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ABSTRACTWe address the question of how one evaluates the usefulness of a heuristic program on aparticular input. If theoretical tools do not allow us to decide for every instance whether aparticular heuristic is fast enough, might we at least write a simple, fast companion programthat makes this decision on some inputs of interest? We call such a companion programa timer for the heuristic. Timers are related to program checkers, as de�ned by Blum [3],in the following sense: Checkers are companion programs that check the correctness of theoutput produced by (unproven but bounded-time) programs on particular instances; timers,on the other hand, are companion programs that attempt to bound the running time onparticular instances of correct programs whose running times have not been fully analyzed.This paper provides a family of de�nitions that formalize the notion of a timer and somepreliminary results that demonstrate the utility of these de�nitions.



1 IntroductionWe address the question of how one evaluates the usefulness of a heuristic program on aparticular input of interest. Our intuitive notion of a \heuristic program" is one that isknown to produce correct answers but whose running time is not analyzable or has notbeen analyzed. For example, a heuristic that computes an NP-hard function might, forthe problem size at hand, �nish in under an hour on some instances, take several hours onsome other instances, and run for an entire week on the rest. If our theoretical tools donot allow us to characterize the three classes of instances precisely, might we at least writea companion program that, on some relevant instance, takes �ve or ten minutes to tell usthat we should give up on using this heuristic on this instance, unless we are willing to waitall week? In a related example, we may have code for two di�erent heuristics for the sameNP-hard function; can we write a fast program that, on some inputs of interest, tells usthat one heuristic will �nish signi�cantly sooner than the other? We call such a companionprogram a timer.This paper proposes a formal framework for the evaluation of heuristic programs andprovides initial evidence of the e�ectiveness of the framework. Let f be a function de�nedon a domain D = [n�0Dn and H be a heuristic program that computes f . The timer E isalso de�ned on domain D. Let d be a \deadline function" de�ned on the natural numbers.TH(x) is the running time of H on input x. For a particular x 2 Dn, we are interested inwhether or not TH(x) � d(n). If the timer decides that TH(x) > d(n), it outputs STOP; ifit decides that TH(x) � d(n) or if it cannot decide one way or the other, it outputs GO.Ideally, a timer would output STOP if and only if TH(x) > d(n). However, this ideal isnot attainable in many realistic situations, and we want the scope of our study to includetimers that are useful even though they do not achieve the ideal. We take as our point ofdeparture the following basic principle: A timer E should not render the heuristic programH less useful than H is on its own; therefore, E should not tell us to STOP on instances onwhich H meets our deadline. On the other hand, E should add some value to H; therefore,on at least some of the instances on which H does not meet the deadline, E should tell us toSTOP. Thus there might be \bad" instances for this heuristic that the timer \misses," butit cannot miss them all. At the same time, it never calls a \good" instance bad. A family ofde�nitions that capture this notion formally is presented in Section 2.The concept of timers is related to the concept of program checking introduced byBlum [3]. A checker is a companion program that checks the correctness of the outputproduced by an (unproven but bounded-time) program on a particular instance. Timers,on the other hand, are companion programs that attempt to bound the running time on aparticular instance of a correct program whose running time has not been fully analyzed.Our work on timers is in part a continuation of the research program on checking: Recallthat Blum says of his de�nition of a program checker thatin the above [de�nition], it is assumed that any program : : : for a problem �halts on all instances of �. This is done in order to help focus on the problemat hand. In general, however, programs do not always halt, and the de�nition of



{ 2 {`bug' must be extended to cover programming errors that slow a program downor cause it to diverge altogether [3, pp. 2{3].It is exactly when a timer says STOP that it has detected a \bug" of this form.Program checking was introduced with a practical motivation, but it has had a profoundimpact on complexity theory [14, 19, 2]. We hope that the study of timers, also motivatedby practical concerns, will lead to interesting theoretical results.The next section contains our family of de�nitions. Section 3 gives examples of timersdrawn from diverse problem areas in computer science. Finally, in Section 4, we proposedirections for future work, including some alternative ways to formalize the intuitive notionof timer.2 De�nitionsLet f , H, E, d, D = [nDn, and TH(x) be as in Section 1. The heuristic program H isassumed to be correct, but nothing is assumed about its time complexity.De�nition 2.1 Let E and H be deterministic programs. E is a timer for (H;d) if1. For all n and all x 2 Dn, if E(x) = STOP, then TH(x) > d(n).2. For all n, if there is at least one x 2 Dn for which TH(x) > d(n), then there is at leastone x 2 Dn for which E(x) = STOP.We note that there are several situations in which timer design is trivial, including thefollowing three.1. For a deadline function d(n), there is a trivial timer that runs in time d(n): It simplysimulates H for d(n) steps. To disallow this, we will insist that the timer run in timeo(d(n)). If the running time of H is superpolynomial, we may insist on satisfying thestricter requirement that the timer be polynomial-time.2. If H works by partitioning the input space into \easy cases" and \hard cases," testingin time o(d(n)) whether an input is an easy case, and �nishing in time less than orequal to d(n) exactly on these cases, then a trivial timer E would simply perform thesame test as H and output GO exactly when the input falls into the easy case.3. If H always (resp. never) �nishes in time d(n), then a timer E that always outputs GO(resp. STOP) is a third type of trivial timer.As discussed in Section 1, timers are in some way analogous to program checkers asde�ned in [3]. With De�nition 2.1 in hand, we can point out two respects in which timersand checkers are fundamentally di�erent. A checker is an oracle machine that calls theprogram H whose output is being checked, whereas a nontrivial timer cannot call H as a



{ 3 {subroutine. Secondly, a checker, by de�nition, must work for any program H that purportsto compute the function f , whereas a timer is, by de�nition, a companion of a speci�cheuristic program H.We regard De�nition 2.1 as a version of the weakest possible requirements that a timermust satisfy to be worthy of the name. Such a de�nition could be useful in proving interestingnegative results. In dealing with real heuristic programs, however, we would like to havetimers that recognize a substantial fraction of the bad instances in each subdomain, ratherthan just a single bad instance. This more pragmatic requirement is formalized in De�nition2.2.De�nition 2.2 As in De�nition 2.1, E and H are deterministic. Let g(n) be a polynomial.E is a g-strong timer for (H;d) if1. (Same as item 1 of De�nition 2.1.)2. There is a constant c > 0 such that, for all n, E has the following property: If the setX of all x 2 Dn such that TH(x) > g(n)d(n) is nonempty, then E says STOP on atleast max(1; cjXj) of the instances in X.We may interpret De�nition 2.2 to mean that there are two thresholds, separated by a(usually small) polynomial multiplicative factor. If TH(x) is under the �rst threshold, thetimer never says STOP; if it is between the thresholds, the timer can say STOP or GO;�nally, among the instances on which it is over the second threshold, the timer says STOPon at least a constant fraction.Our framework should clearly be able to handle both heuristics and timers that areprobabilistic, and the next two de�nitions formalize the requirements for this case.De�nition 2.3 Suppose that at least one of E and H is probabilistic. The probabilities initems 1 and 2 below are computed over the coin-toss sequences of the relevant programs. Eis a probabilistic timer for (H; d) if there are polynomials p(n) and q(n) such that1. For all n and all x 2 Dn, if Prob(E(x) = STOP) � 1=p(n), then Prob(TH(x) > d(n)) �1� 1=q(n).2. For all n, if there is at least one x 2 Dn for which Prob(TH(x) > d(n)) � 1 � 1=q(n),then there is at least one x for which Prob(E(x) = STOP) � 1=p(n).We also de�ne timers that actually do satisfy the ideal discussed at the beginning of thissection.De�nition 2.4 Suppose that E and H are deterministic. E is a complete timer for(H;d) if, for all n and all x 2 Dn, E(x) = STOP if and only if TH(x) > d(n).



{ 4 {Similarly, we also de�ne g-complete, g-strong probabilistic, strong, and completeprobabilistic timers, and we give examples of some of these in Section 3. Other variationson the notion are possible. For example, each type of timer that we have de�ned has an\in�nitely often" form in which the second property is required to hold for in�nitely many n,instead of for all n. Which formal de�nition one should satisfy depends on the circumstances.Analogously there are di�erent de�nitions of \one-way function," some useful in complexitytheory [6, 13] and some in cryptography [8, 5, 7, 15, 18].Another useful analogy can be drawn with the study of \reactive systems," such asprocess controllers, communication protocols, and operating systems; formal treatments ofsuch systems always identify \safety" and \liveness" properties. In all of the de�nitions wehave presented for timers, item 1 corresponds to safety and item 2 to liveness. Just as in thestudy of reactive systems, the correct formulation of safety and liveness depends on context.One straightforward class of timers arises as follows. If there are easy-to-compute implicitparameters, such the number of edges of a graph, the diameter of a graph, etc., on which therunning time of a heuristic H depends, then a simple strategy for a timer is to evaluate theseimplicit parameters and decide whether to run H or not. In Sections 3.4 below, we exhibittimers that approximate implicit parameters that govern the running time of the heuristicbut may be hard to compute.We conclude this section with some basic negative results about timers. First we exhibita heuristic for which there is no nontrivial complete timer.Proposition 2.5 Let d be a fully time-constructible deadline function. Then there is aheuristic H such that any complete timer for (H; d) must be trivial.Proof: Consider the \universal heuristic" H that takes as input a (program, input) pair(P; x) and simulates P on x. Simple diagonalization shows that there cannot be a nontrivialcomplete timer E for (H; d). Suppose there were such an E. Because it is nontrivial, itsrunning time is o(d(n)). Consider the program PE that behaves as follows on input x. PE �rstcomputes E((PE; x)). If E outputs GO (i.e., indicates that TH((PE; x)) � d(n)), then PEruns for an additional d(n) steps; if E outputs STOP (i.e., indicates that TH((PE; x)) > d(n)),then PE halts. E cannot be a complete timer, because it is incorrect on (PE; x): It outputsSTOP exactly when TH((PE; x)) � d(n).The reason that the construction in Proposition 2.5 does not provide a counterexampleto the weaker De�nition 2.1 is that there is no particular input length on which the timer isalways wrong. An encoding trick is used in Proposition 2.6 to overcome this.Proposition 2.6 Let d be a fully time-constructible deadline function. Then there is aheuristic H such that any timer for (H; d) must be trivial.Proof: Let fPigi�1 be an enumeration of all programs and f : Z+ � Z+ ! Z+ be a one-to-one function. Let H, E, and PE be as in Proposition 2.5, except that an input (Pi; x),where x is of length n, must be encoded as a string of length f(i; n) before it is presented toH. If j is the index of the diagonalizing program PE, then E will be wrong on all inputs oflength f(j; �) and hence will not satisfy De�nition 2.1.



{ 5 {3 Examples of TimersIn this section, we describe several examples of timers. Our examples are chosen to satisfya variety of the de�nitions given in the previous section.3.1 Bubble SortLet H be a standard implementation of Bubble Sort, such as the one given in Knuth [12].Let d(n) = 
(n2). (This is only interesting, of course, if d(n) is less than the worst-caserunning time of bubble sort; if it's not, then there's a trivial timer for H that just says GOon all inputs.) For input sequence (x1; x2; : : : ; xn), we denote by b(i) the inversion numberof xi, i.e., the number of indices j such that j < i and xj > xi. Let M(i) � Pb(i)�1k=0 i � kand M � max1�i�nM(i): Then it is clear from the description of H given in [12] that M isa lower bound on the running time of H on input (x1; x2; : : : ; xn). We use this fact to de�nea linear-time, deterministic, O(1)-complete timer E for (H; d).Let c � 2 be a constant. E considers c segments of input elements, namely (x1, : : :, xnc ),(xnc+1, : : : ; x 2nc ), : : :, (xn�nc+1; : : : ; xn). (If n is not a multiple of c, the last segment canbe shorter than the rest.) For 1 � l � c, E �rst �nds the minimum element xil in the lthsegment; it then computes M(il). Let M 0 be the maximum, over l, of M(il). E says STOPif and only if M 0 � d(n).It is clear that E runs in linear time. To prove that E is an O(1)-complete timer for (H; d),note �rst that, if E says STOP, then the real running time of H on input (x1; x2; : : : ; xn)is at least M � M 0 � d(n). Next, we must show that there is a constant c0 such that Esays STOP whenever the real running time is at least c0d(n). It su�ces to show that M 0is at least a constant multiple of M , provided that M and M 0 are both 
(n2) (as they willbe when M 0 � d(n)). Suppose that the i for which M = M(i) is in the lth segment. ThenM(il) � M 0. The input element xil is less than or equal to xi, and thus any element thatcomes earlier in the input than xil and contributes to b(i) also contributes to b(il). Moreprecisely, il � i�n=c and b(il) � b(i)�n=c. Thus M 0 �M(il) �M � (n=c)2, which is whatwe wanted to show.The constant implied in the statement that E is an O(1)-complete timer depends on theconstant c; similarly, the meaningful range of values for c depends on the implied constantin d(n) = 
(n2).3.2 Euclid's Algorithm for GCDSuppose x and y are n-bit numbers with x � y, and the heuristic H is Euclid's algorithmfor �nding the gcd. It is well-known that H terminates in O(n) iterations. Let D(n) be thetime required to divide two n-bit numbers and A(n) be the time required to add two suchnumbers. Each iteration of Euclid's algorithm takes �(D(n)) time.Suppose we are given a deadline kD(n). Are there inputs on which we can quicklydetermine that H takes at least k iterations? Let us focus on instances (x; y) such that



{ 6 {the quotient at every iteration is 1 and such that the gcd is 1. In the sequence of valuescomputed by Euclid's algorithm, the last two values computed are vm = 1 and vm�1 = a, forsome positive integers a and m, and vi = vi+1 + vi+2 for i < m� 1. Let x = v1 and y = v2.Then x = Fm�1a+ Fm�2 and y = Fm�2a+ Fm�3, where Fi is the ith Fibonacci number.Given a deadline of kD(n), we could �nd out whether a pair (x; y) will take exactly kiterations by solving x = Fk�1a + Fk�2 for a and seeing whether that value of a pluggedinto the equation for y checks out. Whenever (x; y) is a pair satisfying these simultaneousequations, the gcd computation will take exactly k iterations.Next, we can also handle certain kinds of pairs (x; y) such that the gcd computation takesat least k iterations. Note once again that, if the quotients in the iterations are all 1 andthe computation takes m > k iterations, then x = Fm�1a + Fm�2 and y = Fm�2a + Fm�3.This can be rewritten as x = Fk�1c+Fk�2d and y = Fk�2c+Fk�3d, where c and d are againpositive integers. If the solutions c and d of these simultaneous equations are both positive,then again we have shown that the computation requires at least k iterations, and we canstay STOP.Finally, we can remove the restriction that x and y be a pair with gcd 1. If they havegcd e, then the last two numbers (last one �rst) will be e and ke, for some positive integerk, and the Fibonacci argument works again.Thus, the timer will output STOP on any pair (x; y) that takes too many iterationsand has a computation where every quotient is 1. It clearly will not output STOP on anycomputation that �nishes within the deadline. Also the timer runs in time kA(n), which iso(kD(n)). Currently we do not know how to construct a strong timer for Euclid's algorithm.3.3 Proving primalityLet Dn be the set of n-bit integers and H be a probabilistic program that, when given aninteger x, searches for a proof that x is prime. Suppose that H proceeds by running thesophisticated algorithm of Adleman and Huang [1] for nc steps1 and then, if no proof ofprimality is found, switching to a simple-minded trial-division algorithm that takes expo-nential time but always decides correctly whether a number is prime or composite. Letd(n) = nc. A program E that runs the Miller-Rabin compositeness test on x (which takestime O(n4)) and outputs STOP if and only if the test �nds a proof of compositeness is acomplete probabilistic timer for (H; d).The crucial fact about this example is that the best-known algorithms for proving pri-mality are considerably slower than the best-known algorithms for proving compositeness.The idea can be generalized to any language L 2 RP\coRP with RP algorithm A and coRPalgorithm B such that one of A or B is signi�cantly faster than the other.1The expression nc is used here as a symbolic representation of the running time of the Adleman-Huangalgorithm. We tried to �nd out what the exponent c is and instead discovered, in correspondence with theauthors of [1], that it has never been calculated precisely. The reason it has not been calculated is that it is\huge" enough to ensure that the algorithm will not be used; the authors told us that c > 50; for purposesof this discussion, it su�ces that c > 4.



{ 7 {3.4 Timing Enumeration AlgorithmsIn this section, we present a general method of building timers for \enumeration" (or \list-ing") programs. A (deterministic) listing program for a parameterized family S of combina-torial structures is a program that takes as input a parameter value p and gives as output alist S(p). For example, the program could take as input a graph G and output the list S(G)of all perfect matchings in G; in this example, the family S is the set of all perfect matchings,and the parameter values are graphs G. Similarly, a listing program could take as input agraph G and output the list of all spanning trees of G. For an excellent introduction to thetheory of listing, see Goldberg [4].We restrict attention to listing programs that run in polynomial total time, i.e., in timepolynomial in n (the length of the input) and C (the length of the output). This restrictionis imposed in order to rule out certain simple-minded listing programs that have trivialcomplete timers. (For example, a listing program for perfect matchings could simply tryall partitions of the vertices into n pairs and output only those in which each pair is anedge; this program takes exponential time on all inputs and hence, for any polynomiallybounded deadline function d, has a trivial complete timer that always says STOP.) The twolisting problems that we examine in detail happen to have algorithms with the polynomialdelay property, a more stringent property �rst de�ned by Johnson, Papadimitriou, andYannakakis [10]. In a polynomial-delay algorithm, the time it takes to generate the �rstoutput con�guration and the time between any two consecutive output con�gurations areboth bounded by a polynomial in the size of the input. This stricter property is not neededfor our statements about timers to be meaningful. These and other measures of e�ciencyare discussed in [4].Listing programs conform to our intuitive notion of \heuristics," because the runningtime of such a program on input p is in general very hard to calculate; the length of the listS(p) is obviously a lower bound on this running time, but this length is often hard to com-pute. The number of spanning trees of a graph G can be computed exactly in deterministicpolynomial time [11], but the number of perfect matchings is a #P -complete function [20].A general method of building timers for listing programs is to compute (either exactly orapproximately) the length l of the list S(p) and then to output STOP if and only if theestimate is signi�cantly greater than d(jpj). Both the type of timer that the method yieldsand the meaning of \signi�cantly" depend on the particular listing problem.Let H be any polynomial total time listing program2 for spanning trees (e.g., the one ofRead and Tarjan [17]); this means that the running time of H is poly(n; l), where n is thesize of the input graph G, and l is the number of spanning trees. Let A be the algorithm of[11] that computes l in time M(n), where M(n) is the time to compute the determinant ofan n � n matrix. For any deadline function d(n) such that M(n) = o(d(n)), the algorithm2We require H to be polynomial total time in order to avoid listing programs that have trivial timers. Forexample, many combinatorial listing problems can be solved by simple-minded programs that always takeexponential time, even on instances in which the length of the list is subexponential; if H is such a program,the algorithm that always says STOP is a trivial timer for (H; d), where d is any subexponential deadlinefunction.



{ 8 {that runs A and outputs GO if and only if A(G) � d(n) is a nontrivial timer for (H; d).The timer E that we give for programs that list perfect matchings uses the same basicidea as the one for spanning trees, but it di�ers in some details. Jerrum and Sinclair [9] givea probabilistic method for approximating the number of perfect matchings in a 2n vertexgraph that runs in time O(q3n5 log2 n), where q is a known upper bound on Mn�1=Mn, theratio of near-perfect matchings to perfect matchings. Even if a good upper bound on q isnot known a priori, [9] shows how, given a candidate upper bound c1, the algorithm can bemodi�ed to halt within a small constant factor of the time bounds reported above, with qreplaced by c1; with high probability, the modi�ed algorithm either produces a good estimatefor the number of perfect matchings or reports that Mn�1=Mn is greater than c1 and halts.The graphs that pass the test for a bound on the ratio Mn�1=Mn (or contain 0 perfectmatchings) are called q-amenable.Procedure Ef if (G has no perfect matching) Output GOelseChoose a polynomial q(n) such that the running time of theJerrum-Sinclair algorithm is less than d(n).if (no such q exists) Output GOif (G is NOT q-amenable) Output GO.elseRun the Jerrum-Sinclair algorithm for O(q3n5 log2 n) stepsif (Estimated number of perfect matchings > 2d(n)) Output STOPelse Output GO.gTheorem 3.1 Let H be any listing program for perfect matchings that runs in total timeCg(n), where C is the number of matchings in the input graph, and let d(n) = 
(n35 log2 n).Then E is a g-strong probabilistic timer for (H; d).Proof: We �rst argue that E is a nontrivial probabilistic timer for (H; d). E says STOPonly if the estimate for the number of perfect matchings is greater than 2d(n). With highprobability this estimate is within a factor of 2. Since the number of matchings is a lowerbound on the time it takes to list them, H will run for more than d(n) steps with highprobability. On the other hand, for n large enough, we know that there exists a graph Gsuch that H will not �nish by deadline d(n) on input G, because there exist graphs withan exponential (in n) number of matchings. So it remains to show that there exists a G forwhich E answers STOP with high probability. In order to show this, we need that thereexist a family of graphs with more than a polynomial number of matchings, for which theratio Mn�1=Mn is not too large. This is satis�ed by the simple observation in [9] that allbipartite graphs on n vertices with minimal degree n=4 are q-amenable, for q(n) = n2. It is



{ 9 {easy to construct such graphs with a superpolynomial number of perfect matchings. Thuschoosing d(n) to be 
(n11 log2 n) makes E a nontrivial timer.To show that E is a strong timer, we recall the following result of Jerrum and Sinclairabout the fraction of graphs that have a bounded ratio Mn�1=Mn: If p � (1 + �)n�1 log n,then with probability 1�O(n�k) (where k is a constant depending on �) the random graphGn;p is q(n)-amenable, where q(n) = n10. Thus E with deadline 
(n35 log2 n) will outputSTOP on almost all graphs that have more than d(n) matchings. Because of the bound onthe total running time of H, any instance on which H takes time d(n)g(n) or greater musthave at least d(n) perfect matchings. Because E outputs STOP on almost all such graphs,E is a g-strong probabilistic timer.A listing program for perfect matchings that runs in time Cg(n), for some polynomialg, can be obtained using the \recursive listing" technique described in [4, x2.1.1]. Finally,we remark that the constants and the degrees of the polynomials in this example clearlyrender it impractical; it is of theoretical interest, however, because it provides a strongprobabilistic timer for a class of heuristics that do not seem to have timers that are completeor deterministic.3.5 Timing Iterative Numerical AlgorithmsWe now present an example of a timer from the realm of numerical analysis. Our exampleinvolves one of the simplest iterative methods; however, it is easy to see how to generalize toother iterative methods. The timer will come from a lower bound on the rate of convergence.Let F : R ! R be a continuously di�erentiable contraction function, with 1 > c0 �jF 0(x)j � c > 0, for all x 2 R. (See [16] for de�nitions.) Further assume that F (0) is not 0.De�ne H to be the following algorithm that takes F; �, and an initial point x(0) as inputand computes an �-approximation to the (unique) �xed point of F . De�ne the iterativesequence x(k+1) = F (x(k)) (k = 0; 1; : : :)H computes this sequence, beginning with x(0), until jx(k+1) � x(k)j < �.That this process will converge to the �xed point of F and that this point is unique, isa well-known �xed-point theorem [16].Now consider the following procedure E. We will show, for a certain class of functionsF , that E is in fact a timer. Let d be the given deadline.Procedure Ef lF = (known) lower bound on the amount of timeit takes to compute F (x), for any x in the domaink = d=lFFind c and c0, with 1 > c0 � jF 0(x)j � c > 0 for all x in R� = 11�c0 jF (0)j



{ 10 {if (x(0) > � and ck(jx(0)j � �) > �) Output STOPelse Output GOg Notice that we have set k to be an upper bound on the number of iterations of algorithmH that can be performed before the deadline d. We �rst show that, if E says STOP, thenH will need strictly greater than k iterations to get within � of the �xed point.Theorem 3.2 Let s be the unique �xed point of F , satisfying the above conditions. Ifx(0) > � and ck(jx(0)j � �) > �, then jx(k) � sj > �.Proof: By the triangle inequality, jsj � jF (0)j = jF (s)j � jF (0)j � jF (s) � F (0)j. Theassumption that c0 � jF 0j implies that jF (0) � F (s)j � c0jsj. Solving for jsj, we get jsj �11�c0 jF (0)j. By de�nition, the righthand side is just �; so jsj � �:Now let �0 = jx(0) � sj, and similarly, �i = jx(i) � sj. Take x(0) > �. Then j�i+1j =jF (x(i)) � sj = jF (x(i)) � F (s)j. By the fundamental theorem of calculus, this is equalto j R xis F 0(x)dxj � cjxi � sj = c�i by the assumption that jF 0j � c. Iterating, we havej�kj � ckj�0j = ckjx(0) � sj. Because we have shown that jsj � �, we getjx(k) � sj � ckjx(0) � sj � ck(jx(0)j � �) > �;by assumption.To complete the formal proof that E is a timer, we need to show that, if there are some badinstances, there are some that E �nds. However, E is not completely speci�ed at this point.We assumed in step (2) that E �nds some c and c0, with 1 > c0 � maxx2R jF 0(x)j � c > 0.However, we did not specify how E was to do this, nor did we give any restriction onthe quality of these bounds. How successful E can be in accomplishing step (2), and howsuccessful E will be as a timer, will vary enormously depending on the class of functions Fconsidered.As an example, we now look at the following class of functions. For x > 0, let f(x) =e�c1x+ c2x, for 1 > c2 > c1 > 0. The input to the �xed point algorithm we wish to time arethe values of c2; c1, an initial point x(0) and �. Since 0 < c2 � c1 � f 0(x) � c2 < 1, the timerwill run procedure E with c = c2 � c1, and c0 = c2.Now Theorem 3.2 implies the timer satis�es (1) in de�nition 2.1. It is also easy to see thatthere are instances on which E answers STOP and thus condition (2) is satis�ed. Finally,the timer E will be nontrivial for most reasonable values of the deadline d, since each stepinvolves just a few multiplications and divisions, whereas the �xed-point algorithm computesF once in each iteration, with high precision.4 Discussion and Future Directions



{ 11 {In Section 2, we presented a family of de�nitions that capture many of the propertiesthat one naturally wants in timers. However, one could present essentially the same familyof de�nitions but make slightly di�erent choices on certain details. For example, one couldchoose di�erent thresholds for parameters such as the fraction (currently required to bea constant) of bad instances on which a strong timer must say STOP or the probability(currently required to be inverse-polynomial) with which, if a probabilistic timer says STOP,it must really be timing a bad instance. The choices presented in Section 2 should bereevaluated as more timers are exhibited.More fundamentally, one could view timers from an overall perspective that is dual tothe one we've presented. The guiding principle for the family of de�nitions presented inSection 2 is that a timer may not err when it says STOP but may err when it says GO. Thisviewpoint makes sense in scenarios in which the heuristic is run \o�ine," and its being slowon a particular instance is undesirable but not fatal. If the heuristic were part of a real-timesystem, then the e�ect of its running too long on the instance at hand might indeed befatal, and one would only want to use it if one could guarantee that it would �nish beforeits deadline. In that case, timers should be de�ned so that they may not err when they sayGO but may err when they say STOP. It is clear how to alter the de�nitions presented inSection 2 so that they capture this dual notion.As the terms \timer" and \deadline" suggest, we have so far focussed on whether a heuris-tic program �nishes in an acceptable amount of time on the given input. It is straightforwardto extend our framework so that the focus is on whether the heuristic uses an acceptableamount of space, communication bandwidth, number of processors, or any other crucialresource.More concretely, we believe that numerical analysis is a natural application domain inwhich to use timers. For example, there are many iterative methods for the solution ofsystems of linear equations. Standard numerical analysis texts show how to upper boundthe number of iterations that various methods will require to solve Ax = b in terms of, e.g.,the spectral radius of A. For timer design, however, we need to compute lower bounds on thenumber of iterations, and these bounds may depend crucially on the initial iterate x(0). Theconstruction of such timers is an important goal, both practically (because the timers couldbe deployed in numerical linear algebra packages and help guide users' choices of iterativemethods for particular problem instances) and theoretically (because the lower bounds mayrequire new analytical results).5 AcknowledgementsWe thank Robert Cowen, Nick Reingold, and Bart Selman for fruitful discussions duringthe formative stages of this work. We thank Jong-Shi Pang for assistance with the proof ofTheorem 3.2 and Leslie Goldberg for references on listing algorithms.The work of the �rst author was supported in part by an NSF Mathematical SciencesPostdoctoral Fellowship and a consulting agreement with AT&T Bell Laboratories and was
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