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In this note, it is shown how to modify the simple greedy construction in [6] to save a logn factorin running time. The new algorithm runs in O(E + n) time, which is optimal. Note that the newconstruction will produce clusters whose diameter can be larger by a small constant factor than thosein [6], so in some applications where network decomposition is used as a data structure, the originalalgorithm might be preferable in practice, even though it is more costly.2 The AlgorithmThe new algorithm works as follows. Pick a color. Pick an arbitrary vertex (call it a center vertex)and in a BFS fashion, greedily grow a ball around it of minimum radius r, so that (a) at least halfthe vertices in the ball of radius r are in the interior, (i.e. are also in the ball of radius r � 1 aroundthe center node), AND (b) at least half the edges which are adjacent to a vertex in the ball of radiusr, have an endpoint within the ball of radius r � 1. (This is the modi�cation of [6]). The interior ofthe ball is put into the color class, and the entire ball is removed from the graph. (The border (thosenodes whose distance from the center vertex is exactly r) will not be colored with the current color).Then pick another arbitrary vertex, and do the same thing, until all nodes in the graph have beenprocessed. Then return all the uncolored vertices (the border vertices) and the edges between themto the graph, and begin again on a new color. Stop when all vertices have been colored.3 AnalysisFirst it is shown that the above procedure produces a low-diameter network decomposition. Let G bean arbitrary graph with n vertices and E edges. In what follows, all logarithms are assumed to be tothe base 2.Lemma 3.1 The diameter of any cluster will be at most 6 logn + 2.Proof. Each time condition (a) fails to be met, the number of nodes in the interior doubles. This canhappen at most logn times, before running out of nodes in the graph. Each time condition (b) fails tobe met, the number of edges in the interior doubles. Since there are at most n2 edges, this can happenat most logn2 = 2 logn times. Clearly the worst case is whenever (a) is met, (b) is violated, and visaversa. But this can account for at most 3 logn consecutive radii at which either (a) or (b) is violated.Thus the conditions (a) and (b) will both be met simultaneously for some r, 1 � r � 3 logn + 1.Therefore the radius of any ball will be at most 3 logn + 1. 2Lemma 3.2 Clusters of the same color are at least distance 2 apart.Proof. Follows immediately from the construction. After a cluster is colored, all things of distance 1from any node in the cluster are placed in the border and removed from the graph, so they will notreceive the same color. The borders serve as bu�ers and prevent two monochromatic clusters fromtouching. 2Lemma 3.3 The number of colors used will be at most logn.2



Proof. Condition (a) insures that more than half the remaining nodes are in the interior of a cluster,rather than in a border. Since in a given iteration (color), all uncolored nodes are placed either in aninterior or a border, at least half the remaining uncolored nodes will be colored with each new color.2 It is now easy to see the algorithm runs in linear time as follows. For each color class, the algorithmdoes a BFS exploration of the remaining graph. It looks at each vertex and edge precisely once. Itkeeps a count of all vertices and edges it has seen so far in the interior, and counts the vertices andedges it sees in the border, and then compares. If it grows an additional level, it adds the bordercount to the interior count, and makes a new border count. Since each vertex and edge appears atmost once in the interior count, the border count, and the BFS, the algorithm takes O(E + n) timeto construct all the clusters of a given color.However, notice that the conditions (a) and (b) insure that the number of vertices and edges inthe graph decrease by a factor of two, in each iteration. Therefore, the running time over all colors isa small constant times (E + n) + (E + n)=2 + (E + n)=4 + : : :This proves:Theorem 3.4 Given a graph G with n vertices and E edges, the above algorithm produces a low-diameter network decomposition in O(E + n) time.References[1] Y. Afek and M. Riklin. Sparser: A paradigm for running distributed algorithms. J. of Algorithms,1991. Accepted for publication.[2] B. Awerbuch, B. Berger, L. Cowen, and D. Peleg. Fast distributed network decomposition. InProc. 11th ACM Symp. on Principles of Distributed Computing, Aug. 1992.[3] B. Awerbuch, B. Berger, L. Cowen, and D. Peleg. Low-diamter graph decomposition is in NC. InRandom Structures and Algorithms, 5:442{452, 1994.[4] B. Awerbuch, A. Goldberg, M. Luby, and S. Plotkin. Network decomposition and locality indistributed computation. In Proc. 30th IEEE Symp. on Foundations of Computer Science, May1989.[5] B. Awerbuch and D. Peleg. Sparse partitions. In Proc. 31st IEEE Symp. on Foundations ofComputer Science, pages 503{513, 1990.[6] N. Linial and M. Saks. Decomposing graphs into regions of small diameter. In Proc. 2nd ACM-SIAM Symp. on Discrete Algorithms, pages 320{330. ACM/SIAM, Jan. 1991.[7] A. Panconesi and A. Srinivasan. Improved algorithms for network decompositions. In Proc. 24thACM Symp. on Theory of Computing, pages 581{592, 1992.3


