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1 Introduction

1.1 Background

This paper is concerned with fast deterministic algorithms for constructing network decompo-
sitions in the distributed network model, particularly a strong form of network decomposition
known as a sparse neighborhood cover. Given an undirected weighted graph (or network),
the t-neighborhood of a vertex v, for ¢t > 0, is the collection of nodes within distance ¢ away
from v in the graph. A t-neighborhood cover is a set of overlapping “clusters” of nodes in the
graph with the property that for any node, there exists a cluster in the cover that contains
its t-neighborhood. A t-neighborhood cover is called high-quality or sparse (defined formally
in Section 2) when it achieves an optimal tradeoff between the maximum diameter and the

maximum cluster overlap.

Such a cover efficiently represents the local neighborhoods in a graph. In fact, the
method of representing networks by sparse neighborhood covers, introduced in [Pel89], has
recently been identified as a key to the modular design of efficient network algorithms
[Pel93, AP90b, AP90a, AR91, BFR92]. Using this method as a basic building block leads
to significant performance improvements for several fundamental network control problems
(such as shortest paths [AR91], job scheduling and load balancing [AKP92], broadcast and
multicast [ABP91], routing with small tables [AP92], deadlock prevention [AKP91], band-
width management in high-speed networks [ACG*90], and database management [BFR92]),
as well as for classical problems in sequential computing (such as finding small edge cuts
in planar graphs [Rao92] and approximate all-pairs shortest paths [ABCP93, Coh93]). In
most of these applications, sparse neighborhood covers yield a polylogarithmic-overhead so-
lution to the problem. Thus, in a sense, the impact of efficient sparse neighborhood cover
algorithms on distributed network algorithms is analogous to the impact of efficient data

structures (like balanced search trees or 2-3 trees) on sequential computation.

In parallel to the introduction of sparse neighborhood covers in [Pel89], the strongly
related, yet distinct, notion of network decomposition was introduced in [AGLP89]. The
main difference between the two notions is that sparse neighborhood covers, as used in [Pel93,
AP90b, AP90a, BFR92, AKP92, AKP91], consist of clusters that capture the expected
definition of local neighborhood (see Section 2), while network decomposition as utilized
in [AGLP89, LS91, PS92, ABCP92] employs only a weak notion of neighborhood. In fact,
the way network decomposition is defined in [AGLP89], the clusters might not even be
internally connected. For many applications in distributed computing, the stronger notion of

sparse covers is essential. For example, decompositions based on the network decomposition



structure introduced in [AGLP89] are not sufficient to support local routing, where the path
between two vertices in the same cluster should consist entirely of vertices within that cluster.
Notable exceptions for which such a decomposition suffices are those applications based
on “symmetry-breaking”; i.e., such a decomposition can be used to construct a maximal

independent set or a (A + 1) coloring (where A is the maximum vertex degree in the graph)

fast in the distributed domain [AGLP89, LS91, PS92].

The goal of this paper is fast distributed algorithms for both high-quality network de-

composition, and sparse neighborhood covers.

1.2 Previous work

Previous work on the construction of neighborhood covers and decompositions can be clas-
sified into three main groups, to be discussed next. First, a fast algorithm is given in
[AGLP89] for obtaining a network decomposition with O(n®)-diameter clusters, for ¢ =
O(y/loglogn//logn). This algorithm requires O(n) time in the distributed setting, and

O(nFE) sequential operations.

Unfortunately, not only are the constructions of [AGLP89] restricted to network decom-
positions (rather than the stronger construct of neighborhood covers), but they are also
inefficient in terms of the quality of the decomposition (measured, as discussed earlier, by
the maximum diameter-overlap tradeoff). Roughly speaking, the inefficiency factor is O(n¢),
and this factor carries over to all but some of the graph-theoretic applications, rendering the
decompositions of [AGLP89] expensive in a number of practical contexts. These construc-
tions are, nonetheless, sufficient for the two main applications mentioned above, namely, the
maximal independent set problem and (A + 1) coloring. We have already remarked that a
network decomposition suffices for these applications. There is also no penalty for the poor
quality of the clusters because to construct an MIS or a (A+1) coloring, one needs to traverse
the O(n®)-diameter clusters only a constant number of times. In contrast, network control
applications, such as routing, online tracking of mobile users, and all-pairs shortest paths,
require us to traverse the clusters many times. Therefore, a higher-quality decomposition is

needed to avoid a large blowup in the running time for these latter applications.

A second group of constructions consists of (sequential) greedy algorithms for the con-
struction of sparse neighborhood covers [Pel89, AP90b, LS91]. These algorithms yield the
desired optimal tradeoff, and their bounds apply to all alternate notions of network decom-
position or sparse neighborhood covers. (In fact, the algorithm of [AP90Db] is more general. It

can create a subsuming cover for an arbitraryinitial collection of clusters, and not necessarily



to the collection of 1-neighborhoods. In addition, it applies also to the weighted case, with
the corresponding weighted notions of distance and diameter.) However, these algorithms

are inherently sequential, and their distributed implementation requires O(nlogn) time.

The third group consists of randomized distributed algorithms. The algorithm of [L.S91]
achieves a high-quality network decomposition with high probability by introducing random-
ization, and is very efficient. However, the algorithm does not yield a sparse neighborhood
cover. Furthermore, even when a network decomposition suffices instead of a neighborhood
cover, since we are concerned here with using the clusters as a data structure and running
various applications on top of it, a randomized solution might not be acceptable in some
cases. This is especially true because one cannot just run a randomized distributed algo-
rithm several times to guarantee a good underlying decomposition, since it is impossible to
efficiently check the global quality of the decomposition in the distributed model. Thus a
fast deterministic algorithm that guarantees a good underlying set of clusters is of more than

theoretical interest.

In summary, all three previous approaches fell short of achieving the goal of constructing
a high-quality network decomposition (or a sparse neighborhood cover) deterministically and

in sublinear time; each achieves two of the desired properties at the expense of the third.

1.3 Contents of this paper

In this paper we achieve the goal of constructing a high-quality network decomposition
(or a sparse neighborhood cover), deterministically in sublinear time. We construct all
alternate notions of network decomposition, or sparse neighborhood covers in time O(n¢),
for ¢ = O(1/+/logn). The reduction from time O(n®) for ¢ = O(y/loglogn/\/logn) to
e = O(1/y/Togn) is achieved directly from the corresponding speedup for the [AGLP89]

construction due to [PS92]. In addition we present a randomized algorithm that constructs

all notions of high-quality network decomposition in polylogarithmic expected time, including

the useful sparse neighborhood covers.

Our results are presented in terms of Linial’s model for static synchronous networks (see

Section 3.4), but can be adapted to a more realistic dynamic asynchronous environment

using the existing transformer techniques of [AAG87, AP90b, APPS92].



2 Notions of network decomposition

In this section we survey the different formulations of network decomposition, and discuss
their relations. Within each family of definitions, we also discuss what it means to have a
high-quality decomposition or cover, in terms of the optimal tradeoffs between low diameter

and sparsity.

Our definitions consider a graph G = (V, F) whose vertices are grouped into a collec-
tion of (possibly overlapping) sets Si,..., .S, (called also clusters). These clusters need not
necessarily be internally connected in the graph. This collection is referred to as a cover.
For the special case that the clusters are disjoint, we refer to the cluster collection as a

decomposition.

Our notion of distance in a graph is the usual (unweighted) one, i.e., the distance between
u,v € Vin G, denoted distg(u,v), is the length (in edges) of the shortest path between u and
v in GG. The distance between two clusters S, S’ is analogously defined to be the minimum
distance (in (&) between any two vertices v € S and v’ € S’. A collection of clusters is said

to be A-separated if every two clusters in it are at least distance A + 1 apart.

However, we are also interested in distances inside clusters, and for that purpose, we

must distinguish between two distinct notions.

Definition 2.1 The weak distance between u, v € S; is simply their distance in &, distg(u,v).
Namely, the path connecting them is allowed to shortcut through vertices not in S;. The weak
diameter of S; is defined as

diam(S;) = max (distg(u,v)).

u,vES;

Similarly, the weak radius of S; is defined as

rad(S;) = ir&lg{}rgg}j{(dzstg(u, v)).

The strong distance between u,v € S;, denoted distg, (u,v), is the length of the shortest
path between u and v, on the subgraph of G induced by S;. Namely, all vertices on the path
connecting v and v must also be in S;. The strong diameter of S; is defined as

Diam(S;) = max (dists,(u,v)).
UVES;

The square of the graph , denoted G?, is defined to be the two-step transitive closure

of G. le., G* contains an edge (u,v) if either this edge is in G itself, or there exists an



intermediate vertex w s.t. (u,w) and (w,v) are in . Similarly, G' is the transitive closure
of GG to distance t, i.e., it contains an edge between any two vertices that are connected by

a path of length ¢ or less in G.

The t-neighborhood of a vertex v € V is defined as Ny(v) = {w | distg(w,v) < t}.
This notion is extended to sets of vertices, defining the ¢-neighborhood of a set W to be
N{(W) = Upew Nie(v). (Note that always W C Ny(W).)

We are now ready to define the alternate notions of network decompositions and covers.
First, we give the weak diameter definition, which is equivalent to the definitions in [AGLP89,
L.S91, PS92].

Definition 2.2 [Weak Network Decomposition.] For an undirected graph G = (V, F), a weak
(x, d, X)-decomposition is defined to be a y-coloring of the vertices of the graph, i.e., a mapping
V= {l,...,x}, that satisfies the following properties:

1. each color class v»~'(i) is partitioned into (an arbitrary number of) disjoint vertex clusters

ce,.., Cfi;
2. the weak diameter of any cluster C'! of a single color class ¢'~(¢) satisfies diam(C?) < d;

3. each collection of monochromatic clusters is A-separated.

The quality of the decomposition is measured by the tradeoffs between the parameters
d, A and y. It is known that there are graphs for which y must be Q(kn'/*) to achieve a
weak decomposition into clusters of diameter bounded by O(kA) and separation A [LS91].
Consequently, a weak (y,d, A)-decomposition is said to be high-quality if it achieves the
optimal tradeoff; namely, when d = O(k)), and the coloring number Y is at most kn'/*, for
some k& > 1.

Typically, we are most concerned with the case of a high-quality weak decomposition

when y and d are both O(logn) (which occurs, for constant A, when k& = O(logn)).

We may occasionally refer to a (monochromatic) cluster C' whose vertices are colored by

some color j, as being colored j itself, and write ¢»(C) = j.

A simple variant of weak network decomposition yields the related notion of a strong

network decomposition.

Definition 2.3 [Strong Network Decomposition.] For an undirected graph ¢ = (V, E), a
strong (x,d, \)-decomposition is defined just as a weak (x, d, A)-decomposition, except that in

Property 2, we substitute “strong” for “weak” diameter.



As with the weak-diameter definition, the “high-quality” tradeoffs are optimal. A strong
(x, d, \)-decomposition can be thought of as a generalization of the standard graph coloring
problem, where y is the number of colors used, and the clusters are super-vertices of strong-

diameter d.

Clearly, any strong network decomposition is also a weak decomposition, but the converse
is not necessarily true. All the results in [AGLP89, L.S91, PS92, ABCP92] are stated in terms
of weak network decomposition, but some can be extended to strong network decomposition

(See [Cow93] for a survey.).

We now present the definition for sparse neighborhood covers. Notice that this is a strong

diameter definition.

Definition 2.4 A (k,t,A)-neighborhood cover is a collection of clusters Sy,...,S,, with the

following properties:

1. For every vertex v, there exists a cluster 5; s.t. Ny(v) C 9;.
2. The strong diameter of each cluster S; satisfies Diam(S;) < O(kt).

3. Each vertex belongs to at most A clusters.

Analogously to the case of decompositions, the quality of the cover is measured in terms
of the tradeoffs between the parameters A, ¢ and k. It is known that there are graphs for
which A must be Q(kn'/*) to achieve a cover of all radius ¢ neighborhoods N;(v) by clusters
of strong diameter bounded by O(kt). Consequently, a (k,t, A)-neighborhood cover is said
to be sparse, it A < kn'/*.

The parameter k£ is bounded between two natural extreme cases. Setting k = 1, the set
of all balls N;(v) of radius ¢ around each vertex v is a sparse neighborhood cover. In this
case, the diameter of a ball is £, but each vertex might appear in every ball, so A may be
as high as n. On the other extreme, setting k = Diam(G)/t, the single cluster composed of
the entire graph ' is a sparse neighborhood cover. In this case, each vertex appears only in
a single cluster (7, so the degree bound is A = 1, but the strong diameter of the cover equals
the diameter of G, which could be as high as n.

A natural breakpoint is obtained by setting k& = logn (the typical and useful setting,
for most of the applications we are interested in). This yields a sparse (logn,t,O(logn))-

neighborhood cover, which is a collection of clusters S; with the following properties:

e the clusters contain all ¢-neighborhoods N;(v),



e the diameter of each cluster is bounded by O(tlogn), and

e cach vertex is contained in at most clog n clusters, for constant ¢ > 0.

We remark that this bound is tight to within a constant factor; there exist graphs for which
any (logn,t, A)-neighborhood cover has A = Q(logn), i.e., it places some vertex in at least
Qlogn) sets [LS91]. When k = logn, we find that sparse neighborhood covers form a useful
data structure to locally represent the t-neighborhoods of a graph.

The new deterministic distributed algorithm described in Section 4 constructs determin-
istically a sparse neighborhood cover, and can easily be transformed into an algorithm for

constructing a (strong, and therefore also weak) diameter decomposition.

3 Weak network decomposition

3.1 Outline

In this section, we introduce the new distributed algorithm Color, which recursively builds
up a weak (kn'/* 2k 4 1,1)-decomposition, for a parameter k. It invokes the procedure
Compress, which, in turn, runs the procedure Greedy Color, which is a modified version of
the greedy algorithm of [AP92] on separate clusters. Note that all distances in the discussion
below, including those in the same cluster, are assumed to be weak distances (i.e., distances

in the graph G).

Color is implicitly taking higher and higher powers of the graph. The straightforward

but crucial observation on which the power graph approach is based is the following:
Lemma 3.1 A (y,d, 1)-decomposition on G" is a (x,dt,t)-decomposition on G. O

Choosing t well at the top level of the recursion, guarantees that vertices in different
clusters of the same color are always separated by at least twice their maximum possible
radii. We can thus use procedure Greedy_Color to recolor these separate clusters in parallel

without collisions.

The recursive algorithm has two parts:

1. Find a weak (y,dt,?)-decomposition, where y = akn'/* and d,t = 2k + 1, on each of

x disjoint subgraphs. Here = is a parameter of the form 2¥, to be determined later on.

2. Merge these together by recoloring, to get a weak (knl/k, 2k + 1, 1)-decomposition.



Note that in essence, the decomposition generated in the first step is utilized in the “tra-
ditional” way, for symmetry-breaking, in order to facilitate the construction of the improved
decomposition in step 2. The fact that the clusters generated in the first step are separated
to distance 2k + 1, coupled with the fact that Step 2 invokes a sequential algorithm in par-
allel inside each cluster separately, and this algorithm constructs clusters of radius at most

k, ensures that these parallel invocations do not interfere.

3.2 The coloring algorithm

In this subsection we present the coloring algorithm Color, its main procedure Compress

and its sub-procedure Greedy Color.

3.2.1 Procedure Greedy Color

Let us first describe procedure Greedy Color. Procedure Greedy Color is a weak-diameter
variant of the (sequential) procedure used in the greedy algorithm of [AP92] for determining,
in each iteration, what vertices will be colored in that iteration. The procedure receives
a vertex set K. It then constructs a set DR of vertices in the graph with the following
properties. First, DR C R. Secondly, DR is the union of a collection of 1-separated clusters
{C1,...,C}, of radius at most k, whose centers are nodes of R. Thirdly, DR contains at
least a 1/|R|'* fraction of the vertices of Ny(DR) N R. These clusters will be colored in a

single color by procedure Compress.

The procedure operates as follows. The procedure picks an arbitrary vertex v in R (called
the center vertex), and grows a ball of vertices DR around it of the smallest radius r such
that the vertices from the set R in DR are at least a 1/|R|'* fraction of the vertices from
the set R in the ball of radius r 4+ 1 around v, N1(DR). It is easy to prove that there always
exists an r < k for which this condition holds. Then DR is made into a cluster, and the
nodes of Ni(DR) N R are eliminated from the graph. Then another arbitrary vertex of R is

picked, and the process is repeated, until no more vertices are left in R.
Procedure Greedy_Color(R)

Input: A cluster R.
Output: A set DR C R containing at least |R|'~'/* vertices of R.

1. DR — §; R — R.



2. While R # { do:

(a) S — {v} for some v € R.

(b) While |Ny(S) N R| > |R|'/*|S| do:
S — SU(N(S)N R).

3.2.2 Procedure Compress

Let us next describe procedure Compress, whose role is to take an initial legal coloring .4
that constitutes a weak decomposition with “many” (specifically, kn'/*) colors and “large”
separation (specifically, 2k + 1), and compress it into a new coloring ., providing a weak
decomposition with fewer (specifically, kn'/*) colors and separation 1, using sub-procedure

Greedy Color.

1/k jterations, each of which colors a fraction of

The procedure Compress operates in kn
the old-colored vertices remaining with a new color 2. Each iteration 2 looks separately at
each cluster (' of each old color-class j. For each such cluster, it constructs the set R of
nodes in Ni(C') that have not yet been colored by a new color, and then activates procedure

|'/% vertices of R, arranged

Greedy_Color, which returns a set DR consisting of at least |R
in clusters of weak-radius at most k. The crucial property of these clusters is that they are
1-separated, both from each other and from the rest of the nodes yet to be colored, since
they are chosen as the interiors of some balls constructed by the procedure. This is why
Procedure Compress can color all the nodes of all the sets DR constructed for each cluster '
of each old color-class j by the same new color ¢. (Procedure Compress actually processes the
clusters of each old color j sequentially, but 1-separation is still ensured, since after coloring
the interior of a certain ball by new color j, the procedure removes all the uncolored vertices

of the entire ball from the set of nodes to be colored W.)
Procedure Compress(G, tq4)

Input: A graph G, and a weak (zkn'/* (2k 4 1)%,2k + 1)-decomposition .y on G.
Output: A weak (kn'/*,2k + 1, 1)-decomposition 1., on G.

P—V. /™ The set of vertices yet without a new color. */

For i = 1 to kn'/* do (sequentially): /* Generate new color ¢. */



1. W« P.

2. For j =1 to zkn'/* do (sequentially): /* Cycle through old-color classes. */
In parallel for each cluster C' colored ,4(C) = j do:

(a
(b

Flect a leader for cluster C.
The leader learns the set R = Ny (C)n W.

C

d

(c) The leader executes locally DR « Greedy_Color(R).
(d) Color the vertices v € DR with new color ¢,,c,,(v) = ¢.
Set P — P — DR.

Set W «— W — R.

[§

f

e e N e N e

(
(
|1/k

The fact that procedure Compress colors at least | R|'/* vertices of R in each neighborhood

1/k

it processes, is later used in the analysis in order to prove that after kn'/" iterations, the set

P becomes empty.

Let us comment that it might possibly happen that the set P becomes empty earlier
than that, in which case all subsequent iterations will do nothing. In the sequential algo-
rithms for decomposition or cover construction, such as that of [AP90b] for instance, this
problem is bypassed by using a conditional loop, repeated only until all vertices are colored.
Unfortunately, this condition is not easy to detect in a distributed fashion, so a distributed

algorithm must do without it.

3.2.3 Algorithm Color

We finally present the entire recursive algorithm Color.

Algorithm Color(()

Input: A graph G = (V, F), |V| = n, and integer k > 1.

Output: A (y,2k + 1,1)-decomposition of G, 1 : V — {1,...,x}, for y = kn'/*.
1. Compute G2+,

2. If G has less than x vertices, then run the simple greedy algorithm of [AP92, LS91] to

generate a (kn'/* 2k 4 1, 1)-decomposition for ¢, and return.

3. Partition the vertices of (¢ into x subsets, Vi,...,V, (based on the last logx bits of

vertex IDs, which are then discarded).

10



4. Define G; to be the subgraph of G?**! induced on V..

5. In parallel forz =1,..., 2z do:

tp; «Color(G;). /* recursive application */

6. For each v € V do:
If v € V; then color v with the color ¢¥r(v) «— (7,%;(v)).

7. 1 « Compress(¢r)

3.3 Correctness and Analysis

Let us first establish the basic properties of Procedure Greedy_Color.

Lemma 3.2 The set DR constructed by Procedure Greedy Color satisfies the following prop-

erties:

(1) DR C R,
(2) DR is the union of a 1-separated cluster collection C'y,. .., C; with weak-radius rad(C;) < k,
(3) Ni(DR)N R = R, and

(4) |DR| > |R]I=1

Proof Claim (1) is immediate from the procedure.

Let 4, ..., C) be the clusters generated by the procedure and added to the set DR. That
this collection is 1-separated follows from the fact that whenever a cluster C; is added to the
set DR, the R vertices in its 1-neighborhood are removed from fx’, hence won’t participate

in any clusters constructed later.

We prove the weak-radius bound on the clusters by contradiction. Suppose that some
cluster S = (; has radius strictly greater than k. Then through k successive iterations
of While loop (2b) of the procedure, |Ni(S) N R| > |R|'/*|S|. In each iteration, S is
increased to Ny (S)N R and thus grows by an |R|'/* factor. After k such iterations, |S| > |R|;

contradiction, since S C R by construction.

Claim (3) follows from the fact that at the end of the procedure’s execution, R becomes

empty, and every vertex erased from it belongs to Ni(DR).

Finally, we prove Claim (4). For each new cluster C; in DR, let ); = N1(C;) N R. By
the stopping condition on the While loop (2b) in procedure Greedy Color, we know that

11



|Q:] < |R|'*|C;]. Note that the sets C; in DR are disjoint, and moreover, the sets Q; are
disjoint as well, since each set (); is immediately removed from R. Since DR = U;(C;) and
R = U;(Q;), summing over all the sets C;, we get that [DR| > |R|/|R|'*. Claim (4) follows.
O

Let us now turn to analyzing the properties of Procedure Compress. Let P(i) denote
the set of vertices that remain uncolored at the end of the ith (main) iteration of procedure

Compress. We claim that this set shrinks by the desired factor, or formally:
Lemma 3.3 |P| < |P_q| — |P_q | Y/F.

Proof Consider iteration 7. Note that at its end, the set W becomes empty. This is because
every uncolored node v belongs to some old color class j, and assuming v was not colored in
any internal iteration & < j, in the jth internal iteration v will join R, and consequently be

removed from W.

Consider the operation of the procedure on old color j and old cluster C. Let R(j,C)
denote the set R = Ni(C) N W computed for this pair, and let DR(j,C) denote the set
removed from P in step (2e) for this pair. By Lemma 3.2,

IDR(j.O)| = |R(j, O (1)

We claim that every two sets R(j,C') and R(j’,C’) are disjoint. When j' = j the claim
follows from the fact that the clusters of a given old color j are 2k + 1-separated, hence the
corresponding sets N,(C') and Ni(C’) are disjoint. When j’ > j the claim follows from the
fact that R(j,C) is subsequently removed from W. Similarly, every two sets DR(j,C') and
DR(j',C") are disjoint.

Since the set W becomes empty in the end, P,y = W = U; ¢ R(j,C). Denote the set
of nodes that were colored in iteration ¢ by Z = UU; » DR(j,C). By the above disjointness
arguments we have |W| = 3" - |R(j,C)| and |Z| = 32, - [DR(j,C')|. Since a® +b* > (a+b)"
for a < 1, we get by (1) that satisfies |Z| > [W|'='/* hence P; < |W|— |[W|'"/k, O

Corollary 3.4 After kn'/F (main) iterations of Procedure Compress, all the sets P;, hence also

the set P, become empty. O

Lemma 3.5 Given a graph (i and a weak (xkn'/* (2k 4+ 1)%,2k 4 1)-decomposition .4 on
the vertices of (i as input, the output of Procedure Compress is a weak (kn'/* 2k 4 1,1)-

decomposition ,.,, on G.

Proof Consider some iteration z of Procedure Compress. For each old color 7 and old cluster
C, let DR(j,C) denote the set removed from P in step (2e) for this pair. We first need to

12



argue that the collection of clusters DR(j, (') that were generated (and colored ¢) in iteration

2 1s 1-separated.

Look at two sets DR(j,C') and DR(y',C’). When j' = j the claim is clear, since
DR(3,C) € Ni(C) and DR(j',C") C Ni(C"), and the clusters of the old color class j
were 2k + 1-separated. When j < j’, l-separation is guaranteed since once DR(j,C') was
colored ¢, all the uncolored vertices in its 1-neighborhood, Ni(DR(j,C)) N R, were removed

from the set of candidate nodes to be colored, W.
The bound of 2k 4+ 1 on the diameter of each new cluster is immediate from Lemma 3.2.

Finally, the bound on the number of new colors follows from the previous lemma. O

Lemma 3.6 The running time of procedure Compress is z(kn'/¥)?(2k + 1)2.

Uk . kn'/* internal iterations, and the number of steps per

Proof Overall, there are zkn
internal iteration is proportional to the diameter of the k-neighborhoods Nj(C') (which is
the area scanned by C’s leader). Since clusters in the initial decomposition are of diameter
(2k + 1)?, the relevant area has diameter (2k + 1)?, hence the total time is :z:(knl/k)z(Zk + 1)2

a

Finally, we analyze the properties of Algorithm Color itself.

Lemma 3.7 The coloring ¢'p produced in Step 6 of the algorithm (based on the recursion
output) is a weak (zkn'/* (2k + 1), 2k + 1)-decomposition of (#, and the coloring ¢ produced
in Step 7 of the algorithm is a weak (kn'/* 2k + 1,1)-decomposition of .

Proof By induction on the level of recursion. The lowest level is taken care of by Step
2 of the algorithm. Assuming, by inductive hypothesis, that each coloring ; returned in
Step 5 of the algorithm is a weak (kn'/* 2k + 1,1)-decomposition of G, it follows that their
combination ¥ is a weak (xkn'/* 2k 4 1, 1)-decomposition of G***! and by Lemma 3.1 this
is also a weak (zkn'/* (2k + 1), 2k + 1)-decomposition of . Finally, by Lemma 3.5, Step
7 of the algorithm yields a weak (kn'/* 2k 4 1, 1)-decomposition of . O

It remains to analyze the running time of the algorithm Color. We observe the following.
First, the branching phase of the recursion takes time 7"(n) < (2k 4+ 1)T'(n/x) + x. By
Lemma 3.6, the merge takes time z(kn'/*)%(2k + 1)2. Overall, we have

T(n) 2k + )T (n/x)+ :z:(knl/k)z(Zk + 1)2

<
S (Qk + 1)logn/logxx(kn1/k)2(2k + 1)2

This bound is optimized by selecting z = 2V!°8"V1+o8k We get the following.
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Lemma 3.8 Fixing x = 2V°e"V1+lek the running time of algorithm Color is

n21/1+logk/1/logn+2/k (Qk + 1)2

Theorem 3.9 There is a deterministic distributed algorithm which given a graph &' = (V, ),
finds a weak (kn'/* 2k 4 1,1)-decomposition of G in n?V1Flesk/\leen+2/k (9F 1 1)2 time.

Corollary 3.10 There is a deterministic distributed algorithm which given G = (V, ), finds
a weak (O(logn),O(logn), 1)-decomposition of (i in p>V1°sleen/VIeem time which is in O(n°)
for any € > 0.

Independently, and at the same time as we introduced the above algorithm, Panconesi
and Srinivasan [PS92] obtained a slightly better asymptotic running time for a low-quality
weak network decomposition than that achieved by Awerbuch et. al. [AGLP89]. As they
remark, using a version of our transformer algorithm (see the next section), gives the same
improvement in running time for the construction of a high-quality weak network decompo-

sition. We thus obtain the following corollary: .

Corollary 3.11 Thereis a deterministic distributed algorithm which given G = (V, E), finds a
weak (O(logn), O(logn), 1)-decomposition of G in O(n®/V1°e™) time, which is in O(n) for
any € > 0.

3.4 Distributed implementation

Finally, let us discuss the distributed implementation of the algorithm. The distributed
model of computing we will be concerned with, hereafter referred to as the free model, is due
to Linial [Lin87]. Much as PRAM algorithms in parallel computing gives a good indication

of parallelism, the free model gives a good indication of locality and distributed time.

In the free distributed model, the underlying network topology is represented by a graph,
G = (V. F), where there is a processor at each vertex, and there is an edge between two
vertices if and only if there is a direct communication link between the corresponding pro-
cessors. Communication is completely synchronous, and reliable. Every time unit, each
processor may pass messages to each of his neighbors. There is no limit on the size of these
messages. Also, we do not charge for the time that it requires individual processors to com-
pute functions; we only require that these are polynomial time computations. Hence all
operations within a subgraph of weak-diameter ¢ can be performed centrally by collecting

information to the leader and doing them locally (at no cost), and hence require time ¢.

Some implementation issues still need to be discussed. Procedure Color in effect works

on higher and higher powers of the graph. Notice that to implement the (logical) graph G*
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in the (actual) distributed network G, we might have to traverse paths of length ¢ in order
to look at all our neighbors in the graph G?, since the only edges physically available in the
network are those of the underlying graph (. Therefore the time for running an algorithm

on the graph G* blows up by a factor of ¢.

One last technical point to be discussed concerns the way clusters are handled as single
nodes (for coloring etc.) in the recursive algorithm. This is done by electing a “leader”

vertex for each cluster, which does all the computation for its cluster.

We remark that direct practical implementation of distributed algorithms on real dis-
tributed systems may limit the size of messages that can be sent in one step over an edge,
charge for local space and time, remove the assumption that the system is synchronous, and
might also seek to handle faulty processors, or a dynamically changing network. Because
we are presenting the first sub-diametric time algorithms for high-quality network decom-
positions and covers, we have chosen in this paper to work in the mathematically cleanest
model. For ideas on how one might go about adapting the algorithms in this paper to

deal with some of the above concerns, the reader is referred to the transformer techniques

in [AAGST, AP90b, APPS92)].

4 Sparse neighborhood covers

4.1 Outline

We now turn to algorithms for generating sparse neighborhood covers. We introduce an
algorithm Sparse, which takes as input parameters & and ¢, and outputs a (k,, kn'/*)-

neighborhood cover for a given network G.

Algorithm Sparse invokes two procedures, named Cover and Decomp. Procedure Cover
is a modification of the sequential sparse cover procedure of Awerbuch and Peleg [AP90b].
Procedure Decomp can be any existing procedure which given a graph G = (V, E), finds a
weak (Yotd, dotd, 1)-decomposition of G.

Lemma 4.1 [AP90b] There exists a procedure Cover(R) that given a graph G = (V. E),
|V| = n, a collection of vertices R and an integer k, constructs a set of vertices DR and a

collection of clusters DU, satisfying the following properties:

(1) For every v € DR, the t-neighborhood N;(v) is contained in some cluster in DU.

(2) Y NY' =0 for every V.Y’ € DU,
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(3) |DR| > |R|'"~'/*, and

(4) The (strong) diameter of DU clusters satisfies maxzepy Diam(1T) < (2k — 1) - 2t.

(Let us remark that it is possible to introduce slight modifications to Procedure Cover(R)
of [AP90b], that will result in improving the constant factor occuring in the exponent of the
expression for the time complexity of our algorithm by a factor of 2. The modification in-
volves keeping track of old-colored clusters, and their neighborhoods separately (see [Cow93]
for details.)

The second component used in Algorithm Sparse, namely, Procedures Decomp, will be
bound to one of the two algorithms of [PS92, LS91]. Again, we will only state the main
relevant properties of these algorithms here, and refer the interested reader to the appropriate
source for more details on their structure and operation. The claims we will rely on are the

following.

Lemma 4.2 [PS92] There exists an algorithm Decompips) that given a graph & = (V, F),
|V| = n, constructs a weak (2V'°8™ 23V1°8" 1).decomposition for G in 2°V'°8™ time for some

constant ¢ > 0.

Lemma 4.3 [LS91] There exists a randomized algorithm Decompy;s) that given a graph G =
(V. E),

time.

V| = n, constructs a weak (logn,logn, 1)-decomposition for G in O(log” n) expected

4.1.1 Algorithm Sparse

Algorithm Sparse operates as follows. It first calls Procedure Decomp with the power graph
G*+1 The output of Decomp is a weak (Xotdy dotd, 1)-decomposition ¢, of G which is
a weak (Xoud, (4kt + 1)doa, 4kt 4+ 1)-decomposition of GG. This decomposition is used in order
to speed up the construction of the neighborhood cover by performing the construction for
each color of the decomposition sequentially, but for each color, invoking Procedure Cover

in parallel over separate clusters.
Algorithm Sparse(()

Input: A graph G = (V, F), |V| = n, and integer k > 1.
Output: A sparse (k, 1, kn'/*)-neighborhood cover T of G.

Compute G**! and invoke 1,4 + Decomp((G4*+1). /" oq is a weak (Xoud, dotd, 1)-

decomposition
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of G¥+1 or a weak (Yo, (4kt 4+ 1)dy1a, 4kt + 1)-decomposition of G.
¥/

T 0. /* T will be the new cover. */

P —V; /* P is the set of unprocessed vertices. */

For i = 1 to kn'/* do (sequentially): /* find a kn'/*-degree cover of Gi. */
1. W« P.

2. For j = 1 to Yo do (sequentially):  /* Cycle through old-color classes. */
In parallel for each cluster C' colored 1h,4(C') = j dos
(a) Elect a leader for cluster C.
(b) The leader learns the set R = Nay(C) N W
(¢) The leader executes locally (DR, DU) — Cover(R).
(d) Set T — T UDU.
) Set P — P — DR.
) Set W — W — R.

(e
(f

4.2 Correctness and Analysis

Let us first argue the correctness of the resulting algorithm Sparse.

Fix some main iteration ¢ of Algorithm Sparse, and let P; denote the collection P at the
beginning of iteration :. Consider the operation of the algorithm on cluster C' of old color
J. Let DR(3,C) and DU(j,C') denote the two sets generated for this cluster in step (2c) of
the algorithm.

Lemma 4.4 The collections DR(j,C') and DU(j, (') satisfy the following properties:

(1) The t-neighborhood of every vertex in DR(j,C) is contained in some cluster of DU(j,C').
(2) Every two clusters T' € DU(j,C') and T" € DU(y',C") are disjoint.
(3) [Uje DR(j,C)] = [P'=%, and

(4) The (strong) diameter of DU clusters satisfies maxrepy;,cy) Diam (1) < (2k — 1) - 2t.
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Proof Claims (1) and (4) follow directly from Lemma 4.1.

Claim (2) is analyzed by cases. The case where 3’ = j and C’ = C also follows from
Lemma 4.1 directly. For the case j' = j but C’ # C, the claim follows from the fact that C
and C' were (4kt + 1)-separated by construction, and by property (4) of Lemma 4.1. For the
case 7' > j and (' # (', the claim follows from the fact that at the end of internal iteration
J, all the nodes of R are eliminated from W, so they won’t participate in internal iteration
J'.

Claim (3) is proved similarly to Lemma 3.3. O

From Claim (3) of the last lemma we get

Corollary 4.5 After kn'/* (main) iterations of Algorithm Sparse, the set P becomes empty.
O

Lemma 4.6 The output of Algorithm Sparse is a (k, ¢, kn'/*)-neighborhood cover of .

Proof The fact that all neighborhoods Ny(v) are covered by the constructed cover 7 is guar-
anteed by Property (1) of Lemma 4.1, combined with the fact that a vertex v is eliminated
from the set P in Algorithm Sparse only as the result of joining the set DR following some

invocation of Procedure Cover.

The (strong) diameter bound follows from Claim (4) of Lemma 4.4.

Finally, the degree bound follows from the fact that the algorithm loops through kn'/*

main iterations, and each of those produces a set of disjoint clusters. O

Let us now turn to the complexity of Algorithm Sparse. The invokation of Procedure
Decomp on the power graph G**! will yield an O(kt) blowup in the running time of Decomp,

say 7. Hence this stage will require time O(kt7).

Once Decomp is called, the remaining operations involve the nested loops (with a total
of knl/* x Xoid internal iterations) each requiring the traversal of O(ktd,iq)-neighborhoods.
Hence the running time for Algorithm Sparse is O(doldxoldkztnl/k). Then, in sum, Sparse
is able to obtain a sparse t-neighborhood cover in the original graph G in time O(ktr +
tdoiaxoiak®n'/*). (Recall that, for the applications, we typically set & = logn, yielding time
O(trlogn + tdy1aXoid log? n).)

Calling algorithm Sparse with Decomp bound to the network decomposition algorithm

Decompypg) of [P592] gives the following theorem, relying on Lemma 4.2:

Theorem 4.7 There is a deterministic distributed algorithm that given a graph G = (V, E),
|V| = n, and integers k,1 > 1, constructs a (k,t, kn'/)-neighborhood cover of (& in 12°V1os" 4
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t24V1eenpl/k time for some constant ¢ > 0, where each vertex is in at most A = O(kn'/¥)

clusters, and the maximum strong cluster diameter is Diam(S;) = O(kt).

Corollary 4.8 There is a deterministic distributed algorithm that given a graph GG = (V, F),
|V| = n, and integerst > 1, constructsa (log n, log n, )-neighborhood cover of G in O(12°V1°8™)
time for some constant ¢ > 0, where each vertex is in at most A = O(logn) clusters, and the

maximum strong cluster diameter is Diam(S;) = O(tlogn).

Calling algorithm Sparse with Decomp bound to the randomized network decomposition

algorithm Decompyzg) of [LS91] gives the following theorem, relying on Lemma 4.3:

Theorem 4.9 There is a randomized distributed algorithm that given a graph G = (V, E),
|V| = n, and integers k,¢ > 1, constructs a (k,t, kn'/*)-neighborhood cover of & in tO(k? -
log®n - n'/*) time, where each vertex is in at most A = O(kn'/*) clusters, and the maximum
strong cluster diameter is Diam(S;) = O(kt).

Corollary 4.10 There is a randomized distributed algorithm that given a graph G = (V, F),
V] = n, constructs a (logn,logn,1)-neighborhood cover of G in O(log*n) time, and a
(logn,tlogn,t)-neighborhood cover of i in O(tlog" n) time.

We remark that since sparse neighborhood cover algorithms can be translated into strong
network decompositions of comparable parameters (cf. [AP90b, Cow93]), all complexity

bounds hold for the constructions of strong network decompositions as well.
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