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ABSTRACT

We address the question of how one evaluates the usefulness of a heuristic program on a
particular input. If theoretical tools do not allow us to decide for every instance whether a
particular heuristic is fast enough, might we at least write a simple, fast companion program
that makes this decision on some inputs of interest? We call such a companion program
a timer for the heuristic. Timers are related to program checkers, as defined by Blum [3],
in the following sense: Checkers are companion programs that check the correctness of the
output produced by (unproven but bounded-time) programs on particular instances; timers,
on the other hand, are companion programs that attempt to bound the running time on
particular instances of correct programs whose running times have not been fully analyzed.
This paper provides a family of definitions that formalize the notion of a timer and some
preliminary results that demonstrate the utility of these definitions.



1 Introduction

We address the question of how one evaluates the usefulness of a heuristic program on a
particular input of interest. Our intuitive notion of a “heuristic program” is one that is
known to produce correct answers but whose running time is not analyzable or has not
been analyzed. For example, a heuristic that computes an NP-hard function might, for
the problem size at hand, finish in under an hour on some instances, take several hours on
some other instances, and run for an entire week on the rest. If our theoretical tools do
not allow us to characterize the three classes of instances precisely, might we at least write
a companion program that, on some relevant instance, takes five or ten minutes to tell us
that we should give up on using this heuristic on this instance, unless we are willing to wait
all week? In a related example, we may have code for two different heuristics for the same
NP-hard function; can we write a fast program that, on some inputs of interest, tells us
that one heuristic will finish significantly sooner than the other? We call such a companion
program a timer.

This paper proposes a formal framework for the evaluation of heuristic programs and
provides initial evidence of the effectiveness of the framework. Let f be a function defined
on a domain D = U,>¢D, and H be a heuristic program that computes f. The timer FE is
also defined on domain D. Let d be a “deadline function” defined on the natural numbers.
Tu(z) is the running time of H on input @. For a particular @ € D,,, we are interested in
whether or not Ty(z) < d(n). If the timer decides that Ty(z) > d(n), it outputs STOP; if
it decides that Ty (z) < d(n) or if it cannot decide one way or the other, it outputs GO.

Ideally, a timer would output STOP if and only if Ty (z) > d(n). However, this ideal is
not attainable in many realistic situations, and we want the scope of our study to include
timers that are useful even though they do not achieve the ideal. We take as our point of
departure the following basic principle: A timer E should not render the heuristic program
H less useful than H is on its own; therefore, E should not tell us to STOP on instances on
which H meets our deadline. On the other hand, F should add some value to H; therefore,
on at least some of the instances on which H does not meet the deadline, E should tell us to
STOP. Thus there might be “bad” instances for this heuristic that the timer “misses,” but
1t cannot miss them all. At the same time, it never calls a “good” instance bad. A family of
definitions that capture this notion formally is presented in Section 2.

The concept of timers is related to the concept of program checking introduced by
Blum [3]. A checker is a companion program that checks the correctness of the output
produced by an (unproven but bounded-time) program on a particular instance. Timers,
on the other hand, are companion programs that attempt to bound the running time on a
particular instance of a correct program whose running time has not been fully analyzed.

Our work on timers is in part a continuation of the research program on checking: Recall
that Blum says of his definition of a program checker that

in the above [definition], it is assumed that any program ... for a problem =
halts on all instances of 7. This is done in order to help focus on the problem
at hand. In general, however, programs do not always halt, and the definition of
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‘bug’ must be extended to cover programming errors that slow a program down
or cause it to diverge altogether [3, pp. 2-3].

It 1s exactly when a timer says STOP that it has detected a “bug” of this form.

Program checking was introduced with a practical motivation, but it has had a profound
impact on complexity theory [14, 19, 2]. We hope that the study of timers, also motivated
by practical concerns, will lead to interesting theoretical results.

The next section contains our family of definitions. Section 3 gives examples of timers
drawn from diverse problem areas in computer science. Finally, in Section 4, we propose
directions for future work, including some alternative ways to formalize the intuitive notion
of timer.

2 Definitions

Let f, H, E, d, D = U,D,,, and Tg(z) be as in Section 1. The heuristic program H is

assumed to be correct, but nothing is assumed about its time complexity.

Definition 2.1 Let E and H be deterministic programs. F is a timer for (H,d) if
1. For all » and all € D,,, if E(x) = STOP, then Ty(z) > d(n).

2. For all n, if there is at least one « € D,, for which Ty(z) > d(n), then there is at least
one ¢ € D,, for which E(z) = STOP.

We note that there are several situations in which timer design is trivial, including the
following three.

1. For a deadline function d(n), there is a trivial timer that runs in time d(n): It simply
simulates H for d(n) steps. To disallow this, we will insist that the timer run in time
o(d(n)). If the running time of H is superpolynomial, we may insist on satisfying the
stricter requirement that the timer be polynomial-time.

2. It H works by partitioning the input space into “easy cases” and “hard cases,” testing
in time o(d(n)) whether an input is an easy case, and finishing in time less than or
equal to d(n) exactly on these cases, then a trivial timer E would simply perform the
same test as H and output GO exactly when the input falls into the easy case.

3. If H always (resp. never) finishes in time d(n), then a timer £ that always outputs GO
(resp. STOP) is a third type of trivial timer.

As discussed in Section 1, timers are in some way analogous to program checkers as
defined in [3]. With Definition 2.1 in hand, we can point out two respects in which timers
and checkers are fundamentally different. A checker is an oracle machine that calls the
program H whose output is being checked, whereas a nontrivial timer cannot call H as a
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subroutine. Secondly, a checker, by definition, must work for any program H that purports
to compute the function f, whereas a timer is, by definition, a companion of a specific
heuristic program H.

We regard Definition 2.1 as a version of the weakest possible requirements that a timer
must satisfy to be worthy of the name. Such a definition could be useful in proving interesting
negative results. In dealing with real heuristic programs, however, we would like to have
timers that recognize a substantial fraction of the bad instances in each subdomain, rather
than just a single bad instance. This more pragmatic requirement is formalized in Definition

2.2,

Definition 2.2 As in Definition 2.1, F and H are deterministic. Let g(n) be a polynomial.
E is a g-strong timer for (H,d) if

1. (Same as item 1 of Definition 2.1.)

2. There 1s a constant ¢ > 0 such that, for all n, F has the following property: If the set
X of all © € D,, such that Tg(z) > g(n)d(n) is nonempty, then E says STOP on at

least max(1,c|X]) of the instances in X.

We may interpret Definition 2.2 to mean that there are two thresholds, separated by a
(usually small) polynomial multiplicative factor. If Ty (x) is under the first threshold, the
timer never says STOP; if it is between the thresholds, the timer can say STOP or GO;
finally, among the instances on which it is over the second threshold, the timer says STOP
on at least a constant fraction.

Our framework should clearly be able to handle both heuristics and timers that are
probabilistic, and the next two definitions formalize the requirements for this case.

Definition 2.3 Suppose that at least one of £ and H is probabilistic. The probabilities in
items 1 and 2 below are computed over the coin-toss sequences of the relevant programs. E
is a probabilistic timer for (H,d) if there are polynomials p(n) and g(n) such that

1. Forall n and all z € D,,, if Prob(E(z) = STOP) > 1/p(n), then Prob(Tx(z) > d(n)) >
1—1/q(n).

2. For all n, if there is at least one # € D,, for which Prob(Tx(z) > d(n)) > 1 —1/q(n),
then there is at least one x for which Prob(E(z) = STOP) > 1/p(n).

We also define timers that actually do satisfy the ideal discussed at the beginning of this
section.

Definition 2.4 Suppose that F and H are deterministic. E is a complete timer for

(H,d) if, for all n and all z € D,,, E(z) = STOP if and only if Tx(z) > d(n).
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Similarly, we also define g-complete, g-strong probabilistic, strong, and complete
probabilistic timers, and we give examples of some of these in Section 3. Other variations
on the notion are possible. For example, each type of timer that we have defined has an
“infinitely often” form in which the second property is required to hold for infinitely many 7,
instead of for all n. Which formal definition one should satisfy depends on the circumstances.
Analogously there are different definitions of “one-way function,” some useful in complexity
theory [6, 13] and some in cryptography [8, 5, 7, 15, 18].

Another useful analogy can be drawn with the study of “reactive systems,” such as
process controllers, communication protocols, and operating systems; formal treatments of
such systems always identify “safety” and “liveness” properties. In all of the definitions we
have presented for timers, item 1 corresponds to safety and item 2 to liveness. Just as in the
study of reactive systems, the correct formulation of safety and liveness depends on context.

One straightforward class of timers arises as follows. If there are easy-to-compute implicit
parameters, such the number of edges of a graph, the diameter of a graph, etc., on which the
running time of a heuristic H depends, then a simple strategy for a timer is to evaluate these
implicit parameters and decide whether to run H or not. In Sections 3.4 below, we exhibit
timers that approzimate implicit parameters that govern the running time of the heuristic
but may be hard to compute.

We conclude this section with some basic negative results about timers. First we exhibit
a heuristic for which there is no nontrivial complete timer.

Proposition 2.5 Let d be a fully time-constructible deadline function. Then there is a
heuristic H such that any complete timer for (H,d) must be trivial.

Proof: Consider the “universal heuristic” H that takes as input a (program, input) pair
(P, z) and simulates P on x. Simple diagonalization shows that there cannot be a nontrivial
complete timer F for (H,d). Suppose there were such an E. Because it is nontrivial, its
running time is o(d(n)). Consider the program Pg that behaves as follows on input . Pg first
computes E((Pg,z)). If E outputs GO (i.e., indicates that Ty ((Pg,z)) < d(n)), then Pg
runs for an additional d(n) steps; if E outputs STOP (i.e., indicates that Ty((Pg, z)) > d(n)),
then Pg halts. E cannot be a complete timer, because it is incorrect on (Pg,z): It outputs

STOP exactly when Ty ((Pg,z)) < d(n). 1

The reason that the construction in Proposition 2.5 does not provide a counterexample
to the weaker Definition 2.1 is that there is no particular input length on which the timer is
always wrong. An encoding trick is used in Proposition 2.6 to overcome this.

Proposition 2.6 Let d be a fully time-constructible deadline function. Then there is a
heuristic H such that any timer for (H,d) must be trivial.

Proof: Let {P;};>1 be an enumeration of all programs and f : Zt* x ZT — ZT be a one-
to-one function. Let H, E, and Pg be as in Proposition 2.5, except that an input (5, ),
where x is of length n, must be encoded as a string of length f(7,n) before it is presented to
H. If j 1s the index of the diagonalizing program Pg, then E will be wrong on all inputs of
length f(7,-) and hence will not satisfy Definition 2.1. |



3 Examples of Timers

In this section, we describe several examples of timers. Our examples are chosen to satisfy
a variety of the definitions given in the previous section.

3.1 Bubble Sort

Let H be a standard implementation of Bubble Sort, such as the one given in Knuth [12].
Let d(n) = Q(n?). (This is only interesting, of course, if d(n) is less than the worst-case
running time of bubble sort; if it’s not, then there’s a trivial timer for H that just says GO
on all inputs.) For input sequence (z1, %2, ..., ,), we denote by b(¢) the inversion number
of z;, i.e., the number of indices j such that j < ¢ and z; > x;. Let M(¢) = Ez(i)()_li —k
and M = maxi<i<, M(¢). Then it is clear from the description of H given in [12] that M is
a lower bound on the running time of H on input (&1, ®s,...,z,). We use this fact to define
a linear-time, deterministic, O(1)-complete timer E for (H,d).

Let ¢ > 2 be a constant. E considers ¢ segments of input elements, namely (z1, ..., za),
(T2y1, .o, ZB2Tn), cooy (Tp—2ga, .. 2n). (If mis not a multiple of ¢, the last segment can
be shorter than the rest.) For 1 <[ < ¢, F first finds the minimum element ;, in the [th
segment; it then computes M (7;). Let M’ be the maximum, over I, of M(7;). E says STOP
if and only if M’ > d(n).

It is clear that E runs in linear time. To prove that E is an O(1)-complete timer for (H, d),
note first that, if E says STOP, then the real running time of H on input (z1,22,...,%,)
is at least M > M’ > d(n). Next, we must show that there is a constant ¢’ such that £
says STOP whenever the real running time is at least ¢’d(n). It suffices to show that M’
is at least a constant multiple of M, provided that M and M’ are both Q(n?) (as they will
be when M’ > d(n)). Suppose that the 7 for which M = M(7) is in the [** segment. Then
M(4;) < M’'. The input element z;, is less than or equal to z;, and thus any element that
comes earlier in the input than z;, and contributes to b(¢) also contributes to b(¢;). More
precisely, 7; > i —n/c and b(i;) > b(7) —n/c. Thus M’ > M(4;) > M — (n/c)?, which is what
we wanted to show.

The constant implied in the statement that E is an O(1)-complete timer depends on the
constant ¢; similarly, the meaningful range of values for ¢ depends on the implied constant

in d(n) = Q(n?).

3.2 Euclid’s Algorithm for GCD

Suppose ¢ and y are m-bit numbers with & > y, and the heuristic H 1s Euclid’s algorithm
for finding the ged. It is well-known that H terminates in O(n) iterations. Let D(n) be the
time required to divide two n-bit numbers and A(n) be the time required to add two such
numbers. Each iteration of Euclid’s algorithm takes @(D(n)) time.

Suppose we are given a deadline kD(n). Are there inputs on which we can quickly
determine that H takes at least k iterations? Let us focus on instances (z,y) such that
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the quotient at every iteration is 1 and such that the gcd is 1. In the sequence of values
computed by Euclid’s algorithm, the last two values computed are v,, = 1 and v,,,_; = a, for
some positive integers a and m, and v; = v;y1 + v4s for i <m — 1. Let ¢ = v; and y = vs.
Then ¢ = F,_1a+ Fp_s and y = F,,_sa + F,,_3, where F; is the 7** Fibonacci number.

Given a deadline of kD(n), we could find out whether a pair (z,y) will take exactly k&
iterations by solving @ = Fj_ja + Fj_» for a and seeing whether that value of a plugged
into the equation for y checks out. Whenever (z,y) is a pair satisfying these simultaneous
equations, the ged computation will take exactly k iterations.

Next, we can also handle certain kinds of pairs (z,y) such that the ged computation takes
at least k iterations. Note once again that, if the quotients in the iterations are all 1 and
the computation takes m > k iterations, then x = F,,,_1a + F,,,_» and y = F,,,_sa + F,,_3.
This can be rewritten as * = F_jc+ Fj_sd and y = Fy_sc+ Fj_3d, where ¢ and d are again
positive integers. If the solutions ¢ and d of these simultaneous equations are both positive,
then again we have shown that the computation requires at least k iterations, and we can
stay STOP.

Finally, we can remove the restriction that # and y be a pair with ged 1. If they have
ged e, then the last two numbers (last one first) will be e and ke, for some positive integer
k, and the Fibonacci argument works again.

Thus, the timer will output STOP on any pair (z,y) that takes too many iterations
and has a computation where every quotient is 1. It clearly will not output STOP on any
computation that finishes within the deadline. Also the timer runs in time kA(n), which is
o(kD(n)). Currently we do not know how to construct a strong timer for Euclid’s algorithm.

3.3 Proving primality

Let D,, be the set of n-bit integers and H be a probabilistic program that, when given an
integer x, searches for a proof that = is prime. Suppose that H proceeds by running the
sophisticated algorithm of Adleman and Huang [1] for n® steps' and then, if no proof of
primality is found, switching to a simple-minded trial-division algorithm that takes expo-
nential time but always decides correctly whether a number is prime or composite. Let
d(n) = n°. A program E that runs the Miller-Rabin compositeness test on x (which takes
time O(n*)) and outputs STOP if and only if the test finds a proof of compositeness is a
complete probabilistic timer for (H, d).

The crucial fact about this example is that the best-known algorithms for proving pri-
mality are considerably slower than the best-known algorithms for proving compositeness.
The idea can be generalized to any language L € RPN coRP with RP algorithm A and coRP
algorithm B such that one of A or B is significantly faster than the other.

!The expression n¢ is used here as a symbolic representation of the running time of the Adleman-Huang
algorithm. We tried to find out what the exponent ¢ is and instead discovered, in correspondence with the
authors of [1], that it has never been calculated precisely. The reason it has not been calculated is that it is
“huge” enough to ensure that the algorithm will not be used; the authors told us that ¢ > 50; for purposes
of this discussion, it suffices that ¢ > 4.
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3.4 Timing Enumeration Algorithms

In this section, we present a general method of building timers for “enumeration” (or “list-
ing”) programs. A (deterministic) listing program for a parameterized family S of combina-
torial structures is a program that takes as input a parameter value p and gives as output a
list S(p). For example, the program could take as input a graph G and output the list S(G)
of all perfect matchings in G; in this example, the family S is the set of all perfect matchings,
and the parameter values are graphs G. Similarly, a listing program could take as input a
graph G and output the list of all spanning trees of G. For an excellent introduction to the
theory of listing, see Goldberg [4].

We restrict attention to listing programs that run in polynomial total time, i.e., in time
polynomial in n (the length of the input) and C (the length of the output). This restriction
1s imposed in order to rule out certain simple-minded listing programs that have trivial
complete timers. (For example, a listing program for perfect matchings could simply try
all partitions of the vertices into n pairs and output only those in which each pair is an
edge; this program takes exponential time on all inputs and hence, for any polynomially
bounded deadline function d, has a trivial complete timer that always says STOP.) The two
listing problems that we examine in detail happen to have algorithms with the polynomial
delay property, a more stringent property first defined by Johnson, Papadimitriou, and
Yannakakis [10]. In a polynomial-delay algorithm, the time it takes to generate the first
output configuration and the time between any two consecutive output configurations are
both bounded by a polynomial in the size of the input. This stricter property is not needed
for our statements about timers to be meaningful. These and other measures of efficiency
are discussed in [4].

Listing programs conform to our intuitive notion of “heuristics,” because the running
time of such a program on input p is in general very hard to calculate; the length of the list
S(p) is obviously a lower bound on this running time, but this length is often hard to com-
pute. The number of spanning trees of a graph G can be computed exactly in deterministic
polynomial time [11], but the number of perfect matchings is a # P-complete function [20].
A general method of building timers for listing programs is to compute (either exactly or
approximately) the length [ of the list S(p) and then to output STOP if and only if the
estimate is significantly greater than d(|p|). Both the type of timer that the method yields
and the meaning of “significantly” depend on the particular listing problem.

Let H be any polynomial total time listing program? for spanning trees (e.g., the one of
Read and Tarjan [17]); this means that the running time of H is poly(n,l), where n is the
size of the input graph G, and [ is the number of spanning trees. Let A be the algorithm of
[11] that computes [ in time M (n), where M (n) is the time to compute the determinant of
an n x n matrix. For any deadline function d(n) such that M(n) = o(d(n)), the algorithm

2We require H to be polynomial total time in order to avoid listing programs that have trivial timers. For

example, many combinatorial listing problems can be solved by simple-minded programs that always take
exponential time, even on instances in which the length of the list is subexponential; if H is such a program,
the algorithm that always says STOP is a trivial timer for (H,d), where d is any subexponential deadline
function.
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that runs A and outputs GO if and ounly if A(G) < d(n) is a nontrivial timer for (H, d).

The timer E that we give for programs that list perfect matchings uses the same basic
idea as the one for spanning trees, but it differs in some details. Jerrum and Sinclair [9] give
a probabilistic method for approximating the number of perfect matchings in a 2n vertex
graph that runs in time O(¢®n®log®n), where ¢ is a known upper bound on M,,_; /M, the
ratio of near-perfect matchings to perfect matchings. Even if a good upper bound on g is
not known a priori, [9] shows how, given a candidate upper bound ¢;, the algorithm can be
modified to halt within a small constant factor of the time bounds reported above, with ¢
replaced by ¢;; with high probability, the modified algorithm either produces a good estimate
for the number of perfect matchings or reports that M,,_;/M, is greater than ¢; and halts.
The graphs that pass the test for a bound on the ratio M,_1/M, (or contain 0 perfect
matchings) are called g-amenable.

Procedure F

{

if (G has no perfect matching) Output GO
else
Choose a polynomial ¢(n) such that the running time of the
Jerrum-Sinclair algorithm is less than d(n).
if (no such ¢ exists) Output GO
if (G is NOT g-amenable) Output GO.
else
Run the Jerrum-Sinclair algorithm for O(¢*n®log®n) steps
if (Estimated number of perfect matchings > 2d(n)) Output STOP
else Output GO.

}

Theorem 3.1 Let H be any listing program for perfect matchings that runs in total time
Cg(n), where C is the number of matchings in the input graph, and let d(n) = Q(n* log”®n).
Then E is a g-strong probabilistic timer for (H, d).

Proof: We first argue that E is a nontrivial probabilistic timer for (H,d). E says STOP
only if the estimate for the number of perfect matchings is greater than 2d(n). With high
probability this estimate is within a factor of 2. Since the number of matchings is a lower
bound on the time it takes to list them, H will run for more than d(n) steps with high
probability. On the other hand, for n large enough, we know that there exists a graph G
such that H will not finish by deadline d(n) on input G, because there exist graphs with
an exponential (in n) number of matchings. So it remains to show that there exists a G for
which E answers STOP with high probability. In order to show this, we need that there
exist a family of graphs with more than a polynomial number of matchings, for which the
ratio M,,_1/M,, is not too large. This is satisfied by the simple observation in [9] that all
bipartite graphs on n vertices with minimal degree n/4 are g-amenable, for ¢(n) = n?. It is
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easy to construct such graphs with a superpolynomial number of perfect matchings. Thus
choosing d(n) to be Q(n''log®n) makes E a nontrivial timer.

To show that E is a strong timer, we recall the following result of Jerrum and Sinclair
about the fraction of graphs that have a bounded ratio M,,_1/M,: If p > (1 + ¢)n"'logn,
then with probability 1 — O(n~*) (where k is a constant depending on ¢) the random graph
Gnp is g(n)-amenable, where q(n) = n!°. Thus E with deadline Q(n3*log®n) will output
STOP on almost all graphs that have more than d(n) matchings. Because of the bound on
the total running time of H, any instance on which H takes time d(n)g(n) or greater must
have at least d(n) perfect matchings. Because E outputs STOP on almost all such graphs,
E is a g-strong probabilistic timer. |

A listing program for perfect matchings that runs in time Cg(n), for some polynomial
g, can be obtained using the “recursive listing” technique described in [4, §2.1.1]. Finally,
we remark that the constants and the degrees of the polynomials in this example clearly
render it impractical; it is of theoretical interest, however, because it provides a strong
probabilistic timer for a class of heuristics that do not seem to have timers that are complete
or deterministic.

3.5 Timing Iterative Numerical Algorithms

We now present an example of a timer from the realm of numerical analysis. Our example
involves one of the simplest iterative methods; however, it is easy to see how to generalize to
other iterative methods. The timer will come from a lower bound on the rate of convergence.

Let F : R — R be a continuously differentiable contraction function, with 1 > ¢ >
|F'(2)] > ¢ >0, for all z € R. (See [16] for definitions.) Further assume that F(0) is not 0.

Define H to be the following algorithm that takes F' e, and an initial point z(®) as input
and computes an e-approximation to the (unique) fixed point of F'. Define the iterative
sequence

) = P (k=0,1,...)

H computes this sequence, beginning with (), until |#*+) — 2®)| < ¢,

That this process will converge to the fixed point of F' and that this point is unique, is
a well-known fixed-point theorem [16].

Now consider the following procedure E. We will show, for a certain class of functions
F, that FE is in fact a timer. Let d be the given deadline.

Procedure F

{ Ir = (known) lower bound on the amount of time
it takes to compute F(z), for any z in the domain

k= d/lF

Find ¢ and ¢/, with 1 > ¢ > |F'(z)| > ¢ >0 for all = in R
a = 25|F(0)|

1-¢'
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if (29 >« and ck(|w(0)| — a) > €) Output STOP
else Output GO

Notice that we have set k to be an upper bound on the number of iterations of algorithm
H that can be performed before the deadline d. We first show that, if E says STOP, then
H will need strictly greater than k iterations to get within € of the fixed point.

Theorem 3.2 Let s be the unique fixed point of F', satisfying the above conditions. If
2 > o and *(|z)] — a) > ¢, then |2 — 5| > e

Proof: By the triangle inequality, |s| — |F'(0)] = |F(s)| — |F(0)| < |F(s) — F(0)|. The
assumption that ¢’ > |F’| implies that |F(0) — F'(s)| < |s|. Solving for |s|, we get |s| <
——|F(0)|. By definition, the righthand side is just «; so |s| < o

Now let ¢, = [2(® — 5|, and similarly, ¢ = |2 — s|. Take z(® > . Then || =
|F(z®)) — 5| = |F(z™) — F(s)|. By the fundamental theorem of calculus, this is equal

to | [ F'(z)dz| > c|lz; — s| = ce by the assumption that |F'| > c. Iterating, we have

0)

lex| > c*leo| = *|2(®) — s|. Because we have shown that |s| < a, we get

|2®) — 5| > k|2 — 5| > (|20 —a) > €

Y

by assumption. |

To complete the formal proof that F is a timer, we need to show that, if there are some bad
instances, there are some that E finds. However, E is not completely specified at this point.
We assumed in step (2) that E finds some ¢ and ¢/, with 1 > ¢ > maxger |F'(2)] > ¢ > 0.
However, we did not specify how E was to do this, nor did we give any restriction on
the quality of these bounds. How successful E can be in accomplishing step (2), and how
successful £ will be as a timer, will vary enormously depending on the class of functions F
considered.

As an example, we now look at the following class of functions. For z > 0, let f(z) =
e™® 4 ey, for 1 > ¢o > ¢; > 0. The input to the fixed point algorithm we wish to time are
the values of ¢, ¢;, an initial point 2 and e. Since 0 < ¢y —¢q < f/(:n) < ¢y < 1, the timer
will run procedure E with ¢ = ¢5 — ¢;, and ¢’ = ¢s.

Now Theorem 3.2 implies the timer satisfies (1) in definition 2.1. It is also easy to see that
there are instances on which £ answers STOP and thus condition (2) is satisfied. Finally,
the timer E will be nontrivial for most reasonable values of the deadline d, since each step
involves just a few multiplications and divisions, whereas the fixed-point algorithm computes
F once in each iteration, with high precision.

4 Discussion and Future Directions
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In Section 2, we presented a family of definitions that capture many of the properties
that one naturally wants in timers. However, one could present essentially the same family
of definitions but make slightly different choices on certain details. For example, one could
choose different thresholds for parameters such as the fraction (currently required to be
a constant) of bad instances on which a strong timer must say STOP or the probability
(currently required to be inverse-polynomial) with which, if a probabilistic timer says STOP,
it must really be timing a bad instance. The choices presented in Section 2 should be
reevaluated as more timers are exhibited.

More fundamentally, one could view timers from an overall perspective that is dual to
the one we’ve presented. The guiding principle for the family of definitions presented in
Section 2 1s that a timer may not err when it says STOP but may err when it says GO. This
viewpoint makes sense in scenarios in which the heuristic is run “offline,” and its being slow
on a particular instance is undesirable but not fatal. If the heuristic were part of a real-time
system, then the effect of its running too long on the instance at hand might indeed be
fatal, and one would only want to use it if one could guarantee that it would finish before
its deadline. In that case, timers should be defined so that they may not err when they say
GO but may err when they say STOP. It is clear how to alter the definitions presented in
Section 2 so that they capture this dual notion.

As the terms “timer” and “deadline” suggest, we have so far focussed on whether a heuris-
tic program finishes in an acceptable amount of time on the given input. It is straightforward
to extend our framework so that the focus is on whether the heuristic uses an acceptable
amount of space, communication bandwidth, number of processors, or any other crucial
resource.

More concretely, we believe that numerical analysis is a natural application domain in
which to use timers. For example, there are many iterative methods for the solution of
systems of linear equations. Standard numerical analysis texts show how to upper bound
the number of iterations that various methods will require to solve Az = b in terms of, e.g.,
the spectral radius of A. For timer design, however, we need to compute lower bounds on the
number of iterations, and these bounds may depend crucially on the initial iterate 2(®). The
construction of such timers is an important goal, both practically (because the timers could
be deployed in numerical linear algebra packages and help guide users’ choices of iterative
methods for particular problem instances) and theoretically (because the lower bounds may
require new analytical results).
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