
Enumeration of Full Graphs:Onset of the Asymptotic RegionL. J. Cowen � D. J. Kleitman y F. Lasaga D. E. SussmanDepartment of MathematicsMassachusetts Institute of TechnologyCambridge, MA 02139AbstractA full graph on n vertices, as de�ned by Fulkerson, is a representation of the in-tersection and containment relations among a system of n sets. It has an undirectededge between vertices representing intersecting sets, and a directed edge from a to bif the corresponding set A contains B. Kleitman, Lasaga and Cowen gave a uni�edargument to show that asymptotically, almost all full graphs can be obtained by takingan arbitrary undirected graph in the n vertices, distinguishing a clique in this graphwhich need not be maximal, and then adding directed edges going out from each vertexin the clique to all vertices to which there is not already an existing undirected edge.Call graphs of this type members of the dominant class. This paper obtains the �rstupper and lower bounds on how large n has to be, so that the asymptotic behavior isindeed observed. It is shown that when n > 170, the dominant class predominates,while when n < 17, the full graphs in the dominant class comprise less than half of thetotal number of realizable full graphs on n vertices.1 IntroductionThere have been two kinds of questions extensively addressed for a wide range of countingproblems: exact counts for small parameter values, and asymptotic results which hold inthe limit as the parameters grow large. Surprisingly, the question, when are these limitsachieved, or more speci�cally, for what parameters are the asymptotic results reasonablyaccurate? are rarely addressed.This paper describes an attempt to answer this question for the number of \Full Graphs".In a previous paper, some of the authors obtained an asymptotic formula for the number ofsuch graphs, which holds for su�ciently large number of vertices. However, that result gaveno indication at all of what number was su�ciently large for the formula to be anywherenear the correct answer.�Supported by an NSF postdoctoral fellowship.ySupported in part by NSF grant 9108403-DMS and US NSA grant MDA904-92-H-3029.1



The methods appropriate for such analysis are similar but somewhat di�erent from thosethat we used in the paper establishing asymptotic results. In that paper we had to establishthat certain kinds of full graphs grew with the number of vertices at a rate (r) lower thana threshold that represents the rate of growth of the class of full graphs we would use toestablish the asymptotic formula. (In other words, we constructed a subclass of full graphswhose rate of growth was very close to r, and showed that this was the dominant class of fullgraphs, by demonstrating a partition of the class of all other full graphs into subclasses, eachof which grew at a rate asymptotically less than r). Thus we sought the simplest argumentsthat established that r was less than that threshold. In this paper, we seek instead the bestpossible upper bounds on r that can be achieved by our methods.This question, the �nite implications of asymptotic analysis, is neglected because it ap-peals neither to those who seek exactitude, nor those who want to look only at limitingbehavior. Yet, if asymptotics is to have any concrete meaning, this is an important question.Below we show that the range above which our enumerated class of full graphs dominatesthe rest starts at somewhere between 17 and 170 vertices' or at 54 vertices within a factor of3.2. We raise as a question of possible interest: what is the analogous statement for partialorders?2 BackgroundA full graph (as introduced by Fulkerson and Gross [2]) represents both the containment andintersection properties of a collection of sets. Each set is represented by a vertex, and thevertex which represents set A has directed arcs which point at the vertices corresponding tosets that A contains. Undirected arcs link vertices whose sets have non-empty intersections.FG(n) denotes the number of full graphs on n vertices, then Lynch [5] conjectured thatlimn!1 log2 FG(n)n2 = 1=2:This was proved by Kleitman, Lasaga, and Cowen [3] who proved a stronger result thatcharacterized what most full graphs look like for large n. In fact, [3] showed that the classof graphs that predominates among full graphs, for su�ciently large n, corresponds to pairsof graphs (U;C), where U is an undirected graph on n vertices, and C is a clique on somek of these vertices which is a subgraph of U . One obtains the corresponding full graph byadding directed arcs from each vertex in the clique to all vertices outside it that it is notalready adjacent to. A full graph of this type is said to be in the dominant class.Since this paper is concerned with getting bounds on the asymptotic region, we ask: howlarge must n be before the dominant class predominates?In this paper, we achieve upper and lower bounds on n, namely 170 and 17. The upperbound is obtained by re�ning the method of [3]. Like the previous paper, our constructionpartitions full graphs into a �xed number of classes, where it is shown that the number of fullgraphs in each class grows asymptotically slower than the dominant class. We use a morecomplicated set of classes to get better bounds on the asymptotic region: we remark thatour methods could also be applied directly to the Kleitman et al. construction, in which casethe upper bound obtained would be greater than 750, stretching our bound on the onset ofthe asymptotic region by more than a factor of 3.2



3 The constructionThe next three sections are devoted to proving the following theorem.Theorem 3.1 Let FG(n) be the class of all full graphs on n vertices. Let D(n) be the classof full graphs obtained by taking an arbitrary undirected on n vertices, distinguishing a cliquein this graph that need not be maximal, and then adding directed edges going out from eachvertex in the clique to all vertices to which there is not already an existing undirected edge.Then if n < 17, D(n) < FG(n)=2, and if n > 170, D(n) > FG(n)=2.We will derrive an improved partition of full graphs not in D(n) into a set of classes, sothat the upper bound obtained for full graphs in the union of all these classes is not toolarge. In attempting to derive a tight upper bound for the union, there will be a tradeo�between the upper bounds obtained for the number of full graphs in a particular class, andthe number of classes we specify to comprise a canonical partition into classes. We did somecareful, experimental balancing to achieve a near optimal tradeo� in the construction below.The classes of our partition are de�ned in terms of collection of subgraphs (of six verticesor less), together with an order on these subgraphs. A full graph not in D(n) is said to bein the class indexed by particular subgraphs if it contains these subgraphs, and it has notalready appeared in a previous class. Typically, the subgraphs will consist of one speci�edsubgraph with between three and seven vertices, union any number of directed arcs, with a�xed number of singletons left over. The subgraphs will be ordered �rst according to thenumber of vertices in the longest path in multi-vertex subgraph, then among those graphswith paths of length i, but none of length i + 1, they will be classed according to whichcan be partitioned into an allowed subgraph, singletons, and directed arcs, with the fewestnumber of singletons. Finally, for graphs with the same length for their longest directed path,for which the minimal partition into singletons and directed arcs yields the same smallestnumber of singletons, an order on the allowed subgraphs is also speci�ed.We now list the allowed subgraphs for our construction, in order, together with thenumber of ways to connect either a singleton or a directed arc to the subgraph, and stillremain in the class; i.e. so that the resulting subgraph is a legal subgraph of a full graph,and the additional connections do not automatically imply that the full graph has alreadybeen counted as part of a previous class. We checked all the larger numbers in the belowtable on the computer. In the next section, we will show how to use these classes, and thesecalculations to get a recursive upper bound on the number of full graphs not in the dominantclass.3.1 NotationWe introduce the following notation. For a path of vertex length k, label the vertices 1through k, where k � : : : � 1. We can correspond to each possible connection patternbetween a vertex path of length k and a set-vertex v, an ordered pair (i; j), or (i;�j); wherei is the smallest index for which v is contained in i (or k+1, if v is not contained in k); andj is the largest index for which v contains j, or if v does not contain 1, 0 if v intersects 1,and �j if j is the largest index of a vertex disjoint from v.3



(6.4) (5,3) (4,2) (3,1) (2,0) (2,−1) pathFigure 1: Speci�ed con�gurations for a path of length �ve.3.2 The ConstructionOur �rst class (as in [3]) is full graphs containing a directed path of six vertices or more.There are 49 legal ways to connect a single vertex to a directed path of six vertices.We next consider all partitions of a full graph that does not contain a directed path ofsix vertices or more into one of the con�gurations listed below, with the remainder of thevertices partitioned into singletons and arcs, with the smallest possible number of singlevertices.To handle full graphs which have a directed path of vertex length �ve (but no directedpath of length greater), we consider, in order, the following con�gurations, all of whichcontain a directed �ve vertex path, and all which contain additional vertices are indexedby the name of the connection that an additional singleton makes to the path: (6,4), (5,3),(4,2), (3,1), (2,0), (2,-1), and also consider the directed path of vertex length �ve.For full graphs with paths of vertex length four, we use the same canonical form with acon�guration (in this case on 5 or 4 vertices), singletons and directed arcs, with the minimumpossible number of single vertices. our 7 5-vertex con�gurations are, in order, (5,3) (4,2)(3,1) (2,0) (2,-1) (3,0) and (3,-1), plus a directed path of vertex length four.For full graphs with directed paths of vertex-length three, we would like to do the samething, but this time, we also keep track of the level of a vertex in order to hold down thenumber of connections of two speci�ed con�gurations: the checkmark and the 3-path + s(see �gure 3.2) to a directed arc. A vertex at the bottom of a 3-path is at level 1, the middlevertex is at level 2, and the top vertex is at level 3. For vertices which are not ncontainedin any directed 3-path, we say their level is indeterminate. Now, for a single subgraphH, including a vertex of indeterminate with respect to H, we can specify several di�erentclasses, indexed by the level of this vertex in the entire graph, plus a class for when thisvertex remains of indeterminate level.The con�gurations, in order, will be the superbell, houses, the Vs, the int.bell, the openbell, the three-path, the Y +s, the intersecting lambda +s, the disjoint lambda +s, the dia-mond +s, the Y, the intersecting lambda, the diamond, the disjoint lambda, the checkmark,4



6-vertex con�gurations:asingletonb directed arc(6,4) 12 707(5,3) 21 755(4,2) 27 795(3,1) 30 801(2,0) 30 740(2,-1) 27 9305-vertex con�guration:csingletond directed arcpath 24 441aRemoving those that contain a 6-path.bRemoving those that contain a 5-path plus a directed arc, or a previous 6-con�guration plus a singleton.cRemoving those that contain a 6-path.dremoving those that make a 6-con�guration.Figure 2: Paths of Length Five: Summary.5-vertex con�gurations:asingletonb directed arc(5,3) 10 368(4,2) 17 404(3,1) 21 412(2,0) 22 386(2,-1) 22 488(3,0) 24c 514(3,-2) 24d 5714-vertex con�guration:esingletonf directed arcpath 13 144aRemoving those that contain 5-pathsbRemoving those that contain a 4-path plus a directed arccAlso removing previous 5-con�gurations.dAlso removing previous 5-con�gurations.eRemoving those that contain a 5-path.fRemoving those that form a 5-con�gurationFigure 3: Paths of Length Four: Summary.5



Superbell House1 House2 House3

House4 House5 House6 House7

V1 V2 V3 3−path

Int. Bell Open Bell Y +S Int. Lambda + S

Disj. Lambda  + S Diamond + S Y Int. Lambda

Diamond Disj. Lambda Checkmark 3−path + SFigure 4: Speci�ed con�gurations for a path of length three.and the three-path +s. These con�gurations are as they appear in Figure 3.2. The connec-tions to a singleton or directed arc are summarized below in Figure 5. In the numbers citedin the �gure, we have removed connections that make four-paths from everything.What remains, is full graphs with paths of vertex length 2, which still are not in thedominant class. These must contain either subgraphs A or B. First, we deal with anythingthat contains subgraph A. We partition it into A or A1, A2 and directed arcs and singletons,as usual with the smallest possible number of singletons. Here A is the graph with twodirected arcs, both completely disjoint. A1 are the two con�gurations that add a vertexto be contained in one of the two directed arcs (these two bottom vertices can be disjointor intersect). A2 are two con�gurations that add a vertex to contain the bottom vertex inone of the directed arcs (there are 4 such legal con�gurations, depending on the intersectionpattern with the remaining directed arc; choose any two, we choose for example A2 with thenew vertex entirely disjoint from the remaining directed arc, and A2 with the new vertexcontaining the bottom vertex in the remaining directed arc (see �gure).)Next, we deal with graphs which do not contain A, but which do contain a triangle. Herea triangle is two vertices both containing a third. We partition such graphs into a triangle,directed arcs, and singletons, minimizing singletons.Graphs which fail to be in the dominant class and do not contain A must contain B. Wenow deal with those which have B but no triangle, since we have already dealt with any thatcontain a triangle.We partition them into B plus arcs and singletons, and consider the number of connections6



no. vertices singletona directed arcasuperbell 6 51b 2073Houses and Vs chouse1 5 18 397house2 5 18 461house3 5 18 477house4 5 18 546house5 5 18 523house6 5 18 563house7 5 18 505V1 5 20 342V2 5 20 407V3 5 20 432int. bell 5 24d 507open bell 5 25e 5553path 3 6f 42g+ ; con�gurations: hY + s 5 20 444int. lambda + s 5 20 512dis. lambda + s 5 18i 604diamond + s 5 19 570The 4-con�gurations: jY 4 7 165int. lambdak 4 13 160dis. lambdal 4 11 167diamondm 4 12 1573path + ;n 4 12 < 169ocheckmarkp 4 12 < 169qaAll counts remove those that contain a path of length 4.bRemoving those that contain a bell plus a directed arc.cRemoving those that contain a 4-con�guration plus a directed arcdRemoving those that contain superbells, or lambda plus a directed arc.eRemoving those that contain superbells, lambda plus a directed arc, or int. bells plus singleton.fRemoving those that contain any 4-con�guration.gRemoving those that contain a House, V, or bell.hRemoving those that contain a 4-con�guration plus a directed arc.iAlso removing those that contain an int. lambda plus a directed arc.jRemoving those that contain a 3-path and a directed arc, bells, or a + s con�guration.kRemoving those that contain Y .lRemoving those that contain Y or int. lambda.mRemoving those that contain Y or lambdasnRemoving those that contain Y or lambdas or diamond, plus 2 3-paths.oWhen further partitioned by possible level of disjoint vertex in entire graph.pRemoving those that contain Y or lambdas or diamond or 3path + sqWhen further partitioned by possible level of disjoint vertex in entire graph.Figure 5: Paths of Length Three: Summary.7



A1A

BTriangle

?
A2 (1) A2 (2)

B* B**

? ?Figure 6: The A and B con�gurations.of B to a singleton or an arc. We remove from the B graphs the two graphs of the form B*(corresponding to the two singletons intersecting or being disjoint), and from B*, a singlegraph B** (the new singleton is entirely disjoint from the rest of the con�guration). ForB** we again use the level idea to hold down the number of connections of a singleton. Allresults are summarized in Figure 7.4 The recursionThe recursion takes as input the �rst 6 values for FG(n) computed exactly. There is 1 legalfull graph on 1 vertex, 4 on two vertices, 41 on three vertices, 916 on four vertices, 41,099legal full graphs on 5 vertices, and 3,528,258 full graphs on 6 vertices. We carried out therecursion by means of a program which works works with the logarithms of the numbers,rather than the numbers themselves, for computational purposes, where the log of a sum of kterms is upperbounded by k times the maximum term. We balance the recursion as follows.Consider the following 8 terms, grouped by size, which account for all the con�gurations inour construction, where m here is the maximum of (maximum number of connections to asingleton, the square root of the number of connections to a directed arc:1. the 6-vertex con�guration with r=512. 7 6-vertex con�gurations with r � 493. 2 5-vertex con�gurations with r = 264. 1 5-vertex con�gurations with r � 255. 27 5-vertex con�gurations with r � 246. 11 4-vertex con�gurations with r � 13 8



singleton directed arcA con�gurations:A1 (disjoint) 26 465A1 (intersect) 26 385A2 (disjoint) 24 293A2 (contain bot.) 24 328A 13 121triangle 6 42B con�gurations:B (3 vertices) 6 25B* (4 vertices) 13 69B** (5 vertices) < 24a 256aPartitioning by the level of the singleton in the entire graphFigure 7: Paths of Length Two: Summary.7. 3 3-vertex con�gurations with r � 6:5To compute FG(i), for a t-vertex term, we take the number of con�gurations of size tthat appear in our canonical form, and multiply by �nt�t! times the recursive upper boundfor FG(i� t) times the maximum number of ways to FG(i� t) to H, which we upperboundby the r listed above for H, raised to the i � t. For an upper bound on the dominantclass, we compute each of the n terms in the sum, take the maximum, and multiply byn. Then we compare all terms (the t-con�guration terms, and the upper bound on thedominant class), take the maximum, and multiply by the number of terms. We note thatwe have heuristically balanced the terms above quite well: term 8 dominates for the �rstdozen values of n, then term 7 and term 8 take turns for n in the mid-twenties to thirties,then 7 dominates uncontested until the mid-�fties, when 3 becomes the dominant term. Inthe 150s, 3 vies with the �rst term for dominance, which is then dominant thereafter. Wecompare what we get (without adding in the upper bound to the dominant class, above) tothe lower bound on the dominant class, which just consists of the maximum of the n terms.Then we add back in the upper bound to the dominant class and make this our new estimatefor FG(i).We remark that we have balanced the terms uniformly, for all n less than 170, and thata slightly better upper bound could be achieved by balancing these terms di�erently fordi�erent ranges of n. However, since such tinkering will de�nitely not push our bound in anycase much below 160, and since we believe the true answer is probably closer to the lowerbound, we are content with this upper bound.In the next section, we give an explicit construction for a class of legal full graphs whichlie outside the dominant class, but which accounts for a larger proportion of full graphs thanthe dominant class, for n < 17. 9



5 The lower boundConsider the following class of full graphs of size n. Take a member of the D(n � 2). Anadditional two vertices, joined by a directed arc, are connected to the other n � 2 verticesas follows: vertices in the clique of size k have three choices as to how they connect tothese two vertices, either they intersect both, intersect the top and contain the bottom, orcontain both. The remaining vertices also have three choices as to how to connect to thesetwo vertices: they can be disjoint from both, intersect only the top, or intersect both. Foreach �xed k less than n� 2, for each member of the dominant class on n� 2 vertices, thereare �n�k2 � ways to name the additional vertices, two ways to arrange them in a directed arc,times 3n�2 ways to connect them. On the other hand, for the dominant class there are 4n�2ways to connect them. We calculate all n terms of the dominant class and our constructionexactly. These graphs dominate over the dominant class for n < 17.6 Conclusions and open problemsWe have shown both upper and lower bounds on the value where the asymptotic regioncommences. The most obvious open problem is to try to narrow the gap between the upperand lower bounds presented here. We conjecture that the lower bound is closer to the exactvalue.Another open problem is to look at the same question as we did for Full graphs in thispaper, for partial orders. Kleitman and Rothschild [4] provide an asymptotic enumerationof partial orders, including the speci�cation of a predominant class of partial orders for nlarge enough. A more recent paper of Ern�e and Stege [1] counts exactly the number of legalpartial orders on n vertices, for n � 14. What is interesting, is that the asymptotic behaviorproved by Kleitman and Rothschild is not yet in evidence for n this small. Thus stopping atn = 14, Ern�e and Stege have not yet reached the asymptotic region: is 14 anywhere near thevalue of n where asymptotic behavior will begin to be observed? We pose the open questionof �nding tight bounds on the smallest n for which we get the asymptotic behavior in theenumeration of partial orders.AcknowledgmentMany thanks to Craig Fields, for expertly answering some of our C questions.References[1] M. �Erne and K. Stege. Counting �nite posets and topologies. Order, 8:247{265, 1991.[2] D. R. Fulkerson and O. A. Gross. Incidence matrices and interval graphs. Paci�c Journalof Math, 15:835{855, 1965.[3] D. J. Kleitman, F. Lasaga, and L. Cowen. Asymptotic enumeration of full graphs. Journalof Graph Theory, 20:59{69, 1995. 10



[4] D. J. Kleitman and B. L. Rothschild. Asymptotic enumeration of partial orders on a�nite set. Transactions of the American Math. Society, 205:205{220, 1975.[5] J. F. Lynch. The visually distinct con�gurations of k sets. Discrete Mathematics, 133:281{287, 1981.
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