
Fast Distributed Network Decompositions andCovers �Baruch Awerbuch y Bonnie Berger z Lenore Cowen xDavid Peleg {September 14, 1995AbstractThis paper presents deterministic sublinear-time distributed algorithms for networkdecomposition and for constructing a sparse neighborhood cover of a network. Thelatter construction leads to improved distributed preprocessing time for a number ofdistributed algorithms, including all-pairs shortest paths computation, load balancing,broadcast, and bandwidth management.
�A preliminary version of this paper appeared in the Proceedings of the Eleventh Annual ACM Symposiumon the Principles of Distributed Computing.yLab. for Computer Science, MIT, Cambridge, MA 02139. Supported by Air Force Contract AFOSRF49620-92-J-0125, NSF contract 9114440-CCR, DARPA contracts N00014-91-J-1698 and N00014-J-92-1799,and a special grant from IBM.zDept. of Mathematics and Lab. for Computer Science, MIT. Supported in part by an NSF PostdoctoralResearch Fellowship and an ONR grant provided to the Radcli�e Bunting Institute.xDept. of Math Sciences, Johns Hopkins University, Baltimore, MD 21218. This work was done whilethe author was a grad student in the Dept. of Mathematics at MIT and Supported in part by Air ForceContract OSR-89-02171, Army Contract DAAL-03-86-K-0171 and DARPA Contract N00014-91-J-1698{Department of Applied Mathematics and Computer Science, The Weizmann Institute, Rehovot 76100,Israel. Supported in part by an Allon Fellowship, by a Bantrell Fellowship, by a Walter and Elise HaasCareer Development Award and by the Israel Basic Research Foundation.0

1 Introduction1.1 BackgroundThis paper is concerned with fast deterministic algorithms for constructing network decompo-sitions in the distributed network model, particularly a strong form of network decompositionknown as a sparse neighborhood cover. Given an undirected weighted graph (or network),the t-neighborhood of a vertex v, for t � 0, is the collection of nodes within distance t awayfrom v in the graph. A t-neighborhood cover is a set of overlapping \clusters" of nodes in thegraph with the property that for any node, there exists a cluster in the cover that containsits t-neighborhood. A t-neighborhood cover is called high-quality or sparse (de�ned formallyin Section 2) when it achieves an optimal tradeo� between the maximum diameter and themaximum cluster overlap.Such a cover e�ciently represents the local neighborhoods in a graph. In fact, themethod of representing networks by sparse neighborhood covers, introduced in [Pel89], hasrecently been identi�ed as a key to the modular design of e�cient network algorithms[Pel93, AP90b, AP90a, AR91, BFR92]. Using this method as a basic building block leadsto signi�cant performance improvements for several fundamental network control problems(such as shortest paths [AR91], job scheduling and load balancing [AKP92], broadcast andmulticast [ABP91], routing with small tables [AP92], deadlock prevention [AKP91], band-width management in high-speed networks [ACG+90], and database management [BFR92]),as well as for classical problems in sequential computing (such as �nding small edge cutsin planar graphs [Rao92] and approximate all-pairs shortest paths [ABCP93, Coh93]). Inmost of these applications, sparse neighborhood covers yield a polylogarithmic-overhead so-lution to the problem. Thus, in a sense, the impact of e�cient sparse neighborhood coveralgorithms on distributed network algorithms is analogous to the impact of e�cient datastructures (like balanced search trees or 2-3 trees) on sequential computation.In parallel to the introduction of sparse neighborhood covers in [Pel89], the stronglyrelated, yet distinct, notion of network decomposition was introduced in [AGLP89]. Themain di�erence between the two notions is that sparse neighborhood covers, as used in [Pel93,AP90b, AP90a, BFR92, AKP92, AKP91], consist of clusters that capture the expectedde�nition of local neighborhood (see Section 2), while network decomposition as utilizedin [AGLP89, LS91, PS92, ABCP92] employs only a weak notion of neighborhood. In fact,the way network decomposition is de�ned in [AGLP89], the clusters might not even beinternally connected. For many applications in distributed computing, the stronger notion ofsparse covers is essential. For example, decompositions based on the network decomposition1

structure introduced in [AGLP89] are not su�cient to support local routing, where the pathbetween two vertices in the same cluster should consist entirely of vertices within that cluster.Notable exceptions for which such a decomposition su�ces are those applications basedon \symmetry-breaking"; i.e., such a decomposition can be used to construct a maximalindependent set or a (�+1) coloring (where � is the maximum vertex degree in the graph)fast in the distributed domain [AGLP89, LS91, PS92].The goal of this paper is fast distributed algorithms for both high-quality network de-composition, and sparse neighborhood covers.1.2 Previous workPrevious work on the construction of neighborhood covers and decompositions can be clas-si�ed into three main groups, to be discussed next. First, a fast algorithm is given in[AGLP89] for obtaining a network decomposition with O(n�)-diameter clusters, for � =O(plog log n=plog n). This algorithm requires O(n�) time in the distributed setting, andO(nE) sequential operations.Unfortunately, not only are the constructions of [AGLP89] restricted to network decom-positions (rather than the stronger construct of neighborhood covers), but they are alsoine�cient in terms of the quality of the decomposition (measured, as discussed earlier, bythe maximum diameter-overlap tradeo�). Roughly speaking, the ine�ciency factor is O(n�),and this factor carries over to all but some of the graph-theoretic applications, rendering thedecompositions of [AGLP89] expensive in a number of practical contexts. These construc-tions are, nonetheless, su�cient for the two main applications mentioned above, namely, themaximal independent set problem and (� + 1) coloring. We have already remarked that anetwork decomposition su�ces for these applications. There is also no penalty for the poorquality of the clusters because to construct an MIS or a (�+1) coloring, one needs to traversethe O(n�)-diameter clusters only a constant number of times. In contrast, network controlapplications, such as routing, online tracking of mobile users, and all-pairs shortest paths,require us to traverse the clusters many times. Therefore, a higher-quality decomposition isneeded to avoid a large blowup in the running time for these latter applications.A second group of constructions consists of (sequential) greedy algorithms for the con-struction of sparse neighborhood covers [Pel89, AP90b, LS91]. These algorithms yield thedesired optimal tradeo�, and their bounds apply to all alternate notions of network decom-position or sparse neighborhood covers. (In fact, the algorithm of [AP90b] is more general. Itcan create a subsuming cover for an arbitrary initial collection of clusters, and not necessarily2

to the collection of 1-neighborhoods. In addition, it applies also to the weighted case, withthe corresponding weighted notions of distance and diameter.) However, these algorithmsare inherently sequential, and their distributed implementation requires O(n log n) time.The third group consists of randomized distributed algorithms. The algorithm of [LS91]achieves a high-quality network decomposition with high probability by introducing random-ization, and is very e�cient. However, the algorithm does not yield a sparse neighborhoodcover. Furthermore, even when a network decomposition su�ces instead of a neighborhoodcover, since we are concerned here with using the clusters as a data structure and runningvarious applications on top of it, a randomized solution might not be acceptable in somecases. This is especially true because one cannot just run a randomized distributed algo-rithm several times to guarantee a good underlying decomposition, since it is impossible toe�ciently check the global quality of the decomposition in the distributed model. Thus afast deterministic algorithm that guarantees a good underlying set of clusters is of more thantheoretical interest.In summary, all three previous approaches fell short of achieving the goal of constructinga high-quality network decomposition (or a sparse neighborhood cover) deterministically andin sublinear time; each achieves two of the desired properties at the expense of the third.1.3 Contents of this paperIn this paper we achieve the goal of constructing a high-quality network decomposition(or a sparse neighborhood cover), deterministically in sublinear time. We construct allalternate notions of network decomposition, or sparse neighborhood covers in time O(n�),for � = O(1=plog n). The reduction from time O(n�) for � = O(plog log n=plog n) to� = O(1=plog n) is achieved directly from the corresponding speedup for the [AGLP89]construction due to [PS92]. In addition we present a randomized algorithm that constructsall notions of high-quality network decomposition in polylogarithmic expected time, includingthe useful sparse neighborhood covers.Our results are presented in terms of Linial's model for static synchronous networks (seeSection 3.4), but can be adapted to a more realistic dynamic asynchronous environmentusing the existing transformer techniques of [AAG87, AP90b, APPS92].3

2 Notions of network decompositionIn this section we survey the di�erent formulations of network decomposition, and discusstheir relations. Within each family of de�nitions, we also discuss what it means to have ahigh-quality decomposition or cover, in terms of the optimal tradeo�s between low diameterand sparsity.Our de�nitions consider a graph G = (V;E) whose vertices are grouped into a collec-tion of (possibly overlapping) sets S1; : : : ; Sr (called also clusters). These clusters need notnecessarily be internally connected in the graph. This collection is referred to as a cover .For the special case that the clusters are disjoint, we refer to the cluster collection as adecomposition.Our notion of distance in a graph is the usual (unweighted) one, i.e., the distance betweenu; v 2 V in G, denoted distG(u; v), is the length (in edges) of the shortest path between u andv in G. The distance between two clusters S; S 0 is analogously de�ned to be the minimumdistance (in G) between any two vertices v 2 S and v0 2 S0. A collection of clusters is saidto be �-separated if every two clusters in it are at least distance �+ 1 apart.However, we are also interested in distances inside clusters, and for that purpose, wemust distinguish between two distinct notions.De�nition 2.1 The weak distance between u; v 2 Si is simply their distance in G, distG(u; v).Namely, the path connecting them is allowed to shortcut through vertices not in Si. The weakdiameter of Si is de�ned as diam(Si) = maxu;v2Si(distG(u; v)):Similarly, the weak radius of Si is de�ned asrad(Si) = minu2Si maxv2Si (distG(u; v)):The strong distance between u; v 2 Si, denoted distSi(u; v), is the length of the shortestpath between u and v, on the subgraph of G induced by Si. Namely, all vertices on the pathconnecting u and v must also be in Si. The strong diameter of Si is de�ned asDiam(Si) = maxu;v2Si(distSi(u; v)):The square of the graph G, denoted G2, is de�ned to be the two-step transitive closureof G. I.e., G2 contains an edge (u; v) if either this edge is in G itself, or there exists an4

intermediate vertex w s.t. (u;w) and (w; v) are in G. Similarly, Gt is the transitive closureof G to distance t, i.e., it contains an edge between any two vertices that are connected bya path of length t or less in G.The t-neighborhood of a vertex v 2 V is de�ned as Nt(v) = fw j distG(w; v) � tg.This notion is extended to sets of vertices, de�ning the t-neighborhood of a set W to beNt(W) = Sv2W Nt(v). (Note that always W � Nt(W).)We are now ready to de�ne the alternate notions of network decompositions and covers.First, we give the weak diameter de�nition, which is equivalent to the de�nitions in [AGLP89,LS91, PS92].De�nition 2.2 [Weak Network Decomposition.] For an undirected graph G = (V;E), a weak(�; d; �)-decomposition is de�ned to be a �-coloring of the vertices of the graph, i.e., a mapping : V 7! f1; : : : ; �g, that satis�es the following properties:1. each color class �1(i) is partitioned into (an arbitrary number of) disjoint vertex clustersC i1; : : : ; C ili;2. the weak diameter of any cluster C ij of a single color class �1(i) satis�es diam(C ij) � d;3. each collection of monochromatic clusters is �-separated.The quality of the decomposition is measured by the tradeo�s between the parametersd, � and �. It is known that there are graphs for which � must be
(kn1=k) to achieve aweak decomposition into clusters of diameter bounded by O(k�) and separation � [LS91].Consequently, a weak (�; d; �)-decomposition is said to be high-quality if it achieves theoptimal tradeo�; namely, when d = O(k�), and the coloring number � is at most kn1=k, forsome k � 1.Typically, we are most concerned with the case of a high-quality weak decompositionwhen � and d are both O(log n) (which occurs, for constant �, when k = �(log n)).We may occasionally refer to a (monochromatic) cluster C whose vertices are colored bysome color j, as being colored j itself, and write (C) = j.A simple variant of weak network decomposition yields the related notion of a strongnetwork decomposition.De�nition 2.3 [Strong Network Decomposition.] For an undirected graph G = (V;E), astrong (�; d; �)-decomposition is de�ned just as a weak (�; d; �)-decomposition, except that inProperty 2, we substitute \strong" for \weak" diameter.5

As with the weak-diameter de�nition, the \high-quality" tradeo�s are optimal. A strong(�; d; �)-decomposition can be thought of as a generalization of the standard graph coloringproblem, where � is the number of colors used, and the clusters are super-vertices of strong-diameter d.Clearly, any strong network decomposition is also a weak decomposition, but the converseis not necessarily true. All the results in [AGLP89, LS91, PS92, ABCP92] are stated in termsof weak network decomposition, but some can be extended to strong network decomposition(See [Cow93] for a survey.).We now present the de�nition for sparse neighborhood covers. Notice that this is a strongdiameter de�nition.De�nition 2.4 A (k; t;�)-neighborhood cover is a collection of clusters S1; : : : ; Sr, with thefollowing properties:1. For every vertex v, there exists a cluster Si s.t. Nt(v) � Si.2. The strong diameter of each cluster Si satis�es Diam(Si) � O(kt).3. Each vertex belongs to at most � clusters.Analogously to the case of decompositions, the quality of the cover is measured in termsof the tradeo�s between the parameters �, t and k. It is known that there are graphs forwhich � must be
(kn1=k) to achieve a cover of all radius t neighborhoods Nt(v) by clustersof strong diameter bounded by O(kt). Consequently, a (k; t;�)-neighborhood cover is saidto be sparse, if � � kn1=k.The parameter k is bounded between two natural extreme cases. Setting k = 1, the setof all balls Nt(v) of radius t around each vertex v is a sparse neighborhood cover. In thiscase, the diameter of a ball is t, but each vertex might appear in every ball, so � may beas high as n. On the other extreme, setting k = Diam(G)=t, the single cluster composed ofthe entire graph G is a sparse neighborhood cover. In this case, each vertex appears only ina single cluster G, so the degree bound is � = 1, but the strong diameter of the cover equalsthe diameter of G, which could be as high as n.A natural breakpoint is obtained by setting k = log n (the typical and useful setting,for most of the applications we are interested in). This yields a sparse (log n; t;O(log n))-neighborhood cover, which is a collection of clusters Si with the following properties:� the clusters contain all t-neighborhoods Nt(v),6

� the diameter of each cluster is bounded by O(t log n), and� each vertex is contained in at most c log n clusters, for constant c > 0:We remark that this bound is tight to within a constant factor; there exist graphs for whichany (log n; t;�)-neighborhood cover has � =
(log n), i.e., it places some vertex in at least
(log n) sets [LS91]. When k = log n, we �nd that sparse neighborhood covers form a usefuldata structure to locally represent the t-neighborhoods of a graph.The new deterministic distributed algorithm described in Section 4 constructs determin-istically a sparse neighborhood cover, and can easily be transformed into an algorithm forconstructing a (strong, and therefore also weak) diameter decomposition.3 Weak network decomposition3.1 OutlineIn this section, we introduce the new distributed algorithm Color, which recursively buildsup a weak (kn1=k; 2k + 1; 1)-decomposition, for a parameter k. It invokes the procedureCompress, which, in turn, runs the procedure Greedy Color, which is a modi�ed version ofthe greedy algorithm of [AP92] on separate clusters. Note that all distances in the discussionbelow, including those in the same cluster, are assumed to be weak distances (i.e., distancesin the graph G).Color is implicitly taking higher and higher powers of the graph. The straightforwardbut crucial observation on which the power graph approach is based is the following:Lemma 3.1 A (�; d; 1)-decomposition on Gt is a (�; dt; t)-decomposition on G. 2Choosing t well at the top level of the recursion, guarantees that vertices in di�erentclusters of the same color are always separated by at least twice their maximum possibleradii. We can thus use procedure Greedy Color to recolor these separate clusters in parallelwithout collisions.The recursive algorithm has two parts:1. Find a weak (�; dt; t)-decomposition, where � = xkn1=k and d; t = 2k + 1, on each ofx disjoint subgraphs. Here x is a parameter of the form 2y, to be determined later on.2. Merge these together by recoloring, to get a weak (kn1=k; 2k + 1; 1)-decomposition.7

Note that in essence, the decomposition generated in the �rst step is utilized in the \tra-ditional" way, for symmetry-breaking, in order to facilitate the construction of the improveddecomposition in step 2. The fact that the clusters generated in the �rst step are separatedto distance 2k + 1, coupled with the fact that Step 2 invokes a sequential algorithm in par-allel inside each cluster separately, and this algorithm constructs clusters of radius at mostk, ensures that these parallel invocations do not interfere.3.2 The coloring algorithmIn this subsection we present the coloring algorithm Color, its main procedure Compressand its sub-procedure Greedy Color.3.2.1 Procedure Greedy ColorLet us �rst describe procedure Greedy Color. Procedure Greedy Color is a weak-diametervariant of the (sequential) procedure used in the greedy algorithm of [AP92] for determining,in each iteration, what vertices will be colored in that iteration. The procedure receivesa vertex set R. It then constructs a set DR of vertices in the graph with the followingproperties. First, DR � R. Secondly, DR is the union of a collection of 1-separated clustersfC1; : : : ; Clg, of radius at most k, whose centers are nodes of R. Thirdly, DR contains atleast a 1=jRj1=k fraction of the vertices of N1(DR) \ R. These clusters will be colored in asingle color by procedure Compress.The procedure operates as follows. The procedure picks an arbitrary vertex v in R (calledthe center vertex), and grows a ball of vertices DR around it of the smallest radius r suchthat the vertices from the set R in DR are at least a 1=jRj1=k fraction of the vertices fromthe set R in the ball of radius r+1 around v, N1(DR). It is easy to prove that there alwaysexists an r � k for which this condition holds. Then DR is made into a cluster, and thenodes of N1(DR) \R are eliminated from the graph. Then another arbitrary vertex of R ispicked, and the process is repeated, until no more vertices are left in R.Procedure Greedy Color(R)Input: A cluster R.Output: A set DR � R containing at least jRj1�1=k vertices of R.1. DR ;; R̂ R. 8

2. While R̂ 6= ; do:(a) S fvg for some v 2 R̂.(b) While jN1(S) \ R̂j > jRj1=kjSj do:S S [(N1(S) \ R̂).(c) DR DR [S.(d) R̂ R̂ � (N1(S) \ R̂).3.2.2 Procedure CompressLet us next describe procedure Compress, whose role is to take an initial legal coloring oldthat constitutes a weak decomposition with \many" (speci�cally, xkn1=k) colors and \large"separation (speci�cally, 2k + 1), and compress it into a new coloring new providing a weakdecomposition with fewer (speci�cally, kn1=k) colors and separation 1, using sub-procedureGreedy Color.The procedure Compress operates in kn1=k iterations, each of which colors a fraction ofthe old-colored vertices remaining with a new color i. Each iteration i looks separately ateach cluster C of each old color-class j. For each such cluster, it constructs the set R ofnodes in Nk(C) that have not yet been colored by a new color, and then activates procedureGreedy Color, which returns a set DR consisting of at least jRj1=k vertices of R, arrangedin clusters of weak-radius at most k. The crucial property of these clusters is that they are1-separated, both from each other and from the rest of the nodes yet to be colored, sincethey are chosen as the interiors of some balls constructed by the procedure. This is whyProcedure Compress can color all the nodes of all the sets DR constructed for each cluster Cof each old color-class j by the same new color i. (Procedure Compress actually processes theclusters of each old color j sequentially, but 1-separation is still ensured, since after coloringthe interior of a certain ball by new color j, the procedure removes all the uncolored verticesof the entire ball from the set of nodes to be colored W .)Procedure Compress(G, old)Input: A graph G, and a weak (xkn1=k; (2k + 1)2; 2k + 1)-decomposition old on G.Output: A weak (kn1=k; 2k + 1; 1)-decomposition new on G.P V . /* The set of vertices yet without a new color. */For i = 1 to kn1=k do (sequentially): /* Generate new color i. */9

1. W P .2. For j = 1 to xkn1=k do (sequentially): /* Cycle through old-color classes. */In parallel for each cluster C colored old(C) = j do:(a) Elect a leader for cluster C.(b) The leader learns the set R = Nk(C) \W .(c) The leader executes locally DR Greedy Color(R).(d) Color the vertices v 2 DR with new color new(v) = i.(e) Set P P �DR.(f) Set W W �R.The fact that procedure Compress colors at least jRj1=k vertices of R in each neighborhoodit processes, is later used in the analysis in order to prove that after kn1=k iterations, the setP becomes empty.Let us comment that it might possibly happen that the set P becomes empty earlierthan that, in which case all subsequent iterations will do nothing. In the sequential algo-rithms for decomposition or cover construction, such as that of [AP90b] for instance, thisproblem is bypassed by using a conditional loop, repeated only until all vertices are colored.Unfortunately, this condition is not easy to detect in a distributed fashion, so a distributedalgorithm must do without it.3.2.3 Algorithm ColorWe �nally present the entire recursive algorithm Color.Algorithm Color(G)Input: A graph G = (V;E), jV j = n, and integer k � 1.Output: A (�; 2k + 1; 1)-decomposition of G, : V 7! f1; : : : ; �g, for � = kn1=k.1. Compute G2k+1.2. If G has less than x vertices, then run the simple greedy algorithm of [AP92, LS91] togenerate a (kn1=k; 2k + 1; 1)-decomposition for G, and return.3. Partition the vertices of G into x subsets, V1; : : : ; Vx (based on the last log x bits ofvertex IDs, which are then discarded). 10

4. De�ne Gi to be the subgraph of G2k+1 induced on Vi.5. In parallel for i = 1; : : : ; x do: i Color(Gi). /* recursive application */6. For each v 2 V do:If v 2 Vi then color v with the color R(v) hi; i(v)i.7. Compress(R)3.3 Correctness and AnalysisLet us �rst establish the basic properties of Procedure Greedy Color.Lemma 3.2 The set DR constructed by Procedure Greedy Color satis�es the following prop-erties:(1) DR � R,(2) DR is the union of a 1-separated cluster collection C1; : : : ; Cl with weak-radius rad(Ci) � k,(3) N1(DR) \R = R, and(4) jDRj � jRj1�1=k.Proof Claim (1) is immediate from the procedure.Let C1; : : : ; Cl be the clusters generated by the procedure and added to the set DR. Thatthis collection is 1-separated follows from the fact that whenever a cluster Ci is added to theset DR, the R vertices in its 1-neighborhood are removed from R̂, hence won't participatein any clusters constructed later.We prove the weak-radius bound on the clusters by contradiction. Suppose that somecluster S = Ci has radius strictly greater than k. Then through k successive iterationsof While loop (2b) of the procedure, jN1(S) \ R̂j > jRj1=kjSj. In each iteration, S isincreased to N1(S)\R̂ and thus grows by an jRj1=k factor. After k such iterations, jSj > jRj;contradiction, since S � R by construction.Claim (3) follows from the fact that at the end of the procedure's execution, R becomesempty, and every vertex erased from it belongs to N1(DR).Finally, we prove Claim (4). For each new cluster Ci in DR, let Qi = N1(Ci) \ R̂. Bythe stopping condition on the While loop (2b) in procedure Greedy Color, we know that11

jQij � jRj1=kjCij. Note that the sets Ci in DR are disjoint, and moreover, the sets Qi aredisjoint as well, since each set Qi is immediately removed from R̂. Since DR = Si(Ci) andR = Si(Qi), summing over all the sets Ci, we get that jDRj � jRj=jRj1=k. Claim (4) follows.2 Let us now turn to analyzing the properties of Procedure Compress. Let P (i) denotethe set of vertices that remain uncolored at the end of the ith (main) iteration of procedureCompress. We claim that this set shrinks by the desired factor, or formally:Lemma 3.3 jPij � jPi�1j � jPi�1j1�1=k.Proof Consider iteration i. Note that at its end, the set W becomes empty. This is becauseevery uncolored node v belongs to some old color class j, and assuming v was not colored inany internal iteration k < j, in the jth internal iteration v will join R, and consequently beremoved from W .Consider the operation of the procedure on old color j and old cluster C. Let R(j; C)denote the set R = Nk(C) \ W computed for this pair, and let DR(j; C) denote the setremoved from P in step (2e) for this pair. By Lemma 3.2,jDR(j; C)j � jR(j; C)j1�1=k: (1)We claim that every two sets R(j; C) and R(j0; C 0) are disjoint. When j0 = j the claimfollows from the fact that the clusters of a given old color j are 2k + 1-separated, hence thecorresponding sets Nk(C) and Nk(C 0) are disjoint. When j0 > j the claim follows from thefact that R(j; C) is subsequently removed from W . Similarly, every two sets DR(j; C) andDR(j0; C 0) are disjoint.Since the set W becomes empty in the end, Pi�1 = W = Sj;C R(j; C). Denote the setof nodes that were colored in iteration i by Z = Sj;C DR(j; C). By the above disjointnessarguments we have jW j = Pj;C jR(j; C)j and jZj = Pj;C jDR(j; C)j. Since a�+b� � (a+b)�for � < 1, we get by (1) that satis�es jZj � jW j1�1=k, hence Pi � jW j � jW j1�1=k. 2Corollary 3.4 After kn1=k (main) iterations of Procedure Compress, all the sets Pj , hence alsothe set P , become empty. 2Lemma 3.5 Given a graph G and a weak (xkn1=k; (2k + 1)2; 2k + 1)-decomposition old onthe vertices of G as input, the output of Procedure Compress is a weak (kn1=k; 2k + 1; 1)-decomposition new on G.Proof Consider some iteration i of Procedure Compress. For each old color j and old clusterC, let DR(j; C) denote the set removed from P in step (2e) for this pair. We �rst need to12

argue that the collection of clusters DR(j; C) that were generated (and colored i) in iterationi is 1-separated.Look at two sets DR(j; C) and DR(j0; C 0). When j 0 = j the claim is clear, sinceDR(j; C) � Nk(C) and DR(j0; C 0) � Nk(C 0), and the clusters of the old color class jwere 2k + 1-separated. When j < j0, 1-separation is guaranteed since once DR(j; C) wascolored i, all the uncolored vertices in its 1-neighborhood, N1(DR(j; C)) \ R̂, were removedfrom the set of candidate nodes to be colored, W .The bound of 2k + 1 on the diameter of each new cluster is immediate from Lemma 3.2.Finally, the bound on the number of new colors follows from the previous lemma. 2Lemma 3.6 The running time of procedure Compress is x(kn1=k)2(2k + 1)2.Proof Overall, there are xkn1=k � kn1=k internal iterations, and the number of steps perinternal iteration is proportional to the diameter of the k-neighborhoods Nk(C) (which isthe area scanned by C's leader). Since clusters in the initial decomposition are of diameter(2k + 1)2, the relevant area has diameter (2k + 1)2, hence the total time is x(kn1=k)2(2k + 1)2.2 Finally, we analyze the properties of Algorithm Color itself.Lemma 3.7 The coloring R produced in Step 6 of the algorithm (based on the recursionoutput) is a weak (xkn1=k; (2k + 1)2; 2k + 1)-decomposition of G, and the coloring producedin Step 7 of the algorithm is a weak (kn1=k; 2k + 1; 1)-decomposition of G.Proof By induction on the level of recursion. The lowest level is taken care of by Step2 of the algorithm. Assuming, by inductive hypothesis, that each coloring i returned inStep 5 of the algorithm is a weak (kn1=k; 2k + 1; 1)-decomposition of G, it follows that theircombination R is a weak (xkn1=k; 2k + 1; 1)-decomposition of G2k+1, and by Lemma 3.1 thisis also a weak (xkn1=k; (2k + 1)2; 2k + 1)-decomposition of G. Finally, by Lemma 3.5, Step7 of the algorithm yields a weak (kn1=k; 2k + 1; 1)-decomposition of G. 2It remains to analyze the running time of the algorithm Color. We observe the following.First, the branching phase of the recursion takes time T 0(n) � (2k + 1)T 0(n=x) + x. ByLemma 3.6, the merge takes time x(kn1=k)2(2k + 1)2. Overall, we haveT (n) � (2k + 1)T (n=x) + x(kn1=k)2(2k + 1)2� (2k + 1)logn= log xx(kn1=k)2(2k + 1)2:This bound is optimized by selecting x = 2plognp1+log k. We get the following.13

Lemma 3.8 Fixing x = 2plognp1+logk, the running time of algorithm Color isn2p1+log k=plogn+2=k (2k + 1)2.Theorem 3.9 There is a deterministic distributed algorithm which given a graph G = (V;E),�nds a weak (kn1=k; 2k + 1; 1)-decomposition of G in n2p1+logk=plogn+2=k (2k + 1)2 time.Corollary 3.10 There is a deterministic distributed algorithm which given G = (V;E), �ndsa weak (O(log n); O(log n); 1)-decomposition of G in n3plog logn=plogn time, which is in O(n�)for any � > 0.Independently, and at the same time as we introduced the above algorithm, Panconesiand Srinivasan [PS92] obtained a slightly better asymptotic running time for a low-qualityweak network decomposition than that achieved by Awerbuch et. al. [AGLP89]. As theyremark, using a version of our transformer algorithm (see the next section), gives the sameimprovement in running time for the construction of a high-quality weak network decompo-sition. We thus obtain the following corollary: .Corollary 3.11 There is a deterministic distributed algorithm which given G = (V;E), �nds aweak (O(log n); O(log n); 1)-decomposition of G in O(nO(1=plogn)) time, which is in O(n�) forany � > 0.3.4 Distributed implementationFinally, let us discuss the distributed implementation of the algorithm. The distributedmodel of computing we will be concerned with, hereafter referred to as the free model, is dueto Linial [Lin87]. Much as PRAM algorithms in parallel computing gives a good indicationof parallelism, the free model gives a good indication of locality and distributed time.In the free distributed model, the underlying network topology is represented by a graph,G = (V;E), where there is a processor at each vertex, and there is an edge between twovertices if and only if there is a direct communication link between the corresponding pro-cessors. Communication is completely synchronous, and reliable. Every time unit, eachprocessor may pass messages to each of his neighbors. There is no limit on the size of thesemessages. Also, we do not charge for the time that it requires individual processors to com-pute functions; we only require that these are polynomial time computations. Hence alloperations within a subgraph of weak-diameter t can be performed centrally by collectinginformation to the leader and doing them locally (at no cost), and hence require time t.Some implementation issues still need to be discussed. Procedure Color in e�ect workson higher and higher powers of the graph. Notice that to implement the (logical) graph Gt14

in the (actual) distributed network G, we might have to traverse paths of length t in orderto look at all our neighbors in the graph Gt, since the only edges physically available in thenetwork are those of the underlying graph G. Therefore the time for running an algorithmon the graph Gt blows up by a factor of t.One last technical point to be discussed concerns the way clusters are handled as singlenodes (for coloring etc.) in the recursive algorithm. This is done by electing a \leader"vertex for each cluster, which does all the computation for its cluster.We remark that direct practical implementation of distributed algorithms on real dis-tributed systems may limit the size of messages that can be sent in one step over an edge,charge for local space and time, remove the assumption that the system is synchronous, andmight also seek to handle faulty processors, or a dynamically changing network. Becausewe are presenting the �rst sub-diametric time algorithms for high-quality network decom-positions and covers, we have chosen in this paper to work in the mathematically cleanestmodel. For ideas on how one might go about adapting the algorithms in this paper todeal with some of the above concerns, the reader is referred to the transformer techniquesin [AAG87, AP90b, APPS92].4 Sparse neighborhood covers4.1 OutlineWe now turn to algorithms for generating sparse neighborhood covers. We introduce analgorithm Sparse, which takes as input parameters k and t, and outputs a (k; t; kn1=k)-neighborhood cover for a given network G.Algorithm Sparse invokes two procedures, named Cover and Decomp. Procedure Coveris a modi�cation of the sequential sparse cover procedure of Awerbuch and Peleg [AP90b].Procedure Decomp can be any existing procedure which given a graph G = (V;E), �nds aweak (�old; dold; 1)-decomposition of G.Lemma 4.1 [AP90b] There exists a procedure Cover(R) that given a graph G = (V;E),jV j = n, a collection of vertices R and an integer k, constructs a set of vertices DR and acollection of clusters DU , satisfying the following properties:(1) For every v 2 DR, the t-neighborhood Nt(v) is contained in some cluster in DU .(2) Y \ Y 0 = ; for every Y; Y 0 2 DU , 15

(3) jDRj � jRj1�1=k, and(4) The (strong) diameter of DU clusters satis�es maxT2DU Diam(T) � (2k � 1) � 2t.(Let us remark that it is possible to introduce slight modi�cations to Procedure Cover(R)of [AP90b], that will result in improving the constant factor occuring in the exponent of theexpression for the time complexity of our algorithm by a factor of 2. The modi�cation in-volves keeping track of old-colored clusters, and their neighborhoods separately (see [Cow93]for details.)The second component used in Algorithm Sparse, namely, Procedures Decomp, will bebound to one of the two algorithms of [PS92, LS91]. Again, we will only state the mainrelevant properties of these algorithms here, and refer the interested reader to the appropriatesource for more details on their structure and operation. The claims we will rely on are thefollowing.Lemma 4.2 [PS92] There exists an algorithm Decomp[PS] that given a graph G = (V;E),jV j = n, constructs a weak (2plogn; 23plogn; 1)-decomposition for G in 2cplogn time for someconstant c > 0.Lemma 4.3 [LS91] There exists a randomized algorithm Decomp[LS] that given a graph G =(V;E), jV j = n, constructs a weak (log n; log n; 1)-decomposition for G in O(log2 n) expectedtime.4.1.1 Algorithm SparseAlgorithm Sparse operates as follows. It �rst calls Procedure Decomp with the power graphG4kt+1. The output of Decomp is a weak (�old; dold; 1)-decomposition old of G4kt+1, which isa weak (�old; (4kt+1)dold; 4kt+1)-decomposition of G. This decomposition is used in orderto speed up the construction of the neighborhood cover by performing the construction foreach color of the decomposition sequentially, but for each color, invoking Procedure Coverin parallel over separate clusters.Algorithm Sparse(G)Input: A graph G = (V;E), jV j = n, and integer k � 1.Output: A sparse (k; t; kn1=k)-neighborhood cover T of G.Compute G4kt+1, and invoke old Decomp(G4kt+1). /* old is a weak (�old; dold; 1)-decomposition 16

of G4kt+1, or a weak (�old; (4kt+ 1)dold; 4kt+ 1)-decomposition of G.*/T ;. /* T will be the new cover. */P V ; /* P is the set of unprocessed vertices. */For i = 1 to kn1=k do (sequentially): /* �nd a kn1=k-degree cover of G. */1. W P .2. For j = 1 to �old do (sequentially): /* Cycle through old-color classes. */In parallel for each cluster C colored old(C) = j do:(a) Elect a leader for cluster C.(b) The leader learns the set R = N2kt(C) \W .(c) The leader executes locally (DR;DU) Cover(R).(d) Set T T [DU .(e) Set P P �DR.(f) Set W W �R.4.2 Correctness and AnalysisLet us �rst argue the correctness of the resulting algorithm Sparse.Fix some main iteration i of Algorithm Sparse, and let Pi denote the collection P at thebeginning of iteration i. Consider the operation of the algorithm on cluster C of old colorj. Let DR(j; C) and DU(j; C) denote the two sets generated for this cluster in step (2c) ofthe algorithm.Lemma 4.4 The collections DR(j; C) and DU(j; C) satisfy the following properties:(1) The t-neighborhood of every vertex in DR(j; C) is contained in some cluster of DU(j; C).(2) Every two clusters T 2 DU(j; C) and T 0 2 DU(j0; C 0) are disjoint.(3) jSj;C DR(j; C)j � jPij1�1=k, and(4) The (strong) diameter of DU clusters satis�es maxT2DU(j;C)Diam(T) � (2k � 1) � 2t.17

Proof Claims (1) and (4) follow directly from Lemma 4.1.Claim (2) is analyzed by cases. The case where j0 = j and C 0 = C also follows fromLemma 4.1 directly. For the case j0 = j but C 0 6= C, the claim follows from the fact that Cand C 0 were (4kt+1)-separated by construction, and by property (4) of Lemma 4.1. For thecase j 0 > j and C 0 6= C, the claim follows from the fact that at the end of internal iterationj, all the nodes of R are eliminated from W , so they won't participate in internal iterationj 0. Claim (3) is proved similarly to Lemma 3.3. 2From Claim (3) of the last lemma we getCorollary 4.5 After kn1=k (main) iterations of Algorithm Sparse, the set P becomes empty.2Lemma 4.6 The output of Algorithm Sparse is a (k; t; kn1=k)-neighborhood cover of G.Proof The fact that all neighborhoods Nt(v) are covered by the constructed cover T is guar-anteed by Property (1) of Lemma 4.1, combined with the fact that a vertex v is eliminatedfrom the set P in Algorithm Sparse only as the result of joining the set DR following someinvocation of Procedure Cover.The (strong) diameter bound follows from Claim (4) of Lemma 4.4.Finally, the degree bound follows from the fact that the algorithm loops through kn1=kmain iterations, and each of those produces a set of disjoint clusters. 2Let us now turn to the complexity of Algorithm Sparse. The invokation of ProcedureDecomp on the power graph G4kt+1 will yield an O(kt) blowup in the running time of Decomp,say � . Hence this stage will require time O(kt�).Once Decomp is called, the remaining operations involve the nested loops (with a totalof kn1=k � �old internal iterations) each requiring the traversal of O(ktdold)-neighborhoods.Hence the running time for Algorithm Sparse is O(dold�oldk2tn1=k). Then, in sum, Sparseis able to obtain a sparse t-neighborhood cover in the original graph G in time O(kt� +tdold�oldk2n1=k). (Recall that, for the applications, we typically set k = log n, yielding timeO(t� log n+ tdold�old log2 n).)Calling algorithm Sparse with Decomp bound to the network decomposition algorithmDecomp[PS] of [PS92] gives the following theorem, relying on Lemma 4.2:Theorem 4.7 There is a deterministic distributed algorithm that given a graph G = (V;E),jV j = n, and integers k; t � 1, constructs a (k; t; kn1=k)-neighborhood cover of G in t2cplogn +18

t24plognn1=k time for some constant c > 0, where each vertex is in at most � = O(kn1=k)clusters, and the maximum strong cluster diameter is Diam(Si) = O(kt).Corollary 4.8 There is a deterministic distributed algorithm that given a graph G = (V;E),jV j = n, and integers t � 1, constructs a (log n; log n; t)-neighborhood cover of G in O(t2cplogn)time for some constant c > 0, where each vertex is in at most � = O(log n) clusters, and themaximum strong cluster diameter is Diam(Si) = O(t log n).Calling algorithm Sparse with Decomp bound to the randomized network decompositionalgorithm Decomp[LS] of [LS91] gives the following theorem, relying on Lemma 4.3:Theorem 4.9 There is a randomized distributed algorithm that given a graph G = (V;E),jV j = n, and integers k; t � 1, constructs a (k; t; kn1=k)-neighborhood cover of G in tO(k2 �log2 n � n1=k) time, where each vertex is in at most � = O(kn1=k) clusters, and the maximumstrong cluster diameter is Diam(Si) = O(kt).Corollary 4.10 There is a randomized distributed algorithm that given a graph G = (V;E),jV j = n, constructs a (log n; log n; 1)-neighborhood cover of G in O(log4 n) time, and a(log n; t log n; t)-neighborhood cover of G in O(t log4 n) time.We remark that since sparse neighborhood cover algorithms can be translated into strongnetwork decompositions of comparable parameters (cf. [AP90b, Cow93]), all complexitybounds hold for the constructions of strong network decompositions as well.AcknowledgmentThanks to Tom Leighton for helpful discussions.
19

References[AAG87] Yehuda Afek, Baruch Awerbuch, and Eli Gafni. Applying static network protocolsto dynamic networks. In Proc. 28th IEEE Symp. on Found. of Comp. Science,pages 358{370, October 1987.[ABCP92] Baruch Awerbuch, Bonnie Berger, Lenore Cowen, and David Peleg. Low-diametergraph decomposition is in NC. In Proc. 3'rd Scandinavian Workshop on AlgorithmTheory, pages 83{93, July 1992.[ABCP93] Baruch Awerbuch, Bonnie Berger, Lenore Cowen, and David Peleg. Near-linearcost constructions of neighborhood covers in sequential and distributed environ-ments and their applications. In Proc. 34rd IEEE Symp. on Found. of Comp.Science, pages 638{647. IEEE, November 1993.[ABP91] Baruch Awerbuch, Alan Baratz, and David Peleg. E�cient broadcast and light-weight spanners. Unpublished manuscript, November 1991.[ACG+90] Baruch Awerbuch, Israel Cidon, Inder Gopal, Marc Kaplan, and Shay Kutten.Distributed control for PARIS. In Proc. 9th ACM Symp. on Principles of Distrib.Computing, pages 145{160, 1990.[AGLP89] Baruch Awerbuch, Andrew Goldberg, Michael Luby, and Serge Plotkin. Networkdecomposition and locality in distributed computation. In Proc. 30th IEEE Symp.on Found. of Comp. Science, May 1989.[AKP91] Baruch Awerbuch, Shay Kutten, and David Peleg. On bu�er-economical store-and-forward deadlock prevention. In Proc. of the 1991 INFOCOM, 1991.[AKP92] Baruch Awerbuch, Shay Kutten, and David Peleg. Online load balancing in adistributed network. In Proc. 24th ACM Symp. on Theory of Computing, pages571{580, 1992.[AP90a] Baruch Awerbuch and David Peleg. Network synchronization with polylogarith-mic overhead. In Proc. 31st IEEE Symp. on Found. of Comp. Science, pages514{522, 1990.[AP90b] Baruch Awerbuch and David Peleg. Sparse partitions. In Proc. 31st IEEE Symp.on Found. of Comp. Science, pages 503{513, 1990.20

[AP92] B. Awerbuch and D. Peleg. Routing with polynomial communication-space trade-o�. SIAM J. Disc. Math, 5(2):151{162, 1992.[APPS92] Baruch Awerbuch, Boaz Patt, David Peleg, and Mike Saks. Adapting to asyn-chronous dynamic networks with polylogarithmic overhead. In Proc. 24th ACMSymp. on Theory of Computing, pages 557{570, 1992.[AR91] Y. Afek and M. Riklin. Sparser: A paradigm for running distributed algorithms.J. of Algorithms, 1991. Accepted for publication.[BFR92] Yair Bartal, Amos Fiat, and Yuval Rabani. Competitive algorithms for dis-tributed data management. In Proc. 24th ACM Symp. on Theory of Computing,pages 39{50, 1992.[Coh93] Edith Cohen. Fast algorithms for constructing t-spanners and paths with stretcht. In Proc. 34rd IEEE Symp. on Found. of Comp. Science. IEEE, November 1993.to appear.[Cow93] Lenore Cowen. On Local Representation of Graphs and Networks. PhD thesis,MIT, Lab. for Comp. Science, 1993.[Lin87] Nathan Linial. Locality as an obstacle to distributed computing. In 27th AnnualSymposium on Foundations of Computer Science. IEEE, October 1987.[LS91] N. Linial and M. Saks. Decomposing graphs into regions of small diame-ter. In Proc. 2nd ACM-SIAM Symp. on Discrete Algorithms, pages 320{330.ACM/SIAM, January 1991.[Pel89] David Peleg. Distance-preserving distributed directories and e�cient routingschemes. unpublished manuscript, 1989.[Pel93] D. Peleg. Distance-dependent distributed directories. Info. and Computation,1993. Also in Tech. Report CS89-10, The Weizmann Institute, May 89.[PS92] Alessandro Panconesi and Aravind Srinivasan. Improved distributed algorithmsfor coloring and network decomposition problems. In Proc. 24th ACM Symp. onTheory of Computing, pages 581{592, 1992.[Rao92] Satish Rao. Finding small edge cuts in planar graphs. In Proc. 24th ACM Symp.on Theory of Computing, pages 229{240, 1992.21

