
Low-Diameter Graph Decomposition is in NCBaruch Awerbuch � Bonnie Berger y Lenore Cowen z David Peleg xAbstractWe obtain the �rst NC algorithm for the low-diameter graph decomposition problemon arbitrary graphs. Our algorithm runs in O(log5(n)) time, and uses O(n2) processors.1 IntroductionFor an undirected graph G = (V;E), a (�; d)-decomposition is de�ned to be a �-coloring of thenodes of the graph that satis�es the following properties:1. each color class is partitioned into an arbitrary number of disjoint clusters;2. the distance between any pair of nodes in a cluster is at most d, where distance is thelength of the shortest path connecting the nodes in G,3. clusters of the same color are at least distance 2 apart.A (�; d)-decomposition is said to be low-diameter if � and d are both O(poly log n).The graph decomposition problem was introduced in [3, 6] as a means of partitioning anetwork into local regions. For further work on graph decomposition and the distributed com-puting model, see [8, 7, 11, 4, 1, 14]. Linial and Saks [11] have given the only algorithm that�Lab. for Computer Science, M.I.T., Cambridge, MA 02139. Supported by Air Force ContractTNDGAFOSR-86-0078, ARO contract DAAL03-86-K-0171, NSF contract CCR8611442, DARPA contractN00014-92-J-1799, and a special grant from IBM.yDept. of Mathematics and Lab. for Computer Science, M.I.T., Cambridge, MA 02139. Supported by anNSF Postdoctoral Research Fellowship.zDept. of Mathematics and Lab. for Computer Science, M.I.T., Cambridge, MA 02139. Supported inpart by DARPA contract N00014-92-J-1799, AFOSR Contract F49620-92-J-0125, and Navy-ONR ContractN00014-91-J-1698xDepartment of Applied Mathematics and Computer Science, The Weizmann Institute, Rehovot 76100,Israel. Supported in part by an Allon Fellowship, by a Bantrell Fellowship and by a Walter and Elise HaasCareer Development Award. 1

�nds a graph decomposition in polylogarithmic time in the distributed model. Their random-ized algorithm obtains a low-diameter decomposition with � = O(log n) and d = O(log n).(Linial and Saks also proved that their low-diameter decomposition is optimal, i.e. there existfamilies of graphs for which one cannot achieve better than a (log n; log n)-decomposition.) Itis easy to see that the Linial-Saks algorithm can be run on the PRAM and thus places thelow-diameter graph decomposition problem in the class RNC .In this paper, we achieve the �rst polylogarithmic-time deterministic parallel algorithmfor (�; d)-decomposition. The algorithm decomposes an arbitrary graph into O(log2 n) colors,with cluster diameter at most O(log n). Thus we place the low-diameter graph decompositionproblem into the class NC .The algorithm uses a non-trivial scaling technique to remove the randomness from thealgorithm of Linial-Saks. In Section 2.1, we review the Linial-Saks algorithm. Section 2.2 givesour new modi�ed RNC algorithm, whose analysis is shown in Section 2.4 to depend only onpairwise independence. This is the crux of the argument. Once we have a pairwise independentRNC algorithm, it is well known how to remove the randomness to obtain an NC algorithm.In Section 2.6 we are a bit more careful, however, in order to keep down the blowup in thenumber of processors. Our (deterministic) NC algorithm runs in O(log5(n)) time and usesO(n2) processors.The (�; d)-decomposition problem is related to the sparse t-neighborhood cover problem [8],which has applications to sequential approximation algorithms for all-pairs shortest paths [5, 9]and �nding small edge cuts in planar graphs [15]. We believe the NC algorithm in this paperwill also have applications to parallel graph algorithms.2 The AlgorithmIn this section, we construct a deterministic NC algorithm for low-diameter graph decompo-sition. This is achieved by modifying an RNC algorithm of Linial-Saks to depend only onpairwise independence, and then removing the randomness. To get our newly-devised pairwiseindependent bene�t function [10, 13] to work, we have to employ a non-trivial scaling technique.Scaling has been used previously only on the simple measure of node degree in a graph.2.1 The RNC Algorithm of Linial-SaksLinial and Saks's randomized algorithm [11] emulates the following simple greedy procedure.Pick a color. Pick an arbitrary node (call it a center node) and greedily grow a ball around itof minimum radius r, such that a constant fraction of the nodes in the ball lie in the interior(i.e. are also in the ball of radius r � 1 around the center node). It is easy to prove that therealways exists an r � log n for which this condition holds. The interior of the ball is put into2

the color class, and the entire ball is removed from the graph. (The border (those nodes whosedistance from the center node is exactly r) will not be colored with the current color). Thenpick another arbitrary node, and do the same thing, until all nodes in the graph have beenprocessed. Then return all the uncolored nodes (the border nodes) to the graph, and beginagain on a new color.To emulate the greedy algorithm randomly, Linial-Saks still consider each of O(log n) colorssequentially, but must �nd a distribution that will allow all center nodes of clusters of the samecolor to grow out in parallel, while minimizing collisions. If all nodes are allowed to greedilygrow out at once, there is no obvious criterion for deciding which nodes should be placed in thecolor-class in such a way that the resulting coloring is guaranteed both to have small diameterand to contain a substantial fraction of the nodes.Linial-Saks give a randomized distributed (trivially also an RNC) algorithm where nodescompete to be the center node. It is assumed that each node has a unique ID associatedwith it.1 In their algorithm, in a given phase they select which nodes will be given color jas follows. Each node
ips a candidate radius n-wise independently at random according to atruncated geometric distribution (the radius is never set greater than B, which is set below).Each node y then broadcasts the triple (ry; IDy; d(y; z)) to all nodes z within distance ry of y.For the remainder of this paper d(y; z) will denote the distance between y and z in G. (Thisis sometimes referred to as the weak distance, as opposed to the strong distance, which is thedistance between y and z in the subgraph induced by a cluster which contains them.) Now eachnode z elects its center node, C(z), to be the node of highest ID whose broadcast it received.If ry > d(z; y), then z joins the current color class; if ry = d(z; y), then z remains uncoloreduntil the next phase.Linial and Saks show that if two neighboring nodes were both given color i, then they bothdeclared the same node y to be their winning center node. This is because their algorithmemulates a greedy algorithm that sequentially processes nodes from highest to lowest ID in aphase. The diameter of the resulting clusters is therefore bounded by 2B. Setting B = O(log n),they can expect to color a constant fraction of the remaining nodes at each phase. So theiralgorithm uses O(log n) colors. (See their paper [11] for a discussion of trade-o�s betweendiameter and number of colors. Linial-Saks also give a family of graphs for which these trade-o�s between � and d are the best possible.)The analysis of the above algorithm cannot be shown to work with constant-wise indepen-dence; in fact, one can construct graphs for which in a sample space with only constant-wiseindependence, there will not exist a single good sample point, It even seems doubtful that theLinial-Saks algorithm above would work with polylogarithmic independence. So if we want toremove randomness, we need to alter the randomized algorithm of Linial-Saks.1As seen below, this is used for a consistent tie-breaking system: the necessity of assuming unique IDs for tie-breaking depends on whether one is in the distributed or parallel model of computing. This paper is concernedwith parallel computation, so we can freely assume unique IDs in the model.3

2.2 Overview of the Pairwise Independent RNC AlgorithmSurprisingly, we show that there is an alternative RNC algorithm where each node still
ips acandidate radius and competes to be the center of a cluster, whose analysis can be shown todepend only on pairwise independence.The new algorithm will proceed with iterations inside each phase, where a phase correspondsto a single color of Linial-Saks. In each iteration, nodes will grow their radii according to thesame distribution as Linial-Saks, except there will be some probability (possibly large) that anode y does not grow a ball at all. If a node decides to grow a ball, it does so according to thesame truncated geometric distribution as Linial-Saks, and ties are broken according to uniquenode ID, as in the Linial-Saks algorithm. We get our scaled truncated distribution as follows:Pr[ry = NIL] = 1 � �Pr[ry = j] = �pj (1� p) for 0 � j � B � 1Pr[ry = B] = �pBwhere 0 < p � 1=2 and B � log n are �xed, and �, the scaling factor, will be set below.The design of the algorithm proceeds as follows: we devise a new bene�t function whoseexpectation will be a lower bound on the probability a node is colored by a given iteration(color) of the algorithm, in addition, pairwise independence will su�ce to compute this bene�tfunction. The pairwise-independent bene�t function will serve as a good estimate to the n-wiseindependent lower bound on the probability that a node is colored as measured in the analysisof the Linial-Saks algorithm, whenever nodes y in the graph would not expect to be reached bymany candidate radii z. This is why it is important that some nodes not grow candidate ballsat all.To maximize the new pairwise-independent bene�t function, the probability � that a nodegrows a ball at all will be scaled according to a measure of local density in the graph aroundit (see the de�nition of the measure Ty below.) Since dense and sparse regions can appear inthe same graph, the scaling factor �, will start small, and double in every iteration of a phase(this is the O(log n) blowup in the number of colors). We argue that in each iteration, thosey's with the density scaled for in that iteration, will have expected bene�t lower bounded by aconstant fraction. Therefore, in each iteration, we expect to color a constant fraction of thesenodes (Lemma 2.2). At the beginning of a phase � is reset to re
ect the maximum density inthe remaining graph that is being worked on. In O(log n) phases of O(log n) iterations each,we expect to color the entire graph.2.3 The RNC AlgorithmDe�ne Ty = Pzjd(z; y) � B pd(z;y), and � = max8y2G Ty. Each phase will have O(log n) iterations,where each iteration i colors a constant fraction of the nodes y with Ty between �=2i and4

�=2i�1. Note that Ty decreases from iteration to iteration, but � remains �xed. � is onlyre-computed at the beginning of a phase. 2The algorithm runs for O(log n) phases of O(log n) iterations each. At each iteration, webegin a new color. For each iteration i of a phase, set � = 2i=(3�).Each node y selects an integer radius ry pairwise independently at random according to thetruncated geometric distribution scaled by � (de�ned in Section 2.2). We can assume every nodehas a unique ID [11]. Each node y broadcasts (ry; IDy) to all nodes that are within distancery of it. After collecting all such messages from other nodes, each node y selects the node C(y)of highest ID from among the nodes whose broadcast it received in the �rst round (includingitself), and gets the current color if d(y;C(y)) < rC(y). (A NIL node does not broadcast.) Atthe end of the iteration, all the nodes colored are removed from the graph.2.4 Analysis of the Algorithm's PerformanceWe �x a node y and estimate the probability that it is assigned to a color, S. Linial andSaks [11] have lower bounded this probability for their algorithm's phases by summing over allpossible winners of y, and essentially calculating the probability that a given winner captures yand no other winners of higher ID capture y. Since the probability that y 2 S can be expressedas a union of probabilities, we are able to lower bound this union by the �rst two terms of theinclusion/exclusion expansion as follows:Pr[y 2 S] �Xzjd(z; y) < B0@Pr[rz > d(z; y)]� Xu > zjd(u; y) � B Pr[(rz > d(z; y)) ^ (ru � d(u; y))]1ANotice that the above lower bound on the probability that y is colored can be computedusing only pairwise independence. This will be the basis of our new bene�t function. We willindicate why the Linial and Saks algorithm cannot be shown to work with this weak lowerbound.3 However, we can scale � so that this lower bound su�ces for the new algorithm.More formally, for a given node z, de�ne the following two indicator variables:Xy;z : rz � d(z; y)Zy;z : rz > d(z; y)2We remark that the RNC algorithm will need only measure Ty, the density of the graph at y once, in orderto determine �. In fact any upper bound on max Ty in the graph will su�ce, though a su�ciently crude upperbound could increase the running time of the algorithm. The dynamically changing Ty is only used here for theanalysis; the randomized algorithm does not need to recalculate the density of the graph as nodes get coloredand removed over successive iterations within a phase.3We can, in fact, construct example graphs on which their algorithmwill not perform well using only pairwiseindependence, but in this paper we just point out where the analysis fails.5

Then we can rewrite our lower bound on Pr[y 2 S] asXzjd(z; y) < BE[Zy;z]� Xu > zj d(z; y) < Bd(u; y) � B E[Zy;zXy;u]The bene�t of a sample point R =<r1; : : : ; rn> for a single node y, is now de�ned asB y(R) = Xzjd(z; y) < BZy;z � Xu > zj d(z; y) < Bd(u; y) � B Zy;zXy;uHence, our lower bound on Pr[y 2 S] is, by linearity of expectation, the expected bene�t.Recall that Ty = Pzjd(z; y) � B pd(z;y). We �rst prove the following lemma:Lemma 2.1 If p � 1=2 and B � log n then E[By(R)] � (1=2)p�Ty(1 � �Ty).Proof We can rewriteE[By(R)] = p�0@ Xzjd(z; y) < B pd(z;y)1A� p�2 0BB@ Xu > zj d(z; y) < Bd(u; y) � B pd(z;y)+d(u;y)1CCASo it is certainly the case thatE[By(R)] � p�0@ Xzjd(z; y) < B pd(z;y)1A� p�2 0@ Xzjd(z; y) < B pd(z;y)1A0@ Xujd(u; y) � B pd(u;y)1A (1)= p�0@ Xzjd(z; y) < B pd(z;y)1A0@1� �0@ Xujd(u; y) � B pd(u;y)1A1A (2)= p�0@ Xzjd(z; y) < B pd(z;y)1A (1 � �Ty) : (3)Now, there are less than n points at distance B from y, and p � 1=2 and B � log n byassumption, so Xzjd(z; y) = B pB < npB � 1:On the other hand Xzjd(z; y) < B pd(z;y) � 1;since the term where z = y contributes 1 already to the sum. ThusXzjd(z; y) < B pd(z;y) � Xzjd(z; y) = B pB6

And since these two terms sum to Ty,Xzjd(z; y) < B pd(z;y) � Ty=2:Substituting Ty=2 in equation 3 yields the lemma. 2De�ne � = maxy(Ty). De�ne the set Di at the ith iteration of a phase as follows:Di = fyj�=2i � Ty � �=2i�1 ^ (y 62 Dh for all h < i)gRecall that � = max8y2G Ty. At the ith iteration of a phase, we will set � = 2i=(3�). Inthe analysis that follows, we show that in each phase, we color nodes with constant probability.Lemma 2.2 In the ith iteration, for y 2 Di, E[By(R)] is at least p=18.Proof E[By(R)] � p2 2i3�Ty! 1 � 2i3�Ty!by Lemma 2.1. The assumption that y 2 Di now gives bounds on Ty. Since we want a lowerbound, we substitute Ty � �2i in the positive Ty term and Ty � �2i�1 in the negative Ty term,giving E[By(R)] � (p=2)13 (1� 23)> p18 :2Lemma 2.3 Suppose y is a node present in the graph at the beginning of a phase. Over log(3�)iterations of a phase, the probability that y is colored is at least p=18.Proof Since for all y, Ty � 1, over all iterations, and since � ! 1, then there must existan iteration where �Ty � 1=3. Since Ty cannot increase (it can only decrease if we color andremove nodes in previous iterations), and �Ty � 2=3 in the �rst iteration for all y, we knowthat for each y there exists an iteration in which 2=3 � �Ty � 1=3. If i is the �rst such iterationfor a given vertex y, then by de�nition, y 2 Di, and the sets Di form a partition of all thevertices in the graph. By Lemma 2.2, since E[By(R)] is a lower bound on the probability thaty is colored, we color y with probability at least p=18 in iteration i.2 By Lemma 2.3, we have that the probability of a node being colored in a phase is p=18.Thus, the probability that there is some node which has not been assigned a color in the �rstl phases is at most n(1� (p=18))l. By selecting l to be 18 logn+!(1)p , it is easily veri�ed that thisquantity is o(1). 7

Theorem 2.4 There is a pairwise independent RNC algorithm which given a graph G = (V;E),�nds a (log2 n; log n)-decomposition in O(log3 n) time, using a linear number of processors.2.5 The Pairwise Independent DistributionWe have shown that we expect our RNC algorithm to color the entire graph with O(log2 n)colors, and the analysis depends on pairwise independence. We now show how to constructa pairwise independent sample space which obeys the truncated geometric distribution. Weconstruct a sample space in which the ri are pairwise independent and where for i = 1; : : : ; n:Pr[ri = NIL] = 1� �Pr[ri = j] = �pj(1� p) for 0 � j � B � 1Pr[ri = B] = �pBWithout loss of generality, let p and � be powers of 2. Let r = B log(1=p) + log(1=�). Notethat since B = O(log n), we have that r = O(log n). In order to construct the sample space, wechoose W 2 Z l2, where l = r(log n + 1), uniformly at random. Let W =<!(1); !(2); : : : ; !(r)>,each of (log n+ 1) bits long, and we de�ne !(i)j to be the jth bit of !(i).For i = 1; : : : ; n, de�ne random variable Yi 2 Zr2 such that its kth bit is set asYi;k =<bin(i); 1> �!(k);where bin(i) is the (log n)-bit binary expansion of i.We now use the Yi's to set the ri so that they have the desired property. Let t be the mostsigni�cant bit position in which Yi contains a 0. Setri = NIL if t 2 [1; ::; log(1=�)]= j if t 2 (log(1=�) + j log(1=p); ::; log(1=�) + (j + 1) log(1=p)], for j6=B�1= B otherwise.It should be clear that the values of the ri's have the right probability distribution; however,we do need to argue that the ri's are pairwise independent. It is easy to see [10, 13] that, for allk, the kth bits of all the Yi's are pairwise independent if !(k) is generated randomly; and thusthe Yi's are pairwise independent. As a consequence, the ri's are pairwise independent as well.2.6 The NC AlgorithmWe want to search the sample space given in the previous section to remove the randomnessfrom the pairwise independent RNC algorithm.Given a sample point R =<r1; : : : ; rn>, de�ne the bene�t of the ith iteration of a phase as:BI(R) = Xy 2 Di By(R): (4)8

Then the expected bene�t, E[BI(R)] = E[Py 2 Di By(R)] = Py 2 Di E[By(R)], by linearity ofexpectation. By Lemma 2.2, for y 2 Di, E[By(R)] � p=18, so E[BI(R)] � p=18jDij.Thus we search the sample space to �nd a setting of the ry's in the ith iteration of a phasefor which the bene�t, BI(R), is at least as large as this bound on the expected bene�t, p=18jDij.Since the sample space is generated from r (log n)-bit strings, it thus is of size 2r logn �O(nlogn), which is clearly too large to search exhaustively. We could however devise a quadraticsize sample space which would give us pairwise independent ry's with the right property (see[10, 12, 2]). Unfortunately, this approach would require O(n5) processors: the bene�t functionmust be evaluated on O(n2) di�erent processors simultaneously.Alternatively, we will use a variant of a method of Luby [13] to binary search a pairwiseindependent distribution for a good sample point. We can in fact naively apply this methodbecause our bene�t function is a sum of terms depending on one or two variables each; i.e.BI(R) = Xy2DiBy(R) = Xy2Di0BB@ Xzjd(z; y) < B Zy;z � Xu > zj d(z; y) < Bd(u; y) � B Zy;zXy;u1CCA (5)where recall Di = fyj�=2i � Ty � �=2i�1 ^ (y 62 Dh for all h < i)g. The binary search isover the bits of W (see Section 2.5): at the qt-th step of the binary search, !(q)t is set to 0 ifE[BI(R) j !(1)1 = b11; !(1)2 = b12; : : : ; !(q)t = bqt], with bqt = 0 is greater than with bqt = 1; and1 otherwise. 4 The naive approach would yield an O(n3) processor NC algorithm, since werequire one processor for each term of the bene�t function, expanded as a sum of functionsdepending on one or two variables each.The reason the bene�t function has too many terms is that it includes sums over pairs ofrandom variables. Luby gets around this problem by computing conditional expectations onterms of the form Pi;j2S XiXj directly, using O(jSj) processors. We are able to put our bene�tfunction into a form where we can apply a similar trick. (In our case, we will also have to dealwith a \weighted" version, but Luby's trick easily extends to this case.)The crucial observation is that, by de�nition of Zy;z and Xy;z , we can equivalently writeE[Zy;zXy;u] as pE[Xy;zXy;u]; thus, we can lower bound the expected performance of the algorithmwithin at least a multiplicative factor of p of its performance in Lemmas 2.2 and 2.3, if we upperbound the latter expectation.It will be essential throughout the discussion below to be familiar with the notation used forthe distribution in Section 2.5. Notice that our indicator variables have the following meaning:Xy;z � Yz;k = 1 for all k; 1 � k � d(z; y) log(1=p)Zy;z � Yz;k = 1 for all k; 1 � k � (d(z; y)+1) log(1=p)4We remark that to evaluate the bene�t of a sample point, we must be able to determine for a given iterationi of a phase, which y are in Di. Thus we must update Ty for each y to re
ect the density of the remaining graphat iteration i. 9

If we �x the outer summation of the expected bene�t at some y, then the problem nowremaining is to show how to computeE[X(z;u)2SXy;zXy;u j !(1)1 =b11; !(1)2 =b12; : : : ; !(q)t =bqt]; (6)in O(log n) time using O(jSj) processors. For notational convenience, we write (z; u) for z 6= u.Below, we assume all expectations are conditioned on !(1)1 =b11; : : : ; !(q)t =bqt.Note that we only need be interested in the case where both random variables Xy;z andXy;u are undetermined. If q > d(i; y) log(1=p), then Xy;i is determined. So we assume q �d(i; y) log(1=p) for i = z; u. Also, note that we know the exact value of the �rst q � 1 bits ofeach Yz. Thus, we need only consider those indices z 2 S in Equation 6 with Yz;j = 1 for allj � q � 1; otherwise, the terms zero out. Let S0 � S be this set of indices.In addition, the remaining bits of each Yz are independently set. Consequently,E[X(z;u)2S0Xy;zXy;u] = E[X(z;u)2S0
(z; y)
(u; y)Yz;qYu;q]= E[(Xz2S0
(z; y)Yz;q)2 � Xz2S0
(z; y)2Y 2z;q];where
(z; y) = 1=2d(z;y) log(1=p)�qObserve that we have set t bits of !(q). If t = log n + 1, then we know all the Yz;q's, andwe can directly compute the last expectation in the equation above. Otherwise, we partitionS0 into sets S� = fz 2 S0 j zt+1 � � � zlogn = �g. We further partition each S� into S�;0 = fz 2S� j Pti=1 zi!(q)i = 0 (mod 2)g and S�;1 = S� � S�;0. Note that given !(1)1 =b11; : : : ; !(q)t =bqt,1. Pr[Yz;q = 0] = Pr[Yz;q = 1] = 1=2,2. if z 2 S�;j, and u 2 S�;j0, then Yz;q = Yu;q i� j = j0, and3. if z 2 S� and z0 2 S�0, where � 6= �0, then Pr[Yz;q = Yu;q] = Pr[Yz;q 6= Yu;q] = 1=2.Therefore, conditioned on !(1)1 =b11; : : : ; !(q)t =bqt,E[X(z;u)2S0Xy;zXy;u]= E[X(z;u)2S0
(z; y)
(u; y)Yz;qYu;q]= E[X� X(z;u)2S�
(z; y)
(u; y)Yz;qYu;q + X(�;�0) Xz2S� Xu2S�0
(z; y)
(u; y)Yz;qYu;q]= X� E[X(z;u)2S�;0
(z; y)
(u; y)Yz;qYu;q + X(z;u)2S�;1
(z; y)
(u; y)Yz;qYu;q10

+ 2 Xz2S�;0 Xu2S�;1
(z; y)
(u; y)Yz;qYu;q] + X(�;�0)E[Xz2S� Xu2S�0
(z; y)
(u; y)Yz;qYu;q]= X� 2412 X(z;u)2S�;0
(z; y)
(u; y) + 12 X(z;u)2S�;1
(z; y)
(u; y) + 035+ X(�;�0) 14 0@Xz2S�
(z; y)1A0@ Xu2S�0
(u; y)1A= 12X� 2640@ Xz2S�;0
(z; y)1A2 � Xz2S�;0
(z; y)2 + 0@ Xz2S�;1
(z; y)1A2 � Xz2S�;1
(z; y)2375+ 14 2640@X� Xz2S�
(z; y)1A2 �X� 0@Xz2S�
(z; y)1A2375Since every node z 2 S0 is in precisely four sums, we can compute this using O(jSj) processors.In the above analysis, we �xed the outer sum of the expected bene�t at some y. To computethe bene�t at iteration i, we need to sum the bene�ts of all y 2 Di. However, we argued in theproof of Lemma 2.3 that the sets Di form a partition of the vertices. Therefore we consider eachy exactly once over all iterations of a phase, and so our algorithm needs only O(n2) processors,and we obtain the following theorem.Theorem 2.5 There is an NC algorithm which given a graph G = (V;E), �nds a (log2 n; log n)-decomposition in O(log5 n) time, using O(n2) processors.AcknowledgmentsThanks to John Rompel and Mike Saks for helpful discussions and comments.References[1] Y. Afek and M. Riklin. Sparser: A paradigm for running distributed algorithms. J. of Algorithms,1991. Accepted for publication.[2] N. Alon, L. Babai, and A. Itai. A fast and simple randomized parallel algorithm for the maximalindependent set problem. J. of Algorithms, 7:567{583, 1986.[3] Baruch Awerbuch. Complexity of network synchronization. J. of the ACM, 32(4):804{823, Oc-tober 1985.[4] Baruch Awerbuch, Bonnie Berger, Lenore Cowen, and David Peleg. Fast distributed networkdecomposition. In Proc. 11th ACM Symp. on Principles of Distributed Computing, August 1992.11

[5] Baruch Awerbuch, Bonnie Berger, Lenore Cowen, and David Peleg. Near-linear cost constructionsof neighborhood covers in sequential and distributed environments and their applications. In Proc.34rd IEEE Symp. on Foundations of Computer Science. IEEE, November 1993. to appear.[6] Baruch Awerbuch, Andrew Goldberg, Michael Luby, and Serge Plotkin. Network decompositionand locality in distributed computation. In Proc. 30th IEEE Symp. on Foundations of ComputerScience, May 1989.[7] Baruch Awerbuch and David Peleg. Network synchronization with polylogarithmic overhead. InProc. 31st IEEE Symp. on Foundations of Computer Science, pages 514{522, 1990.[8] Baruch Awerbuch and David Peleg. Sparse partitions. In Proc. 31st IEEE Symp. on Foundationsof Computer Science, pages 503{513, 1990.[9] Edith Cohen. Fast algorithms for constructing t-spanners and paths with stretch t. In Proc. 34rdIEEE Symp. on Foundations of Computer Science. IEEE, November 1993. to appear.[10] R. M. Karp and A.Wigderson. A fast parallel algorithm for the maximal independent set problem.J. of the ACM, 32(4):762{773, October 1985.[11] N. Linial and M. Saks. Decomposing graphs into regions of small diameter. In Proc. 2nd ACM-SIAM Symp. on Discrete Algorithms, pages 320{330. ACM/SIAM, January 1991.[12] M. Luby. A simple parallel algorithm for the maximal independent set problem. SIAM J. onComput., 15(4):1036{1053, November 1986.[13] M. Luby. Removing randomness in parallel computation without a processor penalty. In Proc.29th IEEE Symp. on Foundations of Computer Science, pages 162{173. IEEE, October 1988.[14] Alessandro Pasconesi and Aravind Srinivasan. Improved algorithms for network decompositions.In Proc. 24th ACM Symp. on Theory of Computing, pages 581{592, 1992.[15] Satish Rao. Finding small edge cuts in planar graphs. In Proc. 24th ACM Symp. on Theory ofComputing, pages 229{240, 1992.
12

