality used based on

their performance on the training data.

9.4.2.3 Transfer Tasks

We consider two tasks: cross-tool sensorimotor transfer and cross-behavioral senso-

rimotor transfer. In cross-tool sensorimotor transfer, the source and target robots’

contexts differ only by tools (e.g., scissor-stirring as the source context and spoon-

stirring as the target context). In cross-behavioral sensorimotor transfer, the source

and target robots’ contexts differ only by behaviors (e.g., scissor-stirring as the

source context and scissor-poke as the target context). In both tasks, we align the

same modality for both source and target robots into the shared latent space.

9.4.2.4 Baseline Transfer Method

We use Kernel Manifold Alignment (KEMA) [TCV16] as our baseline. KEMA is a

distribution alignment method to align observation features from various contexts

and represent them within a shared latent space. KEMA constructs domain-specific

projection functions, which project data from both source and target contexts into

a shared latent space. This projection ensures that examples of the same object

class are closely grouped while those from different classes are separated. KEMA

has demonstrated effectiveness in various domains, including visual object recogni-

tion [TCV16], facial expression recognition [TCV16], and human action recognition

[LLL+18]. In robotics, KEMA has been successfully employed to align haptic data

[TSES20] and audio data [TFS23] across heterogeneous robots.
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Figure 9.4: Original sensory features of (A) plastic-spoon-stirring-slow and (B) plastic-
spoon-stirring-fast for effort performed on 6 objects in 2D space, and first 2 dimensions of
corresponding features in the shared latent feature space (C).

9.5 Results

9.5.1 Illustrative Example

Consider the case where UR5 uses the plastic-spoon to perform the stirring-slow

behavior as the source context and the stirring-fast behavior with the same tool

as the target context, on 15 objects, 10 times, while recording effort signals, which

our knowledge transfer model uses to generate the shared latent features. Fig. 9.4

visualizes the original and latent features of 6 objects in 2D space. To visualize the

original sensory signal of source and target contexts, we reduced their dimension to

2 by Principal Component Analysis (PCA) and plotted in Fig. 9.4A and 9.4B. Sim-

ilarity, we plot the features in 2D for visualization (Fig. 9.4C): datapoints collected

in both contexts are clustered together in the shared latent space, indicating both

feature spaces are aligned effectively.

Consider another case where UR5 learns to recognize the 15 objects using

each tool and each behavior. To achieve this, we train a classifier for each tool

and behavior pair using 8 trials of each object and test it on the held-out 2 trials.

We perform 5-fold cross-validation such that each trial of the 15 objects is included

in the test set once and compute the mean accuracy of all folds. Table 9.1 shows

the recognition accuracy computed by performing a weighted combination of all 3

non-visual modalities used based on their performance on the training data. In

the table, the bottom row shows the accuracy computed by performing a weighted

combination of all the behaviors. We report these recognition accuracies to illustrate

how each tool and behavior pair performs.
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Table 9.1: Accuracy percentage (%) achieved by UR5 using each tool and behavior pair to
recognize 15 objects (↑).

Tools

Behaviors Metal-
Scissor

Metal-
Whisk

Plastic-
Knife

Plastic-
Spoon

Wooden-
Chopstick

Wooden-
Fork

Stirring-Slow 26.00 33.33 18.67 36.67 16.00 42.00
Stirring-Fast 48.67 35.33 30.00 44.67 18.00 42.00
Stirring-Twist 17.33 26.00 16.00 23.33 15.33 32.67
Whisk 20.00 24.00 27.33 28.00 14.67 39.33
Poke 20.00 15.33 21.33 24.67 17.33 30.00

All behaviors 51.33 50.00 48.00 52.00 39.33 63.33

9.5.2 Accuracy Results of Object Recognition

For cross-tool sensorimotor transfer, each of the 6 tools is projected to all the other

5 tools, for each behavior, allowing 150 cross-tool projections (6 tools × 5 other tools

× 5 behaviors). For cross-behavioral sensorimotor transfer, each of the 5 behaviors

is projected to all the other 4 behaviors, for each tool, allowing 120 cross-behavioral

projections (5 behaviors × 4 other behaviors × 6 tools).

Table 9.2 shows the mean accuracy and A∆ values for all projections, con-

sidering both transfer methods (TL and KEMA) and both baseline conditions. Our

transfer method (TL) achieves higher accuracy than the baseline condition 1 in 74

and 8 projections across all cross-tool and cross-behavioral projections, respectively.

In comparison to KEMA, our method achieves a lower mean A∆ in both baseline

conditions. These results show using latent features transferred by the source robot

using our method aids the target robot in learning a recognition model that gener-

alizes better for object recognition under specific projections (discussed in the next

section). Notably, a smaller mean A∆ (including negative mean A∆) in Table 9.2

indicates it is easy for the target robot to learn a classifier from latent features

projected by the source robot and achieve comparable performance as if the target

robot actually explored the objects.

We conducted additional experiments to assess the robustness and adaptabil-

ity of our method. First, we repeated the experiments without data augmentation,

to simulate a scenario that can resemble cases with limited data availability (shown
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Table 9.2: Mean accuracy (↑) and A∆ (↓) for transfer and both baseline conditions in
cross-tool and cross-behavior transfers. The experiments were conducted using discretized
representations, with the inclusion of data augmentation, and an MLP classifier.

KEMA TL (ours)

Cross-Tool Cross-Behavior Cross-Tool Cross-Behavior

Baseline 1 Mean Accuracy 50.6±12.5% 50.7±12.3% 50.6±12.3% 50.3±12.4%
Baseline 2 Mean Accuracy 26.5±6.0% 23.9±4.7% 26.0±5.8% 24.1±4.9%
Transfer Mean Accuracy 22.3±4.3% 22.1±4.9% 49.9±10.6% 33.7±8.6%

Baseline 1 Mean A∆ 28.3±13.8% 28.6±14.6% 0.7±13.9% 16.5±12.9%
Baseline 2 Mean A∆ 4.2±8.2% 1.7±7.3% -23.8±11.5% -9.5±7.9%

Table 9.3: Mean accuracy (↑) and A∆ (↓) for transfer and both baseline conditions in
cross-tool and cross-behavior transfers. The experiments were conducted using discretized
representations, without the inclusion of data augmentation, and an MLP classifier.

KEMA TL (ours)

Cross-Tool Cross-Behavior Cross-Tool Cross-Behavior

Baseline 1 Mean Accuracy 51.6±12.6% 51.6±12.8% 51.5±11.5% 51.0±12.2%
Baseline 2 Mean Accuracy 26.2±5.6% 23.7±4.3% 26.1±5.3% 23.7±4.5%
Transfer Mean Accuracy 22.1±4.1% 20.9±4.3% 49.5±9.8% 35.1±8.2%

Baseline 1 Mean A∆ 29.5±13.9% 30.6±13.5% 1.9±12.0% 15.8±11.6%
Baseline 2 Mean A∆ 4.1±7.7% 2.7±5.6% -23.4±9.7% -11.3±7.1%

in Table 9.3). In this context, when using KEMA, the mean A∆ for baseline condi-

tion 1 averaged 29.5±13.9% and 30.6±13.5% for all cross-tool and cross-behavioral

projections, respectively. In contrast, our method (TL) achieved substantially lower

mean A∆ values of 1.9±12.0% and 15.8±11.6% for the same projections. Remark-

ably, even without data augmentation, our method consistently outperforms KEMA

for both baseline conditions. Furthermore, we explored the impact of using a simple

SVM classifier, as an alternative to an MLP, in the same experiments, both with

and without data augmentation. Regardless of the classifier used, our method con-

sistently achieved lower mean A∆ values for baseline conditions 1 and 2 compared

to KEMA. These results underscore the robustness of our approach across varying

data availability scenarios and with different classification models, demonstrating

its ability to learn effective latent features that significantly aid the target robot in

recognizing novel objects under diverse conditions.

9.5.2.1 Heterogeneous Feature Representation

The representation of a robot’s sensory features can vary based on the chosen feature

extraction method. To assess the adaptability of our framework to different feature
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Table 9.4: Mean accuracy (↑) and A∆ (↓) for transfer and both baseline conditions in
cross-tool and cross-behavior transfers. The experiments were conducted using learned
representations obtained from autoencoders, with the inclusion of data augmentation, and
an MLP classifier.

KEMA TL (ours)

Cross-Tool Cross-Behavior Cross-Tool Cross-Behavior

Baseline 1 Mean Accuracy 64.4±16.6% 63.6±17.0% 63.6±16.7% 63.6±16.6%
Baseline 2 Mean Accuracy 19.4±3.5% 20.1±4.2% 19.6±3.6% 20.2±3.9%
Transfer Mean Accuracy 18.5±4.1% 17.5±4.7% 27.7±5.4% 27.1±6.1%

Baseline 1 Mean A∆ 45.8±18.2% 46.1±18.1% 35.8±15.1% 36.4±15.2%
Baseline 2 Mean A∆ 0.8±5.5% 2.6±5.8% -8.1±6.6% -6.9±6.7%

representations, we conducted additional experiments utilizing learned representa-

tions obtained through autoencoders, in contrast to the discretized representation

used in previous experiments. In this set of experiments, we fixed the sensory data

of each behavior by first calculating the average duration of each behavior. We

determined the average time frames for each modality by multiplying this average

duration with the modality-specific frame rate. This process is used to compute the

fixed-sized raw sensory data by interpolation, ensuring a consistent and uniform rep-

resentation across modalities for each trial of a behavior. Subsequently, we employed

autoencoders to learn feature representations using the fixed-sized raw sensory data

as input. The autoencoders were trained to reduce the dimensionality of the input

into a low-dimensional code using an encoder and then reconstruct the input using

the code as input through a decoder. For the autoencoders, fully connected layers

were utilized in both the encoder and decoder. The code vectors obtained were then

employed in knowledge transfer experiments, with an MLP as the classifier. The re-

sults, presented in Table 9.4, demonstrate the efficacy of the learned representations,

with our method consistently achieving lower mean A∆ values compared to KEMA.

This consistency across different feature representations underscores the versatility

of our approach and its ability to facilitate knowledge transfer using Triplet Loss

under varying representation schemes.
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Table 9.5: Mean A∆ (baseline 1) for each behavior in cross-tool projections and for each
tool in cross-behavioral projections (↓).

Cross-Tool Cross-Behavior
Behaviors Mean A∆ Tools Mean A∆

Stirring-Slow 6.6±12.0% Metal-Scissor 11.1±9.5%
Stirring-Fast 12.2±14.4% Metal-Whisk 14.1±11.7%
Stirring-Twist -6.6±12.8% Plastic-Knife 16.2±8.2%
Whisk -7.8±11.1% Plastic-Spoon 25.6±12.5%
Poke -1.4±5.3% Wooden-Chopstick 5.6±9.7%
— — Wooden-Fork 26.6±11.0%

9.5.3 Accuracy Delta Results of Object Recognition

In cross-tool projections, for each tool as the source tool, we used all the other tools

as the target tool, allowing 30 (6 tools × 5 other tools) projections for each behavior.

In cross-behavioral projections, for each behavior as the source behavior, we used

all the other behaviors as the target behavior, allowing 25 (5 behaviors × 4 other

behaviors) projections for each tool. Table 9.5 shows the mean A∆ (baseline 1) of

all projections for each behavior and each tool in cross-tool and cross-behavioral

projections, respectively.

For cross-tool projections, the least mean A∆ is achieved by whisk, and

stirring-twist behaviors. Compared to other behaviors, these behaviors deform the

tools less during object interaction and are shorter behaviors. However, longer

behaviors deform the tools more with object interaction and achieve higher mean

A∆ (e.g., poke, stirring-slow, and stirring-fast). This shows if the robot needs to

use a new tool, the prior experience gained by a shorter behavior that deforms the

tools less would be better to be transferred to the target context with the new

tool. For cross-behavioral projections, the least mean A∆ is achieved by wooden-

chopstick, metal-scissor, and metal-whisk tools. Compared to other tools, these

tools get deformed less while performing behaviors on objects and have pointed

ends making limited object contact. However, other tools have wider ends, making

them deform more with object interaction (e.g., plastic-knife, plastic-spoon, and

wooden-fork). This shows that if the robot needs to perform a new behavior, the

prior knowledge of behaviors gained using rigid and pointed tools would be better

to be transferred to the target context’s new behavior.
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9.5.4 Tools and Behaviors Transfer Relationships

To compute the transfer relation between each tool and behavior pair, we consider

cross-tool and cross-behavior projections simultaneously. For such projections, for

each tool and behavior pair as the source context, we use all the other tool and

behavior pairs as the target context. More specifically, we used 30 tool and behavior

pairs (6 tools × 5 behaviors) as the source context and the other 35 pairs as the

target context, allowing 870 (30 × 29) projections. We compute the A∆ for each

projection and represent them in an 870 × 870 matrix, where the A∆ of identical

contexts is 0. A 2D visualization of PCA embedding of the A∆ matrix is shown in

Fig. 9.5. Each dot in the plot represents a context, and the distance between a pair

of contexts indicates how efficient the transfer is between them. The closer the two

contexts are, the more efficiently they transfer knowledge.

Contexts with the same or similar behaviors are clustered together, sug-

gesting the source and target contexts with similar behaviors and different tools

transfer better. The most tightly clustered behavior is poke. Similar behaviors

are loosely clustered together (i.e., stirring-fast, stirring-twist, and stirring-slow).

Non-deformable tools (i.e., metal-scissor and wooden-chopstick) with a behavior in

the source context are closer to the other behaviors in the target contexts. This

indicates that non-deformable tools capture similar object properties across differ-

ent behaviors, as such tools are less impacted by different behaviors during object

interaction. These findings are consistent with the cross-tool and cross-behavior

transfers’ results previously outlined.

9.6 Summary

Robots can acquire implicit knowledge about object properties by performing tool-

mediated behaviors on granular objects and processing non-visual modalities. How-

ever, representing implicit knowledge for each different sensorimotor context can

be expensive, as it necessitates the robots to explore objects from scratch in each

new context. To overcome this challenge, we proposed a framework for transfer-
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Figure 9.5: 2D PCA embedding of the A∆ matrix for cross-tool and cross-behavior projec-
tions. Every point stands for a context (i.e., a tool and behavior pair). Closer points reflect
contexts across which knowledge transfer is more efficient.

ring implicit object property knowledge across different sensorimotor contexts. We

evaluated the effectiveness of our approach on cross-tool and cross-behavioral trans-

fer tasks. Our results demonstrated that transferring implicit knowledge from the

source robot to the target robot accelerates the target robot’s learning, even if it

has explored fewer objects.

Our framework encoded different behaviors in the robot for object explo-

ration using tools, but our future work aims to enable robots to learn behaviors for

object interaction autonomously. We assumed that both source and target contexts

explored objects using the same modality, and we used this modality while learning

the shared latent space. We plan to perform cross-modality projections especially

for cases where the target robot has a different non-visual sensor from the source

robot and select sensorimotor contexts for learning projections more efficiently. We

aim to automate the selection of objects to be explored to learn an effective pro-

jection faster. We envision multiple source contexts transferring their knowledge

to the target context. In conclusion, our proposed framework can transfer implicit
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knowledge about objects from one robot’s sensorimotor context to another, leading

to accelerated learning in the target context.
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Chapter 10

MOSAIC: Learning Unified

Multi-Sensory Object Property

Representations for Robot Perception*

10.1 Introduction

Humans first acquire knowledge about object properties through physical interaction—

a process that involves the integration of multiple sensory inputs, including visual,

auditory, and tactile cues [TVCÖ04b, ANM10, BG06, KR23, ZAS+23, LKS+20]. For

instance, we rely on vision to discern an object’s color, sense of touch when we lift

an object to gauge its weight, and hearing when we shake a container to determine

if it is full or empty. The fusion of such multi-sensory information is pivotal in shap-

ing our perception and guiding our decision-making processes concerning objects

[BJT16, PSE12, FKL+22, CZCL23, CZBN21]. Similarly, robots can effectively en-

gage with objects by simultaneously perceiving and processing multi-sensory signals,

to tackle tasks such as object categorization [SSS+14a, TS19], material recognition

[XLZ+22], and even complex actions like packing and pouring [LZZ+22].

*This chapter is based on the following paper: Gyan Tatiya and Jonathan Francis and
Ho-Hsiang Wu and Yonatan Bisk and Jivko Sinapov, “MOSAIC: Learning Unified Multi-Sensory
Object Property Representations for Robot Perception”, Under review for IEEE International
Conference on Robotics and Automation (ICRA), 2024. [TFW+24]
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Within vision and text, large-scale Vision-Language Models (VLMs) have

demonstrated their ability to provide state-of-the-art representations for both vi-

sual and textual modalities, making them exceptionally valuable for a wide range

of AI applications [RKH+21, ZJM+22, ADL+22]. One such model, Contrastive

Language-Image Pre-training (CLIP) [RKH+21], is trained from scratch on an ex-

tensive dataset comprising 400 million (image, text) pairs. CLIP’s representations

can seamlessly transfer to many downstream tasks without fine-tuning. While prior

research has primarily focused on integrating audio modalities into CLIP’s embed-

ding space [WSKB22], including a robot’s haptic data into this versatile space has

yet to be explored. We address this gap by distilling the domain-general language

grounding within CLIP and infusing it into a robot’s sensory data from object inter-

actions. This method effectively mitigates the often prohibitive costs of collecting

interactive data by robots through extensive object exploration. The primary objec-

tive of this study is to expose VLMs to object property representations derived from

robot interactions, highlighting how these representations can significantly improve

the performance on interactive tasks by enhancing the robot’s multimodal percep-

tual capabilities. This enhancement arises from interactive object exploration to

understand the fundamentals of object properties, a perspective disembodied rep-

resentations often lack.

We introduce MOSAIC (Multimodal Object property learning with Self-

Attention and Integrated Comprehension), an approach to acquire versatile rep-

resentations adaptable to various interactive perception tasks within robotics. MO-

SAIC is designed to extract unified multi-sensory object property representations,

enabling understanding of object properties by leveraging diverse sensory modalities.

This approach rests on the premise that natural language provides a versatile embed-

ding space whose knowledge we can distill and align to different sensory modalities.

We evaluate our approach on a publicly available dataset where a humanoid robot

explored 100 objects, using 10 exploratory behaviors while recording sensory data,

including vision, audio, and haptic. We evaluate on both object category recognition

and the fetch object task, finding MOSAIC to be robust and adaptible. MOSAIC’s
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Figure 10.1: Overview of the MOSAIC Framework: Initially, the robot collects
sensory data through object exploration, which is then used to train models for distilling
unified multimodal representations guided by a pre-trained text encoder. These acquired
representations are subsequently applied to a variety of downstream tasks.

performance in the object category recognition is notably competitive compared to

state-of-the-art methods, showing the effectiveness of unified representations even

within a straightforward linear probe setup. Furthermore, MOSAIC demonstrates

exceptional capabilities in executing natural language instructions in the fetch object

task under a zero-shot condition. In summary, MOSAIC offers a versatile framework

for multimodal object property learning, bridging the gap between different sensory

inputs and facilitating a wide range of downstream robot tasks.

In the context of the broader dissertation, this chapter presents MOSAIC,

an approach aimed at acquiring versatile representations adaptable to various in-

teractive perception tasks within robotics. MOSAIC extracts unified multi-sensory

object property representations, leveraging diverse sensory modalities and distilling

domain-general language grounding from Contrastive Language-Image Pre-training

(CLIP). Unlike previous chapters that focused on specific transfer methods, MO-

SAIC is designed for learning Transferable Unified Multi-sensory Object Property

Representations. Comparative analysis with specialized architectures proposed in

Chapter 4 for raw multi-sensory data processing showcases the effectiveness of MO-

SAIC in learning unified representations for improved robot perception and down-

stream task execution.
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10.2 Related Work

10.2.1 Multi-sensory Learning in Cognitive Science

Humans acquire knowledge about object properties through physical interactions,

integrating multiple sensory signals [BDFP02, LS14, CT04]. Multi-sensory integra-

tion and attention processes occur at various stages in the human brain, crucially

influencing our perception of objects and task performance [KBT10]. Moreover, hu-

man perception involves the dynamic interplay between sensory inputs and existing

cognitive knowledge rather than processing sensory inputs in isolation [Tal15]. Our

research extends these principles to robotics, extracting knowledge from pre-trained

text encoders to align representations across diverse sensory modalities – mirroring

how humans fuse sensory information with their established knowledge to perceive

their environment holistically.

10.2.2 Robot Perception

Robotics research has showcased the remarkable capabilities of robots in interact-

ing with objects and leveraging sensory signals for an array of tasks, encompassing

object categorization [SSS+14a, TS19], material recognition [XLZ+22], and intri-

cate manipulation actions like packing and pouring [LZZ+22]. Most successful prior

work relies on handcrafted auditory, haptic, and visual features [SSS+14a], or spe-

cialized architectures for processing raw multi-sensory data to predict object cat-

egories [TS19]. Recently, Li et al. [LZZ+22], introduced a self-attention model to

fuse information from visual, auditory, and tactile sensors, significantly enhancing

the robot’s capability to tackle complex manipulation tasks. Our research intro-

duces a versatile framework for learning unified multi-sensory representations from

raw sensory data acquired during robot-object interactions, offering adaptability

across diverse downstream tasks. The generality of our network architecture has

been is demonstrated across various applications with strong performance, and the

inclusion of self-attention mechanisms further bolsters its performance.
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10.2.3 Unified Multi-Sensory Representations with Foundation Mod-

els

Recent advances have revealed the potential of contrastive objectives to yield gen-

eralized representations for both text and images [RKH+21, ZJM+22]. Contrastive

Language-Image Pre-training (CLIP) [RKH+21] has delivered state-of-the-art repre-

sentations that excel in diverse tasks, including zero-shot image classification, image

retrieval via text, and guiding generative models [GPM+22]. While CLIP’s knowl-

edge has been distilled for audio [WSKB22], our MOSAIC approach is the first to

ground sensory data obtained through robotic object exploration. MOSAIC accom-

plishes this by distilling knowledge from the extensive pre-trained CLIP text model.

To test our learned unified representations, we rely on a dataset where a robot en-

gages with 100 objects, executing 10 exploratory behaviors while recording multiple

sensory signals. The robot tackles two tasks reliant on perceiving object properties:

object categorization and the fetch object task. The results highlight the efficiency

of our unified representations, clearly demonstrated in competitive performance in

category recognition only by using a simple linear probe setup and in fetch object

task using a zero-shot transfer approach.

10.3 Learning Methodology

Notation and Problem Formulation. Let a robot perform a set of exploratory

behaviors B (e.g., grasp, pick) on a set of household objects O (e.g., bottle, cup),

while recording a set of sensory modalities, m = {xv, xa, xh}, which correspond to

vision, audio, haptics, respectively. The robot performs each behavior n times on

each object. During the ith exploratory trial, the robot collects sensory data mi

containing:

xv
i ∈ Rw×h×3×tvi , xa

i ∈ Rf×tai , xh
i ∈ Rd×thi (10.1)

where w and h are the width and height of each image, f is the number of frequency

bins in the sound spectrogram, d is the number of robot joint-torque sensors, and tvi ,
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tai , and thi are the number of time frames (e.g., number of images) produced during

interaction for vision, audio, and haptics, respectively. Additionally, the robot has

access to textual descriptions of each interaction, xs
i , provided by human experts,

complementing the sensory data.

Our primary objective is to learn a unified multimodal representation de-

rived from the robot’s observations across all modalities during an exploratory trial.

To be more precise, we aim to learn the function Fm→Z : xvi , x
a
i , x

h
i → zi, where

zi ∈ RDZ represents the unified multimodal embedding of dimension DZ . This uni-

fied representation is intended to encompass diverse object properties encountered

during interactions, making it applicable to various downstream tasks that require

understanding these object properties. By achieving this unified representation, the

robot can rapidly adapt to different tasks by learning linear models or perform-

ing zero-shot transfers, thereby circumventing the need to train complex models

dedicated to individual tasks.

Unified Multimodal Object Property Model. Our approach, MOSAIC (Mul-

timodal Object property learning with Self-Attention and Integrated Comprehen-

sion), involves a two-stage process, illustrated in Fig. 10.1. Initially, we aim to distill

unified object property representations from diverse sensory modalities, guided by

text embeddings from a pre-trained text encoder. Subsequently, we leverage these

unified representations to solve downstream tasks that require understanding ob-

ject properties. In the following sections, we introduce various modules integrated

within our framework.

10.3.0.1 Encoders and Feature Extraction

For the Vision Encoder, we use the CLIP’s Vision Transformer (ViT-B/32) [RKH+21],

which is jointly trained with a text encoder to maximize the similarity of {image,

text} pairs using a contrastive loss. For each interaction’s video, the image en-

coder extracts image embeddings, and these embeddings are then aggregated using

adaptive average pooling to generate a feature vector of size DZ . For the Audio

Encoder, we leverage the Wav2CLIP model [WSKB22], which is trained to project
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Algorithm 1: Training MOSAIC Framework

V,A,H, S: Minibatch of aligned data (vision, audio, haptic, text)
n: Size of minibatch
MOSAICθ: Learnable parameters of MOSAIC framework
// Extract feature vector for each modality

1 Vf = vision encoder(V ) // Vision Transformer
2 Af = audio encoder(A) // Wav2CLIP model
3 Hf = haptic encoder(H) // ResNet18 model
4 Sf = text encoder(S) // Text Transformer

// Compute unified representation
5 Uf = concatenation(Vf , Af , Hf )
6 Uf = multihead attention(Uf )
7 Uf = MLP encoder(Uf ) // MLP model

// Scaled pairwise cosine similarities
8 logits = Uf · S⊤

f

9 // Symmetric loss function
10 labels = range(n) // returns 1, 2, ..., n
11 lossu = cross entropy loss(labels, logits)

12 losss = cross entropy loss(labels, logits⊤)
13 loss = (lossu + losss)/2
14 Update MOSAICθ to minimize loss

audio data into the shared vision-language embedding space of CLIP; this approach

enables the extraction of audio embeddings of size DZ . For the Haptics Encoder,

we use a ResNet-18 [HZRS16] model, pre-trained on the ImageNet dataset, as the

foundation. The input channels of the first convolutional layer are modified to one

channel, and the output of the last fully-connected layer is adapted to match the

desired embedding size of DZ ; a sample haptic image is shown in Fig. 10.1. Text

Encoder: For each exploratory trial, a corresponding natural language description

is available. Leveraging CLIP’s text encoder (ViT-B/32) [RKH+21], we extract

embeddings of size DZ from these text descriptions.

10.3.0.2 Multimodal Fusion

We employ a self-attention mechanism to integrate the feature sets from the three

modalities. Beginning with the concatenation of feature vectors from each modality,

we apply a two-step process: first, conventional multi-head self-attention [VSP+17]

is applied to the concatenated features; subsequently, the resulting output is directed

through a Multi-Layer Perceptron (MLP) to yield the unified multi-sensory feature

of size DZ .
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10.3.0.3 Training

During training, we maintain the vision, audio, and text encoders in their frozen

states since they were already tuned to project into a shared embedding space. We

train the haptic, self-attention, and MLP networks. Our primary aim is to cre-

ate unified multimodal representations within the same embedding space as CLIP’s

text embeddings [RKH+21]. To accomplish this, we employ a distillation method

guided by CLIP’s text embeddings. We follow the approach outlined in the original

CLIP paper, using a contrastive loss mechanism. This involves employing positive

examples from different modalities within the same data sample while considering

negative examples from the remaining batch. The fundamental implementation of

this training process is shown in Algorithm 1. This strategy is predicated on the

concept that natural language offers a versatile grounding basis [BHT+20], facilitat-

ing the creation of generalized representations with effective transferability across

diverse downstream tasks.

10.4 Experimental Design

10.4.1 Sensory Dataset

We used the publicly accessible dataset collected by Sinapov et al. [SSS+14a]. In

this experiment, a humanoid robot (depicted in Fig. 10.1) explored 100 household

objects from 20 different categories (shown in Fig. 10.2A), using 10 exploratory

behaviors. These behaviors included Look, Press, Grasp, Hold, Lift, Drop, Poke,

Push, Shake, and Tap (shown in Fig. 10.2B). Look is a non-interactive behavior, only

capturing visual data. For every interactive behavior, the robot collected sensory

data including visual, audio, and haptic, acquired through three sensors: (1) A

Logitech webcam capturing 320 x 240 RGB images at 10 frames per second; (2)

An Audio-Technica U853AW cardioid microphone capturing audio sampled at 44.1

KHz; (3) Joint-torque sensors capturing torques from all 7 joints at 500 Hz. The

robot repeated each behavior 5 times for each of the 100 objects, resulting in a total
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Figure 10.2: (A) 100 objects, grouped in 20 object categories. (B) The interactive behaviors
that the robot performed on the objects.

of 5,000 interactions (10 behaviors x 5 trials x 100 objects).

10.4.2 Text Dataset

The objects in our dataset were annotated with properties, shown in Table 10.1, each

with corresponding values. While not all properties were applicable to every object

(e.g., the baseball object lacked a weight property), we leveraged these properties

to generate text descriptions for each interaction. To ensure diversity, we randomly

selected a subset of properties for each object and used them in the descriptions.

For each object’s text description, we ensured that it included at least one property,

and the maximum number of properties included was determined by the number of

properties with values for that object. Moreover, we included the behavior’s name

being executed (e.g., tap), the object’s category (e.g., ball), and the category of

different object properties (e.g., material), all chosen randomly. Further variety was

introduced by selecting synonyms for words within the description from a curated

set of synonyms corresponding to the dataset’s labels. We generated 100 unique

text descriptions using this random selection process for each combination of object

and behavior. For instance, an example text description might read: “Performing

tap action on a ball with properties: round, yellow, small, soft, toy”.
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10.4.3 Data Pre-processing

To ensure synchronization and consistency across all sensory modalities for each

behavior b ∈ B, we calculated the behavior’s duration by dividing the average num-

ber of images recorded during behavior b by 10 (camera’s frame rate). With the

duration of each behavior now fixed, we compute the average number of time frames

for each modality by multiplying this duration and the frame rate specific to that

modality. These calculated averages were used for interpolation, ensuring uniform

time frames for each modality during the interaction recording. For images and

text, we employed the pre-processing provided by CLIP [RKH+21]. Audio data was

transformed from raw waveforms (1D) to spectrograms (2D) using the audio prepro-

cessor from Wav2CLIP [WSKB22]. For haptic signals, we applied dimensionality

reduction by interpolating the original 500Hz sampling rate down to 50Hz, drawing

inspiration from a similar technique used in a prior study [TS19] conducted with

the same dataset we used in our experiments.

10.4.4 Model Implementation

We standardized the size of the embeddings at DZ = 512. Our framework was

implemented in PyTorch [PGM+19], which includes the multi-sensory self-attention

model and MLP encoder. We fine-tuned the model parameters over 50 epochs, using

the Adam optimizer [KB15] with a learning rate of 10−4.

10.4.5 Validation Procedure

Each of the 20 object categories consists of 5 unique objects. To train our framework,

we selected 4 objects from each category for the training set while reserving one

object for testing, resulting in a training set with 80 objects and a testing set with

20 objects. We employed a 5-fold object-based cross-validation strategy to ensure

that each object appeared four times in the training set and once in the test set.

Given that the robot interacted with each object 5 times, our training set contained

400 examples (80 objects × 5 trials); the test set comprised 100 examples (20 objects
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Algorithm 2: Fetch object(c, O, B, θ)

MOSAICθ: Learned parameters in Algorithm 1
1 tc = text encoder(c): // Command to fetch target
2 for o ∈ O: Set of objects (target and distractor(s)) do
3 similarity = 0
4 for b ∈ B: Set of Behaviors do
5 sensory data = perform behavior(o, b)
6 ub = get unified repr(sensory data,MOSAICθ)
7 similarity += cosine similarity(tc, ub)

8 end
9 Save similarity for o

10 end
11 return Target Object o with highest similarity

Table 10.1: Property categories and associated descriptive words.

Properties Values

Color brown, blue, pink, red, white, orange, yellow, green, purple, multicolored
Deform. deformable, rigid, brittle
Hardness soft, squishy, hard
Material plastic, wicker, aluminum, foam, metal, rubber, paper, styrofoam, wood
State closed, full, empty, open
Reflection shiny, dull
Shape cylindrical, wide, rectangular, block, box, cone, round
Size small, short, big, large, tall
Transp. transparent, opaque, translucent, see-through
Usage container, toy
Weight light, heavy

× 5 trials) for each exploratory behavior.

10.4.6 Evaluation Tasks

After training our framework, we extracted the unified representations by freezing

learned weights for all downstream tasks. We evaluated the acquired representations

through two distinct tasks. The following subsections elaborate on these tasks,

outlining our approach to tackling them with unified representations and discussing

our performance metrics. Additionally, we discuss the baseline methods we employed

for comparison with our method.

10.4.6.1 Object Category Recognition

In this task, the robot interacts with a given object to identify its category from a

set of 20 categories. We use a standard multi-class linear classifier for supervised

classification. Specifically, we use a Multi-Layer Perceptron (MLP) architecture

that takes the unified representation as input, passes it through a hidden layer and
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a ReLU activation function, and produces 20 logits for 20 categories. We train

this classifier using the cross-entropy loss function for 50 epochs, using the Adam

optimization with a learning rate of 10−4. The trained classifier is then used to

recognize the category of test objects, and we compute accuracy as a performance

metric, defined as A = correct predictions
total predictions (%). We report the mean accuracy over 5

cross-validation folds, as mentioned earlier.

10.4.6.2 Fetch Object

In this task, the robot receives a natural language instruction to fetch an object,

specifying its properties (e.g., “fetch an object that is cylindrical and short”). The

robot is then presented with a group of objects, among which one matches the

specified properties (i.e., target object), while the remaining distractor object(s)

differ from the target object in at least one property. To illustrate, if the robot

is instructed to fetch an object that is both cylindrical and short, the distractor

objects might be cylindrical or short, but not both. The robot’s objective is to

interact with these presented objects and correctly identify one with the requested

properties. This task presents a challenge as the robot needs to detect the target

object’s properties given in natural language and distinguish it from the distractors

by interaction. We evaluate the robot’s performance on the fetch task across different

levels of complexity. In this task, we refer to the given instruction as a “command”

and the objects presented to the robot are carefully chosen from the previously

mentioned test set, ensuring that they are entirely new to the robot. In difficulty

Level 1, the command specifies the category name of the target object (e.g., “fetch

a ball”); a distractor object is chosen from a different category. In Level 2, the

command describes a specific property of the target object (e.g., “bring an object

that is hard”). A distractor object is selected with a different property. In the Level

3 scenario, the command includes two distinct properties of the target object (e.g.,

“bring an object that is small and hard”). The distractor object, on the other hand,

possesses different properties. For Level 4, like Level 3, the command includes two

target object properties. However, this time, two distractor objects are introduced,
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each with differing properties. Level 5 represents a variation of Level 2, where the

commands only contain a property from a specific category, as illustrated in Table

10.1. For instance, in the “Material” category, the command might read, “get an

object that is plastic.” Level 5 was introduced to assess the robot’s performance

across various property categories. For each level, we created 20 commands for

target objects and carefully selected corresponding distractor objects for each of

the 5 previously explained folds. For each object (target and distractor(s)), we

calculated its selection percentage, defined as S = number of times the object is selected
total number of commands

(%). Our results are reported as the mean selection percentage across the 5 folds.

We employ the approach outlined in Algorithm 2 to tackle this task. Ini-

tially, we convert the natural language instruction into a text embedding, denoted

as tc, using CLIP’s text encoder (step 1). Subsequently, the robot interacts with the

presented objects, including the target object and distractors, using various avail-

able behaviors while simultaneously recording sensory signals (step 5). To simulate

this step, we randomly select a trial from our dataset among 5 trials of each object.

Leveraging our trained framework, we generate unified representations, denoted as

ub, by processing the sensory inputs for each behavior (step 6). Next, we calculate

the cosine similarity between the command embedding (tc) and the unified repre-

sentation (ub) for each behavior, maintaining a cumulative similarity score (step 7).

Finally, once all behaviors are considered, the object with the highest cumulative

similarity score is identified as the target object, concluding the task (step 11).

10.4.7 Baseline, Ablation, and Comparison Conditions

We evaluate our full framework (MOSAIC), featuring the multi-sensory self-attention

model, against an ablation framework that omits this component (MOSAIC-w/o-

SA). These evaluations are conducted under two conditions: a non-interactive con-

dition, where the robot solely performs the Look behavior, and an interactive condi-

tion, where the robot engages in all 9 interactive behaviors as listed earlier. Notably,

in the Look behavior, only visual embeddings are employed as the unified represen-

tations after passing through the self-attention layer. Conversely, for interactive
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Figure 10.3: 2D unified representations derived from autoencoder trained on Push be-
havior’s data: (A) Object categories, (B) Material, (C) Deformability, and (D) Hardness
properties.

behaviors, all three modalities (i.e., visual, auditory, and haptic) are used to create

unified representations. For the object category recognition task, we report recog-

nition accuracy separately for the Look behavior, each of the 9 interactive behaviors

individually, and the combination of all 9 interactive behaviors. The combined ac-

curacy is calculated through a weighted combination of each behavior’s performance

on the training data. We also compare our recognition accuracy with two baseline

methods: Sinapov et al. [SSS+14a], who trained a Support Vector Machine (SVM)

classifier using handcrafted auditory, haptic features, and visual features, and Tatiya

et al. [TS19], who applied a deep learning approach to raw multi-sensory data for

object category classification. For the fetch object task (see Algorithm 2), the set

B contains only the Look behavior for the non-interactive condition and all 9 inter-

active behaviors for the interactive condition.

10.5 Results

10.5.1 An Illustrative Example

Let’s consider a scenario where the robot performs the Push behavior on 80 objects

(4 objects x 20 categories), recording visual, acoustic, and haptic data. With each
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object undergoing 5 trials, this yields a dataset of 400 examples (80 objects Ö 5

trials). Using our MOSAIC framework, we use this data to learn unified repre-

sentations. For visualization, we subjected these representations to dimensionality

reduction using a linear autoencoder, resulting in a concise 2-dimensional latent

space (Fig. 10.3). This visualization encapsulates four object properties: object

categories, material, deformability, and hardness. Distinct colors are used to differ-

entiate objects based on different values of these properties. To maintain clarity, we

selectively plot only specific categories or objects with particular properties.

These visualizations unveil meaningful insights. Objects within the same

category or material composition form tight clusters in the 2D space, showing the

efficiency of our unified representations in capturing object semantics and material

characteristics. The deformability properties plot demonstrates a separation be-

tween rigid and deformable objects, with brittle ones inclining towards deformable.

Similarly, in the hardness properties plot, hard objects cluster on one side, while

soft and squishy objects gravitate towards the opposite side. Essentially, our uni-

fied representations effectively encode objects with similar properties, as evidenced

by distinct clusters of similar objects, even when these objects belong to different

categories or material groups across various property categories. This illustrates

MOSAIC’s capacity to capture nuanced object attributes and relationships, a piv-

otal aspect of its performance across diverse tasks.

10.5.2 Object Category Recognition Results

Object category recognition results are presented in Table 10.2. Note that the Look

behavior only relies on visual modality, and the “All behaviors” row at the bottom

refers to all 9 interactive behaviors combined. Our approach, using unified represen-

tations, exhibits a remarkable level of competitiveness compared to state-of-the-art

results for this dataset, demonstrating higher recognition accuracy in seven out of

ten behaviors. For the remaining three behaviors, we achieved comparable accuracy.

We achieved this level of performance using a straightforward linear model on top of

the unified representations, a contrast to previous methods. Notably, the prior work
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Table 10.2: Category recognition accuracy (%) for each behavior.

Behavior Sinapov et al. [SSS+14a] Tatiya et al. [TS19] MOSAIC-w/o-SA MOSAIC (ours)

Look 67.7 — 86.4 ± 1.2 87.4 ± 2.0

Grasp 65.2 71.4 72.2 ± 6.7 74.0 ± 5.8
Hold 67.0 76.8 68.0 ± 5.3 69.6 ± 5.2
Lift 79.0 77.8 72.8 ± 4.2 77.8 ± 5.7
Drop 71.0 78.0 73.2 ± 3.8 77.2 ± 5.9
Poke 85.4 73.8 81.6 ± 2.2 86.4 ± 1.0
Push 88.8 67.4 85.6 ± 3.5 89.4 ± 4.4
Shake 76.8 83.6 81.2 ± 6.2 84.0 ± 5.6
Tap 82.4 81.6 81.2 ± 5.7 84.4 ± 1.8
Press 77.4 58.8 71.6 ± 8.7 77.8 ± 6.4

All behaviors — — 95.2 ± 3.6 95.6 ± 3.9

[TS19] employed a specialized neural network architecture tailored specifically for

this task, while [SSS+14a] relied on handcrafted features. Furthermore, our results

consistently indicate that our full framework, including self-attention, outperforms

the counterpart without self-attention. This underscores the utility of the multi-

sensory unified representation and the effectiveness of the self-attention mechanism

in enhancing the robot’s adaptability to diverse tasks.

10.5.3 Fetch Object Results

The fetch object task, whose results are summarized in Table 10.3, comprises five

distinct levels designed to assess the robot’s ability to execute instructions. In

Level 1, the command specified the object category name. Our complete MOSAIC

framework excelled in interactive behavior conditions, achieving an impressive tar-

get object selection rate of 99.0%, outperforming all baseline models. Level 2 to

Level 5: These levels introduced object properties into the command instead of

specifying the object category name. Generally, the interactive behaviors condition

outperformed the non-interactive one, with our full MOSAIC model excelling in

most cases. Interestingly, providing more object properties in the command led to

better performance, exemplified by a higher target object selection rate in Level 3

compared to Level 2, across all conditions, except for “Look” without self-attention.

This suggests that learning unified representations with self-attention prioritizes

the most relevant object properties. Level 4 presented greater challenges due to
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the inclusion of two distractor objects resembling the target object. Nevertheless,

our complete MOSAIC framework with self-attention consistently outperformed all

baselines.

To evaluate the robot’s ability to fetch objects based on specific property cat-

egories, we delved into Level 5, where the command included only descriptive words

related to specific property categories. For simplicity, we focused on discussing five

property categories. Deformability and Weight: In scenarios involving non-visual

properties like deformability and weight, the interactive behaviors condition signif-

icantly outperformed the non-interactive one. This aligns with intuition, as visual

observation alone may not suffice to determine these properties. Transparency

and Size: For visual properties like transparency and size, the interactive behav-

iors condition performed comparably to the non-interactive behavior, suggesting

that interaction with objects may not yield significantly more information in these

scenarios. Shape: Intriguingly, for the shape property category, the interactive be-

haviors condition significantly outperformed the non-interactive one. This implies

that interacting with objects enables the robot to observe them from various angles,

enhancing its ability to predict object shape compared to merely observing from

a top angle. In summary, our full MOSAIC framework demonstrated robust per-

formance in the fetch object task, relying solely on unified representations without

additional learning methods. These results underscore the adaptability and ap-

plicability of unified representations across diverse tasks, including those involving

natural language instructions.

10.6 Summary

We introduced the MOSAIC framework to enable robots to generate versatile, mul-

timodal representations through interactive object perception and to leverage these

unified representations across various downstream robot learning tasks. Through

extensive performance evaluation, we have showcased the effectiveness of these uni-

fied representations in tasks such as category recognition, using a simple linear probe
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Table 10.3: MOSAIC’s target object selection (%) in various levels of the fetch object task,
with and without Self-Attention.

Look (non-interactive) Interactive

-w/o-SA MOSAIC -w/o-SA MOSAIC

Level 1 74 82 97 99
Level 2 61 65 84 81
Level 3 60 74 86 83
Level 4 54 70 72 77

Level 5:
Color 64 76 85 89
Deformation 45 48 71 74
Hardness 60 58 66 72
Material 69 83 91 95
Object State 49 55 70 72
Shape 85 80 97 95
Size 62 74 72 75
Transparency 62 62 51 63
Usage 75 68 79 90
Weight 52 63 85 85

setup, and the fetch object task under zero-shot conditions.

Moving forward, there are several exciting directions for future research.

Firstly, we plan to consider the transfer of unified representations across different

robot morphologies, enabling a broader range of robots to benefit from this tech-

nology. Furthermore, we envision settings where interactive behaviors are learned

and composed, alongside the tasks we considered in this chapter, thereby further

increasing the efficacy of object exploration. These future endeavors hold the poten-

tial to further enhance the utility of unified representations in robotics and expand

their applications across a multitude of scenarios and environments. One limitation

in our current study is that, for the fetch object task, we evaluated using a zero-shot

transfer condition rather than a learning-based approach to find the target object.

For future work, it would be important to explore learning-based policies for solving

the fetch object task, potentially increasing the versatility and adaptability of our

framework.
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Chapter 11

Conclusion and Future Work

Transferring object property representations from experienced robots to new robots

to expedite learning and bolster task efficiency is a compelling aspiration. However,

this aspiration faces a challenge — the frequently occurring variance in robots’ in-

teraction capabilities, manifesting as differences in physical embodiment, sensory

equipment, behaviors, or even tools. This creates a barrier to the direct transfer of

perceptual knowledge from one robot to another. This dissertation tackles this chal-

lenge that arises when robots share the perceptual knowledge acquired during their

interactions with objects. This dissertation introduced innovative frameworks de-

signed to cross-transfer multi-sensory perceptual knowledge, painstakingly acquired

through interactions with objects, across a diverse spectrum of robot embodiments,

behaviors, sensors, and tools. A series of experiments involving robots have un-

derscored the efficacy of these proposed knowledge transfer frameworks, showcasing

their capacity to facilitate perceptual knowledge transference across distinct sen-

sorimotor contexts. These empirical outcomes not only validate the feasibility of

our approach but also underscore its potential to empower newly deployed robots,

endowing them with the capacity to efficiently learn object properties through the

inheritance of perceptual knowledge from more experienced robots.
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11.1 Summary of Contributions

In response to the central question, How can robots transfer perceptual knowl-

edge acquired through object interactions across heterogeneous robot em-

bodiments, behaviors, sensors, and tools? this dissertation has made the

following significant contributions:

Datasets: We have published three substantial object exploration datasets, en-

compassing multi-sensory signals recorded by heterogeneous robots during various

object-interaction behaviors. These datasets and the source code of the proposed

frameworks are publicly accessible to support further research.

Multimodal Object Categorization: We have developed methodologies that

combine visual, auditory, and haptic sensory data for object categorization through

interactive behavior. Chapter 4 introduces multimodal deep neural network-based

architectures for object categorization, while Chapter 10 presents a method for

learning unified multi-sensory representations, simplifying object categorization via

simple linear models.

Generative Models for Knowledge Transfer: Our frameworks leverage gen-

erative models to map sensory data from a source robot to a semantically similar

feature space for a target robot. Chapter 5 introduces Encoder-Decoder Networks

(EDN) for cross-behavior knowledge transfer, while Chapter 7 extends this approach

to support multiple source contexts using β-Variational Autoencoder Networks (β-

VAE).

Shared Latent Feature Space: We propose frameworks for transferring percep-

tual knowledge between robots through a shared latent feature space. Chapter 6

incorporates kernel manifold alignment (KEMA), and Chapter 9 introduces metric

learning via triplet loss for mapping sensory data into a common latent space.

MOSAIC Framework: Chapter 9 introduces MOSAIC (Multimodal Object Prop-

erty Learning with Self-Attention and Integrated Comprehension), enabling multi-

sensory integration for learning unified multimodal representations from robot object

exploration data. These representations are transferable across tasks, significantly
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reducing object exploration time.

Knowledge Transfer Evaluation: We have introduced novel ways to evaluate

and analyze knowledge transfer performance. Chapter 5 presents “accuracy delta”

for quantifying performance drops due to transferred features. Chapters 7 and 9

introduce accuracy delta matrices and 2D visualizations of transfer relations between

sensorimotor contexts.

Object Selection Algorithm: In Chapter 7, we propose an object selection algo-

rithm for efficient calibration set selection in scenarios with limited time for knowl-

edge transfer mapping.

Data Augmentation Technique: Chapter 8 introduces a data augmentation

technique that enhances knowledge transfer model generalization, applicable across

various downstream tasks, with evaluations conducted in object-property and object-

identity recognition scenarios.

These contributions collectively advance the field of multi-sensory perceptual

knowledge transfer in robotics.

11.2 Interconnections among Proposed Frameworks

The three proposed frameworks presented in this dissertation, namely Transfer us-

ing Projection to Target Feature Space, Transfer using Projection to Shared Latent

Feature Space, and Transferable Unified Multi-sensory Object Property Representa-

tions, are intricately interconnected through a common thread—the facilitation of

knowledge transfer across robots to enhance their interactive perceptual capabilities.

While each framework tackles distinct challenges and employs different methodolo-

gies, their unifying goal is to bridge the gap between robots, enabling them to

seamlessly leverage acquired knowledge for improved perception and understanding

of objects.

The first framework, Transfer using Projection to Target Feature Space, es-

tablishes a foundation for transferring knowledge by mapping sensory data from a

source robot to a semantically similar feature space for a target robot. By lever-
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aging encoder-decoder networks and principles of domain adaptation, this frame-

work addresses the challenges of disparate physical attributes and sensor models

between robots. The emphasis on semantic similarity and the incorporation of

human-provided object labels lay the groundwork for effective knowledge transfer.

Building upon this foundation, the second framework, Transfer using Pro-

jection to Shared Latent Feature Space, introduces domain adaptation strategies,

specifically kernel manifold alignment (KEMA), to align datasets and create a shared

latent space. This shared space allows for a more efficient transfer of non-visual

object knowledge among robots with varying physical attributes and sensor config-

urations. The emphasis on non-visual data and the introduction of metric learning

via triplet loss contribute to the adaptability and practicality of knowledge transfer

among heterogeneous robots.

The third framework, Transferable Unified Multi-sensory Object Property

Representations, takes a unique approach by drawing inspiration from contrastive

learning, particularly CLIP [RKH+21]. MOSAIC, the proposed framework within

this category, distills knowledge from the CLIP text model to learn unified multi-

sensory object property representations. By aligning representations across visual,

haptic, and auditory sensory domains, MOSAIC contributes significantly to advanc-

ing the multi-sensory perceptual capabilities of autonomous systems.

In summary, these frameworks are not isolated solutions but rather com-

ponents of a holistic strategy for enabling robots to acquire, share, and utilize

knowledge about objects through interactive behaviors and multi-sensory percep-

tion. Together, they form a comprehensive approach to addressing the challenges of

knowledge transfer in the context of robotic perception, laying the groundwork for

more versatile and adaptable robotic systems across diverse domains.

11.3 Applicability and Boundaries

In the pursuit of developing transfer learning frameworks for robotic systems, it

is imperative to outline the specific scenarios where the proposed methods exhibit

173



efficacy and the circumstances under which limitations may arise. The applicability

and boundaries of the frameworks are contingent upon several vital factors, outlined

below:

11.3.1 Applicability

Interactive Object Interaction: The frameworks are designed for robotic arms

with specified degrees of freedom engaged in exploratory interactions with objects.

This includes behaviors such as lifting, shaking, pushing, or employing tools for

object exploration, such as exploring food objects using kitchen tools. These inter-

actions constitute a crucial foundation for effective knowledge transfer.

Consistent Sensorimotor Context: Assumed input data is consistently struc-

tured, representing a singular behavior trajectory executed by the robot, encapsu-

lating a specific behavior-sensory modality pair. This singular trajectory, whether it

involves shaking, pushing, or another isolated behavior, ensures that the frameworks

are adept at handling distinct behaviors, enhancing their practicality in real-world

robotic scenarios.

Common Object Interaction: Effective application is observed when both the

source and target robots have interacted with a common set of objects or objects

with common object properties. These object properties serve as invariant descrip-

tors provided by humans in the form of labeled data, and these labels are crucial

for building correspondences used to learn the projection functions proposed in this

dissertation. Additionally, these labeled data serve as an additional set of sensors,

leveraging the rich senses of the human body, and benefit from thousands of years

of language development, optimizing labels for usefulness in various contexts.

Enhanced Data Alignment for Similar Object Properties: Optimal perfor-

mance is achieved when the sensorimotor contexts of both source and target robots

capture similar object properties. In other words, data alignment is better when the

robots perform similar behaviors (e.g., lifting, holding) or share the same sensory

modality that captures similar object properties.

Source-Target Experience Discrepancy: The frameworks are particularly ben-
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eficial when the target robot has limited experience in object exploration compared

to the source robot. The primary objective is to enhance the performance of the

less experienced target robot by transferring implicit knowledge gained through

more experienced source robots via object exploration.

11.3.2 Boundaries

Non-Interactive or Disembodied Observation: Limitations emerge when robotic

observation is non-interactive or disembodied, deviating from the foundational premise

of the frameworks centered around interactive object exploration. It is worth noting

that adapting to non-interactive observations, such as images from different cameras,

has been addressed in previous research. However, this dissertation specifically fo-

cuses on adapting interactive observations from robots with different embodiments.

Inconsistent Sensorimotor Context: Challenges arise when input data lacks

consistent segmentation as a sensorimotor context, especially when the data used as

input is not appropriately segmented based on sensorimotor context. Simply put,

the proposed frameworks may not perform well if trials for a sensorimotor context

vary significantly.

Lack of Common Object Interaction: The absence of a shared set of objects

or the unavailability of labeled data from humans hinders the effective functioning

of the frameworks. Our frameworks are built upon the assumption that if robots

interact with a shared set of objects or objects with similar properties, the produced

sensory data can be used to learn a mapping between the robots’ feature spaces.

Divergent Object Properties: Performance may be compromised when source

and target sensorimotor contexts capture disparate object properties, disrupting

the alignment necessary for successful knowledge transfer. For instance, aligning a

hold-haptic context, which excels at capturing weight properties, with a drop-audio

context, which excels at capturing sound properties, can be challenging due to the

dissimilarity in the object properties they emphasize. This highlights the importance

of considering the nature of object properties captured by different sensorimotor

contexts when aiming for effective knowledge transfer between robots.
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Equal or Greater Target Robot Experience: Significantly less improvement

is anticipated if the target robot already possesses equivalent or more experience

in object exploration than the source robot, diminishing the impact of knowledge

transfer on performance enhancement. The frameworks assume that the target robot

has explored fewer objects or conducted fewer trials exploring objects compared to

the source robot. Therefore, the goal is to transfer additional experience from the

more experienced source robot to enhance the target robot’s performance effectively.

By explicitly delineating these conditions, this dissertation provides a com-

prehensive understanding of the nuanced scenarios where the proposed frameworks

excel and where their effectiveness may be tempered. These insights contribute to

a more nuanced perspective on the deployment and implications of the developed

transfer learning methodologies in real-world robotic applications.

11.4 Generalization to Diverse Robotic Systems and

Object Categories

The transfer learning frameworks developed in this dissertation pave the way for

advancements in robotic knowledge transfer, particularly in the context of object

exploration. As we conclude this work, it is essential to consider the possibilities of

extending these frameworks to diverse robotic systems and a broader spectrum of

object categories. The following points elucidate the potential avenues for general-

ization:

11.4.1 Generalizing to Diverse Robots

The developed transfer learning frameworks are not constrained by assumptions

about specific robot embodiments. They can be adapted to various robotic platforms

with distinct morphologies, interaction capabilities, and feature representations for

a given modality. The key to this adaptability lies in identifying commonalities

in sensorimotor contexts and object properties across different robot types. The

modular nature of the proposed methodologies allows for flexibility in integrating
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them into diverse robotic architectures.

11.4.2 Adapting to Diverse Object Categories

Our transfer learning frameworks do not impose any restrictions on specific sets of

objects. Instead, we assume that humans provide labels about object properties.

Through our experiments, we observed that incorporating a larger and more di-

verse set of objects for learning the projection function enhances the frameworks’

performance in knowledge transfer. Expanding the applicability to a broader range

of object categories involves considering the inherent diversity in object properties

and interaction modalities. By augmenting the labeled dataset with additional ob-

ject categories and properties, the frameworks can be fine-tuned to accommodate

variations in object characteristics, fostering a more comprehensive understanding

of different object types.

11.5 Future Work

In the realm of perceptual knowledge transfer in robotics, this dissertation has laid

the foundation for several promising future research avenues, highlighting pertinent

questions that remain open within the field. Below, we discuss these areas and

propose directions for future investigations.

11.5.1 Efficient Object Exploration for Knowledge Transfer

While this dissertation employed random object selection for training the projec-

tion functions essential to perceptual knowledge transfer, Chapter 7 revealed that

heuristic-based object selection algorithms, particularly those focused on captur-

ing similar object properties, can significantly enhance knowledge transfer models.

Future work could center on the development of algorithms capable of automating

the object selection process, leading to more efficient knowledge transfer models.

This involves not only selecting objects based on their properties but also explor-

ing the possibility of identifying specific segments within a behavior that better
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capture object properties for knowledge transfer. For instance, in the case of the

drop behavior, automatically identifying the segment when the object is dropped

and makes distinct sounds could be more informative for capturing object proper-

ties. Additionally, our experiments exhaustively transferred knowledge across all

feasible sensorimotor contexts within our robotic platform. A promising direction

for further research involves enabling robots to intelligently select behaviors, tools,

or modalities within source and target sensorimotor contexts, thereby optimizing

object exploration and knowledge transfer efficiency. Developing methods to au-

tomatically identify behavior segments that are most informative for perceptual

knowledge transfer can be a significant step towards achieving this goal. This would

not only enhance the efficiency of the knowledge transfer process but also contribute

to the broader understanding of which aspects of behaviors are crucial for capturing

object properties.

11.5.2 Enhancing Adaptability Through Learning-Based Policies

In this dissertation, once the knowledge transfer model is trained, we utilized the

transferred features to address various downstream recognition tasks, such as object

category recognition, object identity recognition, and object property recognition.

While these tasks served as valuable benchmarks for evaluating the performance of

the proposed knowledge transfer models, the field of robotics offers numerous chal-

lenges that demand more complex solutions. As demonstrated in Chapter 10, we

considered a more intricate task: the fetch object task. However, our approach for

this task primarily relied on heuristic-based algorithms under the zero-shot transfer

condition, eliminating the need for an extensive learning stage. For future research,

exploring learning-based policies is crucial to address more complex tasks that re-

quire advanced adaptability and intelligence. This involves developing policies be-

yond simple recognition tasks, enabling robots to adapt to diverse and intricate

scenarios autonomously. Some potential avenues for research include:

Adaptive Behaviors Based on Object Properties: Investigate learning-based

policies for adapting robot behaviors based on specific object properties. For in-
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stance, handling fragile plastic differently from metal or adjusting the handover

strategy based on the person’s grasp, considering potential occlusions.

Non-Visual Signal Integration: Explore policies that incorporate non-visual

signals into robotic decision-making. Examples include learning to push a charger

into a socket until a distinct click sound is heard or interpreting other non-visual

cues to enhance task performance.

Complex Packing Strategies: Develop policies for complex grocery packing sce-

narios where the robot must consider the properties of different items. For instance,

they ensure that cold frozen items are separated from hot food items or avoid placing

heavy items on top of delicate ones.

This expanded scope aims to pave the way for a comprehensive exploration

of learning-based policies, pushing the boundaries of adaptability in robotic systems.

Integrating such policies into our existing framework can significantly enhance the

practicality and versatility of perceptual knowledge transfer models, contributing to

the broader landscape of robotic intelligence.

11.5.3 Autonomous Learning of Exploratory Behaviors for Enhanced

Knowledge Transfer

In the datasets utilized throughout this dissertation, robots are programmed to exe-

cute predefined joint space trajectories, known as behaviors, to interact with objects.

These behaviors are manually encoded across multiple robots, a time-consuming

process prone to variations in encoding for similar behaviors across different robots.

For instance, the “shake” behavior on a UR5 robot may be encoded differently than

on a Baxter robot. A more robust and efficient approach involves enabling robots

to learn these behaviors autonomously. An exciting avenue for future research is

the development of methods that enable robots to independently learn behaviors

optimized for enhancing the performance of knowledge transfer models. Several

promising methodologies within the scope of a PhD dissertation include:

Human-Imitation Learning: Conduct human studies to create datasets of hu-

mans exploring objects to learn their properties. Implement imitation learning set-
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tings, allowing robots to learn behaviors from expert demonstrations, thus capturing

nuanced and effective exploratory actions.

Policy Refinement for Predefined Trajectories: Investigate methods where

robots begin with predefined joint space trajectories for different behaviors and au-

tonomously learn policies that refine and adapt these behaviors to efficiently capture

object properties in reduced durations.

End-to-End Reinforcement Learning Policies: Explore the training of end-

to-end policies within a reinforcement learning framework for autonomous object

exploration. These policies can dynamically adapt and optimize behaviors based on

real-time feedback, enhancing the adaptability of robots during interactive explo-

ration.

Utilizing Internet Videos for Behavior Learning: Leverage videos from the

internet showcasing humans performing daily-life activities with objects to extract

valuable insights into exploratory behaviors. Develop methodologies to transfer this

knowledge to robots, enabling them to autonomously learn behaviors for efficient

object exploration.

The proposed research not only addresses the limitations of manual behavior

encoding but also opens the door to collaborative learning, where multiple robots

collectively contribute to the refinement of exploratory behaviors. This ambitious

exploration into autonomous learning of behaviors aims to significantly improve

knowledge transfer efficiency.
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[ERCM18] A Gómez Egúıluz, Ignacio Rano, Sonya A Coleman, and T Martin

McGinnity. Multimodal material identification through recursive tac-

tile sensing. Robotics and Autonomous Systems, 106:130–139, 2018.

[EXS+20] Zackory Erickson, Eliot Xing, Bharat Srirangam, Sonia Chernova,

and Charles C Kemp. Multimodal material classification for robots

187



using spectroscopy and high resolution texture imaging. In 2020

IEEE/RSJ International Conference on Intelligent Robots and Sys-

tems (IROS), pages 10452–10459. IEEE, 2020.

[FKL+22] Jonathan Francis, Nariaki Kitamura, Felix Labelle, Xiaopeng Lu,

Ingrid Navarro, and Jean Oh. Core challenges in embodied vision-

language planning. Journal of Artificial Intelligence Research,

74:459–515, 2022.

[FL12] Jeremy A Fishel and Gerald E Loeb. Bayesian exploration for in-

telligent identification of textures. Frontiers in neurorobotics, 6:4,

2012.

[FLN+19] Pietro Falco, Shuang Lu, Ciro Natale, Salvatore Pirozzi, and

Dongheui Lee. A transfer learning approach to cross-modal object

recognition: from visual observation to robotic haptic exploration.

IEEE Transactions on Robotics, 35(4):987–998, 2019.

[Fra22] Jonathan Francis. Knowledge-enhanced Representation Learning for

Multiview Context Understanding. PhD thesis, Carnegie Mellon Uni-

versity, 2022.

[GB10] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of

training deep feedforward neural networks. In Proceedings of the thir-

teenth international conference on artificial intelligence and statis-

tics, pages 249–256, 2010.

[GBB11] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Domain adap-

tation for large-scale sentiment classification: A deep learning ap-

proach. In Proceedings of the 28th international conference on ma-

chine learning (ICML-11), pages 513–520, 2011.

[GBKS19] Daniel Gallenberger, Tapomayukh Bhattacharjee, Youngsun Kim,

and Siddhartha S Srinivasa. Transfer depends on acquisition: An-

188



alyzing manipulation strategies for robotic feeding. In 2019 14th

ACM/IEEE International Conference on Human-Robot Interaction

(HRI), pages 267–276. IEEE, 2019.

[GDL+17] Abhishek Gupta, Coline Devin, YuXuan Liu, Pieter Abbeel, and

Sergey Levine. Learning invariant feature spaces to transfer skills

with reinforcement learning. In International Conference on Learn-

ing Representations, 2017.

[GFL19] Shuhao Gu, Yang Feng, and Qun Liu. Improving domain adaptation

translation with domain invariant and specific information. arXiv

preprint arXiv:1904.03879, 2019.

[GGP20] Dhiraj Gandhi, Abhinav Gupta, and Lerrel Pinto. Swoosh! Rattle!

Thump! - Actions that Sound. In Proceedings of Robotics: Science

and Systems, 2020.

[GHKD16] Yang Gao, Lisa Anne Hendricks, Katherine J Kuchenbecker, and

Trevor Darrell. Deep learning for tactile understanding from visual

and haptic data. In Robotics and Automation (ICRA), 2016 IEEE

International Conference on, pages 536–543. IEEE, 2016.

[Gib88] Eleanor J Gibson. Exploratory behavior in the development of per-

ceiving, acting, and the acquiring of knowledge. Annual review of

psychology, 39(1):1–42, 1988.

[GJM13] Alex Graves, Navdeep Jaitly, and Abdel-rahman Mohamed. Hybrid

speech recognition with deep bidirectional lstm. In Automatic Speech

Recognition and Understanding (ASRU), 2013 IEEE Workshop on,

pages 273–278. IEEE, 2013.

[GPM+22] Rinon Gal, Or Patashnik, Haggai Maron, Amit H Bermano, Gal

Chechik, and Daniel Cohen-Or. Stylegan-nada: Clip-guided domain

189



adaptation of image generators. ACM Transactions on Graphics

(TOG), 41(4):1–13, 2022.

[GS14] Mevlana C. Gemici and Ashutosh Saxena. Learning haptic repre-

sentation for manipulating deformable food objects. In Intelligent

Robots and Systems (IROS), pages 638–645, Chicago, IL, USA, Sep

2014. IEEE.

[GSC+22] Ruohan Gao, Zilin Si, Yen-Yu Chang, Samuel Clarke, Jeannette

Bohg, Li Fei-Fei, Wenzhen Yuan, and Jiajun Wu. Objectfolder 2.0:

A multisensory object dataset for sim2real transfer. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recog-

nition (CVPR), pages 10598–10608, June 2022.

[GZ16] Haojun Guan and Jianwei Zhang. Multi-sensory based novel house-

hold object categorization system by using interactive behaviours.

In Robotics and Biomimetics (ROBIO), 2016 IEEE International

Conference on, pages 1685–1690. IEEE, 2016.
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and Eckehard Steinbach. Deep learning for surface material classi-

fication using haptic and visual information. IEEE Transactions on

Multimedia, 18(12):2407–2416, 2016.

208



[ZFT+21] Andy Zeng, Pete Florence, Jonathan Tompson, Stefan Welker,

Jonathan Chien, Maria Attarian, Travis Armstrong, Ivan Krasin,

Dan Duong, Vikas Sindhwani, et al. Transporter networks: Rear-

ranging the visual world for robotic manipulation. In Conference on

Robot Learning, pages 726–747. PMLR, 2021.

[ZG22] Lei Zhang and Xinbo Gao. Transfer adaptation learning: A decade

survey. IEEE Transactions on Neural Networks and Learning Sys-

tems, 2022.

[Zha16] Hao Zhang. Building and Leveraging Category Hierarchies for Large-

scale Image Classification. PhD thesis, Carnegie Mellon University

Pittsburgh, PA, 2016.

[ZJM+22] Yuhao Zhang, Hang Jiang, Yasuhide Miura, Christopher D Man-

ning, and Curtis P Langlotz. Contrastive learning of medical visual

representations from paired images and text. In Machine Learning

for Healthcare Conference, pages 2–25. PMLR, 2022.

[ZLQ+22] Kaiyang Zhou, Ziwei Liu, Yu Qiao, Tao Xiang, and Chen Change

Loy. Domain generalization: A survey. IEEE Transactions on Pat-

tern Analysis and Machine Intelligence, 2022.

[ZYW+15] Kun Zeng, Jun Yu, Ruxin Wang, Cuihua Li, and Dacheng Tao. Cou-

pled deep autoencoder for single image super-resolution. IEEE trans-

actions on cybernetics, 47(1):27–37, 2015.

[ZYZ+20] Sicheng Zhao, Xiangyu Yue, Shanghang Zhang, Bo Li, Han

Zhao, Bichen Wu, Ravi Krishna, Joseph E Gonzalez, Alberto L

Sangiovanni-Vincentelli, Sanjit A Seshia, et al. A review of single-

source deep unsupervised visual domain adaptation. IEEE Trans-

actions on Neural Networks and Learning Systems, 33(2):473–493,

2020.

209



[ZZC+12] Jianhua Zhang, Jianwei Zhang, Shengyong Chen, Ying Hu, and Hao-

jun Guan. Constructing dynamic category hierarchies for novel visual

category discovery. In Intelligent Robots and Systems (IROS), 2012

IEEE/RSJ International Conference on, pages 2122–2127. IEEE,

2012.

[ZZW+20] Yongchun Zhu, Fuzhen Zhuang, Jindong Wang, Guolin Ke, Jingwu

Chen, Jiang Bian, Hui Xiong, and Qing He. Deep subdomain adap-

tation network for image classification. IEEE transactions on neural

networks and learning systems, 32(4):1713–1722, 2020.

210


	Abstract
	Acknowledgments
	List of Tables
	List of Figures
	Chapter Introduction
	Motivation
	Dissertation Overview and Research Questions
	How can we use multimodal deep neural networks for object categorization by leveraging interactive behavior?
	How can robots transfer perceptual knowledge about objects, acquired through interactive behaviors and multimodal perception, from a source robot to a target robot?
	How can robots transfer implicit perceptual knowledge, particularly non-visual object properties, among each other using a shared latent feature space?
	How can a robot acquire a task-independent, unified multi-sensory object property representation, transferrable across various tasks, via distillation from large pre-trained models, such as foundation models?
	Outline and Contributions


	Chapter Related Work
	Object Exploration in Psychology and Cognitive Science
	Multi-sensory Object Perception in Robotics
	Enhancing Robotic Perception: A Transfer Learning Approach
	Transfer using Projection to Target Feature Space
	Transfer using Projection to Shared Latent Feature Space
	Transferable Unified Multi-sensory Object Property Representations

	Summary

	Chapter Robotic Platform and Datasets
	Robots and Sensors
	Simulated Robots
	Real-world Robots

	Datasets for Multisensory Knowledge Transfer
	Existing Public Datasets
	Newly Collected Datasets

	Summary

	Chapter Deep Multi-Sensory Object Category Recognition Using Interactive Behavioral Exploration
	Introduction
	Related Work
	Learning Methodology
	Notation and Problem Formulation
	Visual Network Architecture
	Auditory Network Architecture
	Haptic Network Architecture
	Multimodal Network Architecture

	Evaluation and Results
	Dataset Description
	Evaluation
	Results

	Summary

	Chapter Sensorimotor Cross-Behavior Knowledge Transfer for Grounded Category Recognition
	Introduction
	Related Work
	Object Exploration in Cognitive Science
	Multisensory Object Perception in Robotics
	Encoder-Decoder Networks

	Learning Methodology
	Notation and Problem Formulation
	Knowledge Transfer Model
	Category Recognition Model using Transferred Features

	Experiments and Results
	Dataset Description
	Knowledge Transfer Model Implementation
	Category Recognition Model Implementation
	Evaluation
	Results

	Summary

	Chapter Haptic Knowledge Transfer Between Heterogeneous Robots using Kernel Manifold Alignment
	Introduction
	Related Work
	Learning Methodology
	Notation and Problem Formulation
	Kernel Manifold Alignment (KEMA)
	Object Recognition Model using Latent Features

	Evaluation
	Data Collection and Feature Extraction
	Evaluation

	Results
	Illustrative Example
	Speeding up object recognition results
	Novel object recognition results
	Heterogeneous Feature Representation

	Summary

	Chapter A Framework for Sensorimotor Cross-Perception and Cross-Behavior Knowledge Transfer for Object Categorization
	Introduction
	Related Work
	Object Exploration in Cognitive Science
	Multisensory Object Perception in Robotics
	Domain Adaptation

	Learning Methodology
	Notation and Problem Formulation
	Knowledge Transfer Model
	Using Transferred Features for Category Recognition

	Experiments and Results
	Dataset Description
	Knowledge Transfer Model Implementation
	Category Recognition Model Implementation
	Evaluation
	Results
	Validation on a Second Dataset

	Summary

	Chapter Transferring Implicit Knowledge of Non-Visual Object Properties Across Heterogeneous Robot Morphologies
	Introduction
	Related Work
	Interactive object perception
	Transferring knowledge of object properties
	Interactive object perception datasets

	Learning Methodology
	Notation and Problem Formulation
	Projection to Target Feature Space
	Projection to Shared Latent Feature Space
	Model Implementation and Training

	Evaluation
	Experimental Platform and Feature Extraction
	Evaluation

	Results
	Illustrative Example.
	Object Property Recognition Results.
	Object Identity Recognition Results.

	Summary

	Chapter Cross-Tool and Cross-Behavior Perceptual Knowledge Transfer for Grounded Object Recognition
	Introduction
	Related Work
	Learning Methodology
	Notation and Problem Formulation
	Knowledge Transfer Model
	Model Implementation

	Evaluation Design
	Experimental Platform and Feature Extraction
	Evaluation

	Results
	Illustrative Example
	Accuracy Results of Object Recognition
	Accuracy Delta Results of Object Recognition
	Tools and Behaviors Transfer Relationships

	Summary

	Chapter MOSAIC: Learning Unified Multi-Sensory Object Property Representations for Robot Perception
	Introduction
	Related Work
	Multi-sensory Learning in Cognitive Science
	Robot Perception
	Unified Multi-Sensory Representations with Foundation Models

	Learning Methodology
	Experimental Design
	Sensory Dataset
	Text Dataset
	Data Pre-processing
	Model Implementation
	Validation Procedure
	Evaluation Tasks
	Baseline, Ablation, and Comparison Conditions

	Results
	An Illustrative Example
	Object Category Recognition Results
	Fetch Object Results

	Summary

	Chapter Conclusion and Future Work
	Summary of Contributions
	Interconnections among Proposed Frameworks
	Applicability and Boundaries
	Applicability
	Boundaries

	Generalization to Diverse Robotic Systems and Object Categories
	Generalizing to Diverse Robots
	Adapting to Diverse Object Categories

	Future Work
	Efficient Object Exploration for Knowledge Transfer
	Enhancing Adaptability Through Learning-Based Policies
	Autonomous Learning of Exploratory Behaviors for Enhanced Knowledge Transfer


	Bibliography

