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Abstract

We present the first universal compact routing algorithm
with maximum stretch bounded by 3 that uses sublinear
space at every vertex. The algorithm uses local routing
tables of size 0(112/3 log‘l/3 n) and achieves paths that are
most 3 times the length of the shortest path distances for all
nodes in an arbitrary weighted undirected network. This
answers an open question of Gavoille and Gengler who
showed that any universal compact routing algorithm with
maximum stretch strictly less than 3 must use Q(n) local

space at some vertex.

1 Introduction

Let G = (V, E) with |V| = n be a labeled undirected
network. Assuming that a positive cost, or distance
is assigned with each edge, the stretch of path p(u,v)

from node u to node v is defined as IZ(Z’Z)I, where

|d(w,v)| is the length of the shortest v — v path. The
approximate all-pairs shortest path problem involves a
tradeoff of stretch against time—short paths with stretch
bounded by a constant are computed in time less than
it would take to compute exact all-pairs shortest paths
(see [1, 2, 6, 8, 9, 10]). The compact routing problem
considers instead a tradeoff of stretch for space, in the
setting where each node locally stores its own routing
tables. The stretch of a compact routing algorithm is
defined as the maximum stretch over the routes for all
pairs of nodes in the network. Clearly if each node
stores the O(log n)-bit name of the next node along the
shortest path to node v, for all v € G, this complete
routing table gives all shortest path distances. The
resulting routing scheme uses O(nlogn) space at every
node, and has optimal stretch one. This paper answers
the question: what is the minimum achievable stretch
of any compact routing scheme with sublinear space
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at each node? It does so by presenting the first such
algorithm with stretch 3. The matching lower bound
comes from a recent paper of Gavoille and Gengler [15]
who proved that there exists an n-node network that
requires £2(n) space at some node for any routing scheme
with stretch strictly less than 3.

Previous work. Early work on the compact routing
problem focused on routing schemes for special case
networks such as rings, trees [20], complete networks
and grids [21, 22]. Fredrickson and Janardan [12, 13]
considered compact routing in networks with small
separators, such as outerplanar networks, and also
derived small stretch algorithms for compact routing in
planar networks. Peleg and Upfal [18, 19] were the first
to construct universal compact routing schemes, that is,
compact routing schemes that worked on all undirected
networks.

Some of the earlier work on this problem presented
schemes that bounded only average space, rather than
maximum space at each node. An algorithm of [5]
achieves the optimum of stretch 3 and O(n®/?logn)
space total, but some individual nodes use O(nlogn)
space in this scheme. Further work (see [4]) argued
successfully that 1t was most important to bound the
maximum space, and this has been the focus of recent
work. The best bounds on maximum local space were
achieved for different ranges of stretch by different pa-
pers: A recent algorithm of [11] achieves O(n'/?logn)
maximum local space with maximum stretch bounded
by 5; the paper of [7] give tradeoffs of stretch versus
space that result in sublinear local space when the max-
imum stretch 1s > 16, and beat the space requirements
of [11] for maximum stretch > 64. No algorithm which
beat the O(n logn) local space of the naive algorithm for
stretch < b was previously known. This work presents
over a 2/3 reduction in the quality of the approximate
solution, which is now tight for stretch.



Our results. Our algorithms use node names of
O(logn) size, local space bounded by O(n2/310g4/3 n)
at every node, and provides paths of maximum stretch
3. In addition, our routing scheme is memoryless— a
packet need not remember its origin; the route it takes
from intermediate node 7 is simply a function of the
routing information stored at ¢ and the address of its
final destination.

The principal ingredients of our algorithm include
the following:

e The O(logn) greedy approximation to dominating
set, coupled with truncated and full Dijkstra’s
algorithms as used in [1, 2, 9, 10] and in the same
fashion as to how it is used in [4].

e A new density dependent algorithm for landmark
selection.

It is possible to give a careful distributed implemen-
tation of our algorithms, along the same lines as in [5].
The improvements we present are at the algorithmic,
not at the protocol level, and go through in the same
distributed model with no additional complication. The
reader is also referred to the excellent survey of [14]. For
those unfamiliar with past work in the area, however,
it is worth making a remark, about node-names and
output edge-names, both of which are implementation
issues common to all papers in the area.

For reasons of symmetry-breaking, typically in the
distributed environment, nodes are assumed to be as-
signed unique O(log n)-bit names, for example from the
integers {1,...,n}. Each node v is also assumed to
have a unique name from {1,...,deg(v)} assigned to
each outgoing edge, but these names are assumed to be
assigned locally with no global consistency. As an illus-
trative example, suppose u and v are adjacent, and say
u 1s assigned the unique node name 1 and v 1s assigned
the unique node name 5. However, u may call its link
to v port 200 and v may call assign its link to u port
1080, where these numbers have no relation to 1 and 5.
In addition, v may have another link which it calls port
200, but this might go to a different vertex y!

The naive scheme which uses O(n logn) bits at each
node can use these arbitrary names without modifica-
tion: each node simply stores a table which says for
each destination v, which port corresponds to an edge
along the shortest path to v. With the exception of the
naive scheme (and also [4], see below), all compact rout-
ing schemes including ours that guarantee some upper
bound on maximum stretch begin with the assignment
of a new O(logn) bit label to every node, this time de-

pendent on network topology— whether this is referred
to as a “renaming” or as an “address” is dependent on
the particular terminology used in the paper. (The pa-
per of [4] uses topology-independent node names, by
putting a distributed dictionary on top of the renaming
scheme, so that packets learn the address of the node
they are looking for online, as they explore the graph,
but to achieve this they need a stronger model: they
require writable headers so that packets can be modi-
fied en route to store the new address once discovered.
Their algorithms also require a larger stretch than we
tolerate here.)

We also remark that the re-addressing scheme used
by our algorithm is extremely simple: a nodes address
becomes a triple consisting of: (it’s original node name,
the original name of another node chosen from a special
set of nodes called “landmarks”, and finally, the name
of the first link on the shortest path from the chosen
landmark to the node). Thus our algorithm uses 3 log n-
bit node address-names, which is three times the lower-
bound required to give every node a unique name. The
local port names that each node assigns to its outgoing
edges stay unmodified.

2 Overview of the Algorithm

Intuitively, the algorithm bears a great deal of resem-
blance to how directions are typically given in the real
world. FEach locale considers some nodes to be near,
or local, and some to be far away. For local destina-
tions, detailed information giving exact optimal routes
is stored, and for non-local far destinations, optimal
routing information is only stored to a subset of these
destinations called “landmarks”.

Suppose now there is a yard sale at a given location,
and the host wishes to announce it in the newspaper.
The host simply publishes his address, which 1s simply
an efficient encoding of his original name and the name
of his closest landmark. For nearby nodes, the address
can be looked up directly in the local routing table
to provide the optimal route. For nodes outside the
local neighborhood, instead the optimal route to the
landmark 1s retrieved, and the planned route is to
the landmark, and then from the landmark to the
destination. Routing to the landmark, rather than
directly to the destination may take one out of the
way, but because the origin node was far from the
destination, landmarks can be chosen in such a way
that the extra distance incurred by the potential detour
through the landmark is not that large compared to the
optimal distance.



The idea of using landmarks to handle routing to
“far” destinations is not new with this paper, and is
indeed used in several of the previous papers. In fact,
the “far” distances are somehow the easy ones: when
stretch > 1 1s allowed, if the optimal distance between
a pair of nodes is large, then large too is the amount
out of the way that one is allowed to detour, while still
maintaining a stretch bounded by a small multiple of
the optimal distance. Previous schemes fell short of
achieving stretch 3 or sublinear space at every node
because of how they dealt with the “near” distances, or
local routing. Our algorithm uses a two-tiered method
of selecting landmarks, and a density dependent notion
of near and far distances in order to achieve its bounds,
as described in Section 4.

3 Preliminaries

The algorithm uses the following known theorem for
landmark selection (see [4, 16]).

THEOREM 3.1. (EXTENDED DOMINATING SET)
Let G = (V,E) be a weighted undirected graph. Let
B, denote the set of v’s n® closest neighbors (where
ties are broken lexicographically according to original
node names). Then there exists a set D C V such
that |D| = O(n'=%logn) and Yv € V, DN B, # 0.
Furthermore D can be found by a greedy algorithm in
O(m—i—nl‘l'“) time. O

We also use the following notation. In the course
of the algorithm, we will use [, to denote the landmark
closest to v. We will denote by ey (v) the local name
given by u to the outgoing port that corresponds to the
first edge on the shortest path from u to v.

We are now ready to describe the main algorithm.

4 The routing algorithm.

The routing algorithm consists of three parts: a labeling
algorithm, where nodes are assigned addresses, a storage
algorithm, which describes the routing tables stored
at each node, and the routing algorithm itself, which
describes, based on the address of a destination and
the local routing table at the current location, to which
output port a packet gets sent.

4.1 The labeling algorithm. Assume G = (V| E)
is an connected undirected network with n nodes, m
edges, and positive edge weights, and assume the nodes
v € V have been given unique initial identifiers from
the set {1,...n}, that we will denote by ID(v), or

sometimes, if it is clear, simply by ». In the case of
where a set is defined in terms of a node’s k closest
neighbors, ties in distance are broken according to node
names: if d(u,v) < d(u,r) then v is closer to u than r.
If d(u,v) = d(u,r) and ID(v) < ID(r), then define v
as closer to u than f. The labeling algorithm computes
the n® closest neighbors of each node v, according to
this ordering, call this v’s ball. Tt then constructs the
set of landmarks in two parts, one which is an extended
dominating set (as in Theorem 3.1) for the collection of
balls, and the second consisting of all nodes which lie
in > n(1+2)/2 halls. Now each node v locates its closest
landmark, and sets its name to be its 1D, followed by the
ID of that landmark, followed by the landmark’s local
name for its link corresponding to the first edge on the
shortest path from u to v. The labeling algorithm is
described fully in Figure 1.

4.2 The storage algorithm. Recall e,(v) denotes
the port at u that leads to the first edge on the shortest
path from node u to node v. Thus the naive scheme
stores (v, e, (v) for all nodes v at u. Our scheme will
store a subset of the same information at u as follows:

e For each landmark [, store (I, e,(!))

e For each v s.t. v is closer to u than any landmark,
store (v, e, (v))

Running full Dijkstra from each of the landmarks
computes (I, e,(!)), and the remaining entries (v, e, (v))
can be computed using truncated-Dijkstra from u to
its n® closest nodes (keeping track of when one goes
through an existing landmark); since D C L covers By,
all nodes which are not reached by truncated-Dijkstra
are guaranteed to be further than some landmark from
u. The storage algorithm is summarized in Figure 2.

THEOREM 4.1. In an n-node m-link network, the

labeling and local storage tables can be computed in
O (nl‘l'zCY +nl7%m 4 n(H’“)/Zm) time.

Proof. Truncated Dijkstra takes 0 (nza) time (see
[10]), since the labeling and storage algorithms each
perform truncated Dijkstra for all n vertices, this takes a
total of O (nH’ZQ) time. Construction of L is dominated
by the construction of D which takes O (m—i—nl‘l'“)
time. The rest of the labeling and storage tables are
computed from running full Dijkstra from each [ € L,
at a cost of O(m|L|), where |L| will be shown to be

O(nl_a logn + nH—TQ) by Lemma 5.4 below. O

We remark that the labeling and storage algorithms
(which form the pre-processing for our routing algo-



and store:

Rv — {y|v E By}
C —{v| [Ry| > n"¥}

L—CuUuD
Foreach v eV
ly — argminep d(l,v)

For each v € V\ L
v (valvaelu(v))

For each v € V, perform truncated-Dijkstra(n®)

B, — {y|y is one of v’s n® closest neighbors. }

D — { The extended dominating set of Theorem 3.1.}

For each | € L perform truncated-Dijkstra(n®)

/* the first link on the shortest path from [, to v */

/* L is the set of landmarks */

Figure 1: The labeling algorithm

shortest path from v to u.)

Store (v, ey(v)) at u

For each ue V
Store ({,e4(1)) at u

For each v € V| perform truncated-Dijkstra(n®)
(Keeping track when node u is reached, whether 3/ € L on the

For each u reached by truncated-Dijkstra for v
If Al € L on shortest path from v to u

For each [ € L, perform full-Dijkstra with source [

Figure 2: The storage algorithm

rithm) resemble the approximate shortest path algo-
rithms of [10]. In fact, we are constructing a 3-spanner
(see [3, 10, 17]). However, we are doing more work than
the best tradeoffs achieved by those other algorithms,
because our goal is not only to produce approximate
shortest paths, but to have small local space. Thus we
employ more landmarks (and run the expensive full Di-
jkstra more times) than these approximate shortest path
algorithms. Nonetheless, our storage and labeling algo-
rithms, together with the routing algorithm, present a
class of subcubic algorithms for approximate all-pairs
shortest paths, for all 0 < o < 1.

4.3 Routing using the local tables We are now
ready for the routing procedure. Let the network be
labeled and routing tables stored according to the algo-
rithms of the previous section. We give a memory-less
algorithm (i.e. packets need only know their destina-
tion, they do not have to remember previous state infor-
mation, such as where they came from) for routing from
any network node to node v, with a stretch bounded by
3. We note that the only previous algorithm that has
the memory-less property is the naive scheme. All other

known compact routing schemes require writable head-
ers to store state information at intermediate nodes.

4.4 The routing algorithm. The following proce-
dure is used to route at node u, a packet with destina-
tion (v, 1y, e, (v)).

o If uw = [, route along e, (v).

o If not, but (v,e,(v)) is in u’s local routing table,
route along ey (v).

e Else route along (I, ey (y)).

5 Analysis of the algorithm
We first need the following lemmas.

LEMMA 5.1. If d(u,v) < d(l,,v) then u is not «
landmark and there does not exist a landmark on the
shortest path from u to v.

Proof. If x € L is u or an intermediate vertex on the
shortest path path from u to v, then d(z,v) < d(u,v) <



d(ly,v), so z is a closer landmark to v than {,, violating
the definition of {,. O

LEMMA 5.2. For each v, I, is among v’s n® closest
neighbors.

Proof. For each v there exists some landmark [ € L
among v’s n“ closest neighbors because D C L and
DN B, # 0. By definition d(l,,v) < d(I,v) so [, is also
among v’s n® closest neighbors. O

LEMMA 5.3. For each © # l, on the shortest path
from 1, to v, (x,ey(v)) is stored at x.

Proof. By Lemma 5.2, [, is among v’s n® closest
neighbors. Since d(z,v) < d(l,,v) for each » # [, on
the path, it must be both that # & L (since {, is v’s
closest landmark) and # is also among v’s n® closest
neighbors. But this is exactly the condition when the
storage algorithm stores (z,e,(v)) at z. O

LEMMA 5.4. |L] = O(n'=%logn + nlJrTa)

Proof. |L| = |[CU D| < |C|+ |D|. Now |D| =

O(n'=%logn) by Theorem 3.1. Recall that C
e o

{yllRy| > n7="}. Since 3, [Ry[ =32, [Bu| = 32, n% =

', the number of y € C can be at most n 3.0

We are ready to prove the main theorems.

THEOREM 5.1. Let d(u,v) denote the length of the
shortest path from u to v. Then the routing algorithm
returns a path of length at most 3d(u,v).

Proof. Let route(u,v) denote the route taken by the
algorithm from u to v. Suppose first that d(u,v) <
d(ly,v). Then for each # on the shortest path from u
to v, d(z,v) < d(u,v) < d(ly,v). Then by Lemma 5.2,
ly, € By, s0u € By, and @ € B, for all x on the shortest
path from u to v. Thus, by definition, v € R, and
z € R, for all # on the shortest path from u to wv.
Furthermore, by Lemma 5.1 none of the vertices on the
shortest path from u to v (including w) can be € L.
Thus (v, e, (v)) was placed in u’s local routing table, as
was (v, e;(v)) for each & # w on the shortest path from
u to v. Thus route(u,v) takes the optimum shortest
path from u to v and the length of route(u, v) = d(u, v).

Otherwise, d(u,v) > d(ly,v). If (v,ey(v)) was
placed in u’s local routing table, then as before, so was
(v,e5(v)) for each intermediate node on the shortest
path from u to v, and we route optimally as before.
Otherwise, there are two cases. The first is that there is
no intermediate node # such that (v, e, (v)) was placed
in z’s local routing table on the shortest path from
u to I, (or w is itself [,) and the second case is that

there is such a node z. In the first case, the algorithm
routes along the shortest path from w to [, at node [,
it takes the first edge along the shortest path from [,
to v, and then continues from [, to v along the shortest
path by Lemma 5.3. Thus the length of route(u, v) is
precisely d(u,l,) + d(l,,v). By the triangle inequality,
d(u,ly) < d(u,v) + d(v, 1), and d(v,ly) < d(u,v) by
assumption. Thus route(u,v) < d(u,ly) + d(ly,v) <
d(u,v) + 2d(v,l,) < 3d(u, v).

For case 2, let y be the first node on the shortest
path from u to {, with (v,e,(v)) was placed in u’s
local routing table. Then, as before, (v,ez(v)) is
places in z’s local routing table for each intermediate
node x on the shortest path from y to v. Thus the
algorithm routes along the shortest path from u to y,
followed by the shortest path from y to v, at a cost of
d(u,y)+d(y,v). Compare this to the length of the route
d(u,ly) + d(ly,v) = d(u,y) + d(y, L) + d(ly, v) followed
in case 1, and the triangle inequality implies routing
directly from y to v is always a shortcut. Thus in this
case too, the total route(u, v) is < 3d(u,v) as before. O

THEOREM 5.2. The local storage space used at each
node is O((n*~“logn + nlJrTa) logn).

Proof. Each node stores an entry in its routing table
for the first link along the shortest path from it to
each landmark, the number of such entries is equal
to the number of landmarks in the network, which is
O(n'=%log n—i—nHTa), by Lemmab.4. If v is a landmark,
it has no additional storage. Otherwise, v must have
|R,| < nHTa, since otherwise v is made a landmark by
definition of C'. Thus if v is not a landmark, its table has
at most R, additional entries which is at most O(nHTa)
entries. Since each entry consists of an O(logn) node
and port address, the result follows. O.

COROLLARY b.1. There s a compact routing algo-
rithm of maximum stretch 3, with O(n2/310g4/3 n) stor-
age at each node.

Proof. Follows from the previous two theorems, setting

_ 2loglogn
a_1/3+ 3logn o
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