
Compact Routing with Minimum StretchLenore J. Cowen �Department of Mathematical SciencesDepartment of Computer ScienceJohns Hopkins UniversityBaltimore, MD 21218AbstractWe present the �rst universal compact routing algorithmwith maximum stretch bounded by 3 that uses sublinearspace at every vertex. The algorithm uses local routingtables of size O(n2=3 log4=3 n) and achieves paths that aremost 3 times the length of the shortest path distances for allnodes in an arbitrary weighted undirected network. Thisanswers an open question of Gavoille and Gengler whoshowed that any universal compact routing algorithm withmaximum stretch strictly less than 3 must use 
(n) localspace at some vertex.1 IntroductionLet G = (V;E) with jV j = n be a labeled undirectednetwork. Assuming that a positive cost, or distanceis assigned with each edge, the stretch of path p(u; v)from node u to node v is de�ned as jp(u;v)jjd(u;v)j , wherejd(u; v)j is the length of the shortest u � v path. Theapproximate all-pairs shortest path problem involves atradeo� of stretch against time{ short paths with stretchbounded by a constant are computed in time less thanit would take to compute exact all-pairs shortest paths(see [1, 2, 6, 8, 9, 10]). The compact routing problemconsiders instead a tradeo� of stretch for space, in thesetting where each node locally stores its own routingtables. The stretch of a compact routing algorithm isde�ned as the maximum stretch over the routes for allpairs of nodes in the network. Clearly if each nodestores the O(logn)-bit name of the next node along theshortest path to node v, for all v 2 G, this completerouting table gives all shortest path distances. Theresulting routing scheme uses O(n logn) space at everynode, and has optimal stretch one. This paper answersthe question: what is the minimum achievable stretchof any compact routing scheme with sublinear space�Supported in part by ONR grant N00014-96-1-0829. Author'semail: cowen@cs.jhu.edu

at each node? It does so by presenting the �rst suchalgorithm with stretch 3. The matching lower boundcomes from a recent paper of Gavoille and Gengler [15]who proved that there exists an n-node network thatrequires 
(n) space at some node for any routing schemewith stretch strictly less than 3.Previous work. Early work on the compact routingproblem focused on routing schemes for special casenetworks such as rings, trees [20], complete networksand grids [21, 22]. Fredrickson and Janardan [12, 13]considered compact routing in networks with smallseparators, such as outerplanar networks, and alsoderived small stretch algorithms for compact routing inplanar networks. Peleg and Upfal [18, 19] were the �rstto construct universal compact routing schemes, that is,compact routing schemes that worked on all undirectednetworks.Some of the earlier work on this problem presentedschemes that bounded only average space, rather thanmaximum space at each node. An algorithm of [5]achieves the optimum of stretch 3 and O(n3=2 logn)space total, but some individual nodes use O(n logn)space in this scheme. Further work (see [4]) arguedsuccessfully that it was most important to bound themaximum space, and this has been the focus of recentwork. The best bounds on maximum local space wereachieved for di�erent ranges of stretch by di�erent pa-pers: A recent algorithm of [11] achieves O(n1=2 logn)maximum local space with maximum stretch boundedby 5; the paper of [7] give tradeo�s of stretch versusspace that result in sublinear local space when the max-imum stretch is � 16, and beat the space requirementsof [11] for maximum stretch > 64. No algorithm whichbeat the O(n logn) local space of the naive algorithm forstretch < 5 was previously known. This work presentsover a 2/3 reduction in the quality of the approximatesolution, which is now tight for stretch.1



2Our results. Our algorithms use node names ofO(logn) size, local space bounded by O(n2=3 log4=3 n)at every node, and provides paths of maximum stretch3. In addition, our routing scheme is memoryless{ apacket need not remember its origin; the route it takesfrom intermediate node i is simply a function of therouting information stored at i and the address of its�nal destination.The principal ingredients of our algorithm includethe following:� The O(logn) greedy approximation to dominatingset, coupled with truncated and full Dijkstra'salgorithms as used in [1, 2, 9, 10] and in the samefashion as to how it is used in [4].� A new density dependent algorithm for landmarkselection.It is possible to give a careful distributed implemen-tation of our algorithms, along the same lines as in [5].The improvements we present are at the algorithmic,not at the protocol level, and go through in the samedistributed model with no additional complication. Thereader is also referred to the excellent survey of [14]. Forthose unfamiliar with past work in the area, however,it is worth making a remark, about node-names andoutput edge-names, both of which are implementationissues common to all papers in the area.For reasons of symmetry-breaking, typically in thedistributed environment, nodes are assumed to be as-signed unique O(logn)-bit names, for example from theintegers f1; : : : ; ng. Each node v is also assumed tohave a unique name from f1; : : : ; deg(v)g assigned toeach outgoing edge, but these names are assumed to beassigned locally with no global consistency. As an illus-trative example, suppose u and v are adjacent, and sayu is assigned the unique node name 1 and v is assignedthe unique node name 5. However, u may call its linkto v port 200 and v may call assign its link to u port1080, where these numbers have no relation to 1 and 5.In addition, v may have another link which it calls port200, but this might go to a di�erent vertex y!The naive scheme which uses O(n logn) bits at eachnode can use these arbitrary names without modi�ca-tion: each node simply stores a table which says foreach destination v, which port corresponds to an edgealong the shortest path to v. With the exception of thenaive scheme (and also [4], see below), all compact rout-ing schemes including ours that guarantee some upperbound on maximum stretch begin with the assignmentof a new O(logn) bit label to every node, this time de-

pendent on network topology{ whether this is referredto as a \renaming" or as an \address" is dependent onthe particular terminology used in the paper. (The pa-per of [4] uses topology-independent node names, byputting a distributed dictionary on top of the renamingscheme, so that packets learn the address of the nodethey are looking for online, as they explore the graph,but to achieve this they need a stronger model: theyrequire writable headers so that packets can be modi-�ed en route to store the new address once discovered.Their algorithms also require a larger stretch than wetolerate here.)We also remark that the re-addressing scheme usedby our algorithm is extremely simple: a nodes addressbecomes a triple consisting of: (it's original node name,the original name of another node chosen from a specialset of nodes called \landmarks", and �nally, the nameof the �rst link on the shortest path from the chosenlandmark to the node). Thus our algorithm uses 3 logn-bit node address-names, which is three times the lower-bound required to give every node a unique name. Thelocal port names that each node assigns to its outgoingedges stay unmodi�ed.2 Overview of the AlgorithmIntuitively, the algorithm bears a great deal of resem-blance to how directions are typically given in the realworld. Each locale considers some nodes to be near,or local, and some to be far away. For local destina-tions, detailed information giving exact optimal routesis stored, and for non-local far destinations, optimalrouting information is only stored to a subset of thesedestinations called \landmarks".Suppose now there is a yard sale at a given location,and the host wishes to announce it in the newspaper.The host simply publishes his address, which is simplyan e�cient encoding of his original name and the nameof his closest landmark. For nearby nodes, the addresscan be looked up directly in the local routing tableto provide the optimal route. For nodes outside thelocal neighborhood, instead the optimal route to thelandmark is retrieved, and the planned route is tothe landmark, and then from the landmark to thedestination. Routing to the landmark, rather thandirectly to the destination may take one out of theway, but because the origin node was far from thedestination, landmarks can be chosen in such a waythat the extra distance incurred by the potential detourthrough the landmark is not that large compared to theoptimal distance.



3The idea of using landmarks to handle routing to\far" destinations is not new with this paper, and isindeed used in several of the previous papers. In fact,the \far" distances are somehow the easy ones: whenstretch > 1 is allowed, if the optimal distance betweena pair of nodes is large, then large too is the amountout of the way that one is allowed to detour, while stillmaintaining a stretch bounded by a small multiple ofthe optimal distance. Previous schemes fell short ofachieving stretch 3 or sublinear space at every nodebecause of how they dealt with the \near" distances, orlocal routing. Our algorithm uses a two-tiered methodof selecting landmarks, and a density dependent notionof near and far distances in order to achieve its bounds,as described in Section 4.3 PreliminariesThe algorithm uses the following known theorem forlandmark selection (see [4, 16]).Theorem 3.1. (Extended dominating set)Let G = (V;E) be a weighted undirected graph. LetBv denote the set of v's n� closest neighbors (whereties are broken lexicographically according to originalnode names). Then there exists a set D � V suchthat jDj = O(n1�� logn) and 8v 2 V , D \ Bv 6= ;.Furthermore D can be found by a greedy algorithm in~O �m + n1+�� time. 2We also use the following notation. In the courseof the algorithm, we will use lv to denote the landmarkclosest to v. We will denote by eu(v) the local namegiven by u to the outgoing port that corresponds to the�rst edge on the shortest path from u to v.We are now ready to describe the main algorithm.4 The routing algorithm.The routing algorithm consists of three parts: a labelingalgorithm,where nodes are assigned addresses, a storagealgorithm, which describes the routing tables storedat each node, and the routing algorithm itself, whichdescribes, based on the address of a destination andthe local routing table at the current location, to whichoutput port a packet gets sent.4.1 The labeling algorithm. Assume G = (V;E)is an connected undirected network with n nodes, medges, and positive edge weights, and assume the nodesv 2 V have been given unique initial identi�ers fromthe set f1; : : :ng, that we will denote by ID(v), or

sometimes, if it is clear, simply by v. In the case ofwhere a set is de�ned in terms of a node's k closestneighbors, ties in distance are broken according to nodenames: if d(u; v) < d(u; r) then v is closer to u than r.If d(u; v) = d(u; r) and ID(v) < ID(r), then de�ne vas closer to u than f . The labeling algorithm computesthe n� closest neighbors of each node v, according tothis ordering, call this v's ball. It then constructs theset of landmarks in two parts, one which is an extendeddominating set (as in Theorem 3.1) for the collection ofballs, and the second consisting of all nodes which liein > n(1+�)=2 balls. Now each node v locates its closestlandmark, and sets its name to be its ID, followed by theID of that landmark, followed by the landmark's localname for its link corresponding to the �rst edge on theshortest path from u to v. The labeling algorithm isdescribed fully in Figure 1.4.2 The storage algorithm. Recall eu(v) denotesthe port at u that leads to the �rst edge on the shortestpath from node u to node v. Thus the naive schemestores (v; eu(v) for all nodes v at u. Our scheme willstore a subset of the same information at u as follows:� For each landmark l, store (l; eu(l))� For each v s.t. v is closer to u than any landmark,store (v; eu(v))Running full Dijkstra from each of the landmarkscomputes (l; eu(l)), and the remaining entries (v; eu(v))can be computed using truncated-Dijkstra from u toits n� closest nodes (keeping track of when one goesthrough an existing landmark); since D � L covers Bu,all nodes which are not reached by truncated-Dijkstraare guaranteed to be further than some landmark fromu. The storage algorithm is summarized in Figure 2.Theorem 4.1. In an n-node m-link network, thelabeling and local storage tables can be computed in~O �n1+2� + n1��m + n(1+�)=2m� time.Proof. Truncated Dijkstra takes ~O �n2�� time (see[10]), since the labeling and storage algorithms eachperform truncated Dijkstra for all n vertices, this takes atotal of ~O �n1+2�� time. Construction of L is dominatedby the construction of D which takes ~O �m + n1+��time. The rest of the labeling and storage tables arecomputed from running full Dijkstra from each l 2 L,at a cost of ~O (mjLj), where jLj will be shown to beO(n1�� logn+ n 1+�2 ) by Lemma 5.4 below. 2We remark that the labeling and storage algorithms(which form the pre-processing for our routing algo-



4 For each v 2 V , perform truncated-Dijkstra(n�)and store:Bv  fyjy is one of v's n� closest neighbors. gRv  fyjv 2 BygC  fvj jRvj > n 1+�2 gD  f The extended dominating set of Theorem 3.1.gL C [D /* L is the set of landmarks */For each v 2 Vlv  argminl2L d(l; v)For each l 2 L perform truncated-Dijkstra(n�)For each v 2 V n Lv  (v; lv ; elv (v)) /* the �rst link on the shortest path from lv to v */Figure 1: The labeling algorithmFor each v 2 V , perform truncated-Dijkstra(n�)(Keeping track when node u is reached, whether 9l 2 L on theshortest path from v to u.)For each u reached by truncated-Dijkstra for vIf 6 9l 2 L on shortest path from v to uStore (v; eu(v)) at uFor each l 2 L, perform full-Dijkstra with source lFor each u 2 VStore (l; eu(l)) at uFigure 2: The storage algorithmrithm) resemble the approximate shortest path algo-rithms of [10]. In fact, we are constructing a 3-spanner(see [3, 10, 17]). However, we are doing more work thanthe best tradeo�s achieved by those other algorithms,because our goal is not only to produce approximateshortest paths, but to have small local space. Thus weemploy more landmarks (and run the expensive full Di-jkstra more times) than these approximate shortest pathalgorithms. Nonetheless, our storage and labeling algo-rithms, together with the routing algorithm, present aclass of subcubic algorithms for approximate all-pairsshortest paths, for all 0 < � < 1.4.3 Routing using the local tables We are nowready for the routing procedure. Let the network belabeled and routing tables stored according to the algo-rithms of the previous section. We give a memory-lessalgorithm (i.e. packets need only know their destina-tion, they do not have to remember previous state infor-mation, such as where they came from) for routing fromany network node to node v, with a stretch bounded by3. We note that the only previous algorithm that hasthe memory-less property is the naive scheme. All other
known compact routing schemes require writable head-ers to store state information at intermediate nodes.4.4 The routing algorithm. The following proce-dure is used to route at node u, a packet with destina-tion (v; lv; elv (v)).� If u = lv route along elv (v).� If not, but (v; eu(v)) is in u's local routing table,route along eu(v).� Else route along (lv; eu(lv)).5 Analysis of the algorithmWe �rst need the following lemmas.Lemma 5.1. If d(u; v) < d(lv; v) then u is not alandmark and there does not exist a landmark on theshortest path from u to v.Proof. If x 2 L is u or an intermediate vertex on theshortest path path from u to v, then d(x; v) � d(u; v) <



5d(lv; v), so x is a closer landmark to v than lv, violatingthe de�nition of lv. 2Lemma 5.2. For each v, lv is among v's n� closestneighbors.Proof. For each v there exists some landmark l 2 Lamong v's n� closest neighbors because D � L andD \Bv 6= ;. By de�nition d(lv; v) � d(l; v) so lv is alsoamong v's n� closest neighbors. 2Lemma 5.3. For each x 6= lv on the shortest pathfrom lv to v, (x; ex(v)) is stored at x.Proof. By Lemma 5.2, lv is among v's n� closestneighbors. Since d(x; v) < d(lv; v) for each x 6= lv onthe path, it must be both that x 62 L (since lv is v'sclosest landmark) and x is also among v's n� closestneighbors. But this is exactly the condition when thestorage algorithm stores (x; ex(v)) at x. 2Lemma 5.4. jLj = O(n1�� logn+ n 1+�2 )Proof. jLj = jC [ Dj � jCj + jDj. Now jDj =O(n1�� logn) by Theorem 3.1. Recall that C =fyj jRyj > n 1+�2 g. SincePy jRyj =Pv jBvj =Pv n� =n1+�, the number of y 2 C can be at most n 1+�2 . 2We are ready to prove the main theorems.Theorem 5.1. Let d(u; v) denote the length of theshortest path from u to v. Then the routing algorithmreturns a path of length at most 3d(u; v).Proof. Let route(u; v) denote the route taken by thealgorithm from u to v. Suppose �rst that d(u; v) <d(lv; v). Then for each x on the shortest path from uto v, d(x; v) < d(u; v) < d(lv; v). Then by Lemma 5.2,lv 2 Bv , so u 2 Bv and x 2 Bv for all x on the shortestpath from u to v. Thus, by de�nition, v 2 Ru andx 2 Ru for all x on the shortest path from u to v.Furthermore, by Lemma 5.1 none of the vertices on theshortest path from u to v (including u) can be 2 L.Thus (v; eu(v)) was placed in u's local routing table, aswas (v; ex(v)) for each x 6= u on the shortest path fromu to v. Thus route(u; v) takes the optimum shortestpath from u to v and the length of route(u; v) = d(u; v).Otherwise, d(u; v) � d(lv; v). If (v; eu(v)) wasplaced in u's local routing table, then as before, so was(v; ex(v)) for each intermediate node on the shortestpath from u to v, and we route optimally as before.Otherwise, there are two cases. The �rst is that there isno intermediate node x such that (v; ex(v)) was placedin x's local routing table on the shortest path fromu to lv (or u is itself lv) and the second case is that

there is such a node x. In the �rst case, the algorithmroutes along the shortest path from u to lv, at node lvit takes the �rst edge along the shortest path from lvto v, and then continues from lv to v along the shortestpath by Lemma 5.3. Thus the length of route(u; v) isprecisely d(u; lv) + d(lv; v). By the triangle inequality,d(u; lv) � d(u; v) + d(v; lv), and d(v; lv) � d(u; v) byassumption. Thus route(u; v) � d(u; lv) + d(lv; v) �d(u; v) + 2d(v; lv) � 3d(u; v).For case 2, let y be the �rst node on the shortestpath from u to lv with (v; ey(v)) was placed in u'slocal routing table. Then, as before, (v; ex(v)) isplaces in x's local routing table for each intermediatenode x on the shortest path from y to v. Thus thealgorithm routes along the shortest path from u to y,followed by the shortest path from y to v, at a cost ofd(u; y)+d(y; v). Compare this to the length of the routed(u; lv) + d(lv; v) = d(u; y) + d(y; lv) + d(lv; v) followedin case 1, and the triangle inequality implies routingdirectly from y to v is always a shortcut. Thus in thiscase too, the total route(u; v) is � 3d(u; v) as before. 2Theorem 5.2. The local storage space used at eachnode is O((n1�� logn+ n 1+�2 ) logn).Proof. Each node stores an entry in its routing tablefor the �rst link along the shortest path from it toeach landmark, the number of such entries is equalto the number of landmarks in the network, which isO(n1�� logn+n 1+�2 ), by Lemma5.4. If v is a landmark,it has no additional storage. Otherwise, v must havejRvj � n 1+�2 , since otherwise v is made a landmark byde�nition of C. Thus if v is not a landmark, its table hasat most Rv additional entries which is at most O(n 1+�2 )entries. Since each entry consists of an O(logn) nodeand port address, the result follows. 2.Corollary 5.1. There is a compact routing algo-rithm of maximum stretch 3, with O(n2=3 log4=3 n) stor-age at each node.Proof. Follows from the previous two theorems, setting� = 1=3 + 2 log logn3 logn . 2References[1] D. Aingworth, C. Chekuri, P. Indyk, and R. Motwani.Fast estimation of diameter and shortest paths (with-out matrix multiplication). Unpublished manuscript.[2] D. Aingworth, C. Chekuri, and R. Motwani. Fast esti-mation of diameter and shortest paths (without matrixmultiplication). In Proceedings of the Seventh AnnualACM-SIAM Symposium on Discrete Algorithms, pages547{553, Atlanta, Georgia, 28{30 Jan. 1996.
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