
Hall-Swan et al.

RESEARCH

Detangling PPI Networks to Uncover
Functionally Meaningful Clusters
Sarah Hall-Swan, Jake Crawford, Rebecca Newman and Lenore J. Cowen*

*Correspondence:

cowen@cs.tufts.edu

Department of Computer Science,

Tufts University, Medford, MA,

USA, 02155

Full list of author information is

available at the end of the article

Abstract

Background: Decomposing a protein-protein interaction network (PPI
network into non-overlapping clusters or communities, sometimes called “network
modules,” is an important way to explore functional roles of sets of genes. When
the method to accomplish this decomposition is solely based on purely
graph-theoretic measures of the interconnection structure of the network, this is
often called unsupervised clustering or community detection. In this study, we
compare unsupervised computational methods for decomposing a PPI network
into non-overlapping modules. A method is preferred if it results in a large
proportion of nodes being assigned to functionally meaningful modules, as
measured by functional enrichment over terms from the Gene Ontology (GO).
Results: We compare the performance of three popular community detection

algorithms with the same algorithms run after the network is pre-processed by
removing and reweighting based on the diffusion state distance (DSD) between
pairs of nodes in the network. We call this “detangling” the network. In many
cases, we find that detangling the network based on the DSD distance
reweighting provides more meaningful clusters, including for spectral clustering
with bounded cluster sizes. An important exception is the Louvain algorithm with
bounded clusters sizes, which performs better when run on the original network.
Conclusions: Re-embedding using the DSD distance metric, before applying

standard community detection algorithms, can assist in uncovering GO
functionally enriched clusters in the yeast PPI network.

Keywords: PPI networks; protein function prediction; community detection;
Diffusion State Distance

Introduction
Clustering of protein-protein interaction networks is one of the most common ap-

proaches to predicting modules of genes and proteins that work together in func-

tional roles [1]. However, the low network diameter and dense interconnection struc-

ture in these networks confounds a notion of local neighborhood in these networks;

it is difficult to partition a network into clusters representing local neighborhoods

when the network best resembles a tangled hairball, and most nodes are close to

all other nodes in shortest path distance, a problem termed the “ties in proximity

problem” by Arnau et al [2]. There are nonetheless many notions of clustering that

have been developed for the so-called “community detection” problem in biological

or social networks; many of them seek to maximize the modularity of the clusters, a

quantity defined by Girvan and Newman [3] that measures the relative denseness of

interconnections within a cluster as compared to the connection of that cluster to

the rest of the network, or alternatively the conductance of the clusters [4]. Other

mailto:cowen@cs.tufts.edu

Hall-Swan et al. Page 2 of 19

clustering methods have been proposed based on random walks, successive removal

of cut edges, spectral embeddings and so on [5, 6, 7].

In 2013, Cao et al. introduced a new distance measure called Diffusion State

Distance, or DSD, designed to be a more fine-grained distance measure for protein-

protein interaction networks [8]. In contrast to the typical shortest path metric,

which measures distance between pairs of nodes by the number of hops on the

shortest path that joins them in the network, DSD was shown to spread out the

pairwise distances, making for a more fine-grained notion of graph local neighbor-

hood. We hypothesized that re-embedding the PPI network by first reweighting its

edges according to their DSD distance in the original network might lead to better

clusters. Before we can test this hypothesis, however, we need to think about how

to measure the overall quality of a set of clusters: only then can we talk about once

method producing better clusters than some other method.

Measuring quality of a clustering

In the current study, we consider the problem of separating the yeast protein-

protein association network (as downloaded from the STRING database [9]) into

non-overlapping clusters. Some proposed ways to measure the quality of a clustering

are purely graph-theoretic, based on minimizing quantities such as modularity or

conductance. In this study, instead, we wish to judge the quality of the clustering we

obtain by how “meaningful” the clusters are biologically– where the standard way

to measure this would be based on measuring functional enrichment of the resulting

clusters. In this study, we measure functional enrichment of the clusters over the GO

using the FuncAssociate tool [10], with appropriate multiple testing correction for

the number of clusters in our set. We declare a cluster to be functionally enriched

if it is enriched for at least one and no more than 50 different GO terms, at an

appropriate level of specificity in the GO hierarchy.

However, while it is easy to declare one particular cluster to be known to be

meaningful if it is enriched for at least one and no more than 50 biological functions,

it is not immediately clear how to use this to compare the overall quality of different

clusterings, particularly when the number and distribution of cluster sizes is different

across the different clustering algorithms. Observe that in particular, the percentage

of enriched clusters is not a good statistic: any algorithm that picks off small good

clusters around the periphery of the network, and then puts all the remaining nodes

into a giant single cluster in the center, will score all but one of its clusters enriched

(the large center cluster), for a very large percentage of enriched clusters. Restricting

the maximum size of a cluster (as we do for some of the experiments) can ameliorate

this behavior to a large extent, but we still are faced with the need to find a

meaningful overall statistic even when the distribution of cluster sizes is highly

non-comparable.

Because we are restricting ourselves to non-overlapping clusterings, we choose as

the main statistic by which we judge the quality of a clustering to be the number (or

percent) of network nodes that are placed within enriched clusters. We abbreviate

this as #NEC and %NEC. We note that this NEC statistic can be measured

across clusterings with different numbers of clusters, size of clusters, and different

cluster size distributions. However, even these NEC statistics are most meaningful

Hall-Swan et al. Page 3 of 19

when comparing clusterings when the number of clusters and their ranges of sizes

are approximately matched; in particular, adding some number of unrelated nodes

arbitrarily to an enriched clusters will improve the NEC statistics, even if it dilutes

the cluster enrichment, as long as it doesn’t cause the enrichment to dip below the

enrichment threshold. See figure 1 for a simple example demonstrating this case.

Thus we add a second statistic that we call NEC S (for number of enriched clusters,

same label), for the number (or percent) of nodes whose label matches a label of

its enriched cluster. This is a more stringent condition met by a fewer number

of nodes in enriched clusters and more precisely measures how well our clustering

recapitulates existing knowledge. In the case where there is no bound on cluster

sizes, this is the more meaningful statistic, because the ordinary NEC statistics will

tend to inflate the quality of the clustering. Figure 2 shows the NEC S statistic

computed on an example cluster.

Some of the algorithms we test allow greater or lesser control in setting maximum

or minimum cluster sizes or the number of clusters that are output in the clustering;

we discuss also how we would recommend setting these parameters in such a way

as to make the resulting clusterings more meaningful for the biological networks we

study, and also more comparable.

The experiments

We implemented three popular methods for clustering biological or social networks

in two modes: in the first mode, we ran them directly on the STRING network,

and in the second mode, we first ran DSD to detangle the network, and then ran

them on the network reweighted by edges inversely proportional to DSD distances.

We considered each method in the setting where there was no restriction on max-

imum cluster size, and also in the setting where the maximum size of any cluster

was bounded by 100 nodes. Some of the algorithms we test (such as Louvain) do

not allow you to control for the number of clusters that our output; some of the

algorithms give very fine control over this parameter. In order to make our results

comparable across methods, we mainly focus on clusterings that produce between

200-300 clusters. In this range, when cluster sizes are bounded, we find that run-

ning DSD first to detangle the network often results in a better percentage of nodes

placed within enriched clusters. An important exception is the Louvain algorithm

with bounded cluster sizes. For the Walktrap algorithm, we note that when Walk-

trap modified to bound cluster sizes at 100 is run to output a large number of

clusters, the results are more mixed: at 700 clusters, modified Walktrap performs

better in the NEC statistic but slightly worse in the NEC S statistic when detangled

with an appropriate DSD threshold, as compared to modified Walktrap run directly

on the PPI network.

For the versions of the algorithm when maximum cluster size is unbounded, all

algorithms perform better with detangling excepting spectral clustering with no

bound on cluster sizes, the performance is again mixed. For spectral clustering, a

greater percentage of nodes in enriched clusters is produced when run directly on

the PPI network, but the NEC S statistic (which is more meaningful when there is

no bound on cluster sizes) is slightly better when DSD is run first. (When a bound of

100 nodes is again placed on maximum cluster size, performance by first detangling

Hall-Swan et al. Page 4 of 19

with DSD is again better for spectral clustering and Walktrap, but performance for

the Louvain algorithm degrades.)

We further discuss parameter settings that influenced the resulting number of clus-

ters and their sizes in the network, and make recommendations for each method.

In particular, we especially consider parameter settings where methods return be-

tween 200 and 300 clusters, each with between 3 and 100 nodes. In many settings,

we can advocate that re-weighting the network using DSD as a pre-processing step

for decomposing protein-protein networks into functionally coherent communities

produces more meaningful clusters.

Review of DSD
Consider the undirected graph G(V,E) on the vertex set V = {v1, v2, v3, ..., vn} and

|V | = n. Now He{k}(A,B) is defined as the expected number of times that a simple

symmetric random walk starting at node A and proceeding for some fixed k steps

(including the 0th step), will visit node B.

We now take a global view of the Hek(A,B) measure from each vertex to all the

other vertices of the network.

More specifically, we define a n-dimensional vector Hek(vi),∀vi ∈ V , where

Hek(vi) = (Hek(vi, v1), Hek(vi, v2), ...,Hek(vi, vn)).

Then, the Diffusion State Distance (DSD) between two vertices u and v, ∀u, v ∈ V
is defined as:

DSDk(u, v) = ||Hek(u)−Hek(v)||1.

where ||Hek(u)−Hek(v)||1 denotes the L1 norm of the Hek vectors of u and v.

We showed in [8] for any fixed k, that DSD is a true distance metric, namely

that it is symmetric, positive definite, and non-zero whenever u 6= v, and it obeys

the triangle inequality. Thus, one can use DSD to reason about distances in a

network in a sound manner. Further, we show that when the network is ergodic,

DSD converges as the k in He{k}(A,B) goes to infinity, allowing us to define DSD

independent from the value k, and to compute the converged DSD matrix tractably,

with an eigenvalue computation, where we can compute

DSD(u, v) = ||(1u − 1v)(I −D−1A+W)−1||1

where D is the diagonal degree matrix, A is the adjacency matrix, and W is the

constant matrix where each row is a copy of π, the degrees of each of the vertices,

normalized by the sum of all the vertex degrees.

The above treatment does not consider edge weights; DSD was generalized to

handle edge-weighted graphs in [11]. To incorporate edge weights, the random walk

is modified where instead of choosing all edges at a vertex with equal probability,

the walk instead chooses edges in proportion to their confidence weights, namely

we define a new 1-step transition matrix with (i, j)th entry given by:

p′ij =
wij∑n
l=1 wil

Hall-Swan et al. Page 5 of 19

Then we redefine Hek(A,B) as the expected number of times that the weighted

random walk starting at node A and proceeding for k steps will visit B, which can

be calculated as the (i, j)th entry of the kth power of the transition matrix. The

n-dimensional vector Hek(vi) can be constructed as before, and then the DSD is

calculated the same as before, just based on the modified He vectors.

Methods
The network

The protein-protein association network for S. Cerevisiae was downloaded from

STRING version 10 on 2/7/2017 [9]. We removed all edges that had no direct

experimental verification. Edge weights were taken directly from from the “escore”

confidence values given by STRING. After we remove the 2 isolated nodes, the

resulting network has 6096 nodes.

Enrichment calculation

Functional enrichment was measured in Gene Ontology terms using the FuncAs-

sociate 3.0 web API [10]. All GO terms that were level 5 or below in specificity

from all three hierarchies (molecular function, biological process, and cellular com-

ponent) were considered. FuncAssociate uses Fisher’s exact test to calculate an

enrichment p-value, and we used a p-value cutoff of 0.05 to determine if a cluster

was significantly enriched for a term. To correct for multiple testing, FuncAssociate

uses an approach based on Monte Carlo sampling from the background gene space,

as described in [10] (note that because of the stochastic sampling, different runs of

FuncAssociate can give slightly different results, but we mostly observe differences

of only fractions of a percentage point).

The clustering algorithms

We considered the following popular clustering algorithms, each of which will return

a non-overlapping set of clusters. In our study, we restricted cluster sizes to be at

least 3; any cluster of size less than 3 created by an algorithm was discarded. We

considered all three algorithms with no restriction on maximum cluster size; we

then modified each of the three algorithms to set a maximum cluster size of 100.

Bounds on minimum and maximum cluster size were set in order to make the

clusterings returned by different methods more comparable; the specific values of 3

and 100 were set to be consistent with the recent Dream community “disease module

identification” challenge [12]. For each clustering method, we run it natively on the

network from STRING. We then run it on a transformed network, preprocessed with

DSD as follows: 1) We form the DSD matrix of distances in the original network. 2)

We create a new graph by placing edges between pairs of nodes whose DSD distance

is less than r, with edge weight 1/r. We then run the clustering algorithm on the

new DSD-based detangled graph. We considered a range of different values of the

threshold r (between 4 and 6).

The Louvain Algorithm

For a partition of a network into two pieces, consider the quantity

Q =
1

2m

∑
i,j

[
Aij −

kikj
2m

]
δ(ci, cj)

Hall-Swan et al. Page 6 of 19

where Aij is the matrix of edge weights, m is the sum of all the edge weights,

ki =
∑

j Aij is the sum of all the edge weights emanating from vertex i and δ is an

indicator function that is 1 iff i and j have been placed in the same cluster. Then Q

measures the modularity in a weighted graph, based on the weight of links within

a cluster as compared to the links between clusters (see [3]).

The Louvain Algorithm, first defined in [13], is a heuristic that repeatedly tries to

move individual nodes across cluster boundaries in order to improve the value of Q.

Starting from a partition of the network into clusters (initially, every node is placed

into its own cluster), the first phase of the Louvain algorithm considers nodes i that

are adjacent to some node j which has been placed in a different community. i is

moved into j’s community if and only if doing so would increase the modularity

Q described above. Nodes are considered multiple times until the quantity Q can

no longer be improved by moving any individual nodes. The second phase of the

algorithm consists in building a new network whose nodes are now the communities

found during the first phase. The weights between these new supernodes are now

set to be the sum of the weight of the links between nodes in the corresponding two

communities (where links between nodes of the same community are retained as

self-loops). Then the first phase of the Louvain algorithm is run again on the new

nodes.

In our implementation, clusters with less than 3 nodes were discarded. We used

only the first level of clusters created to prevent the formation of massive clusters,

but the algorithm can still create clusters of size > 100. Thus, we also modified

the algorithm to force clusters to have at most 100 nodes by re-running Louvain

separately on each cluster with more than 100 nodes, in order to split the cluster

into multiple clusters of size under 100 nodes.

The Walktrap Algorithm

Consider the random walk on G where at each time step, the walker moves from

a node to a new node chosen randomly and uniformly among its neighbors (in

proportion to edge weights). When D is the matrix that has the ith diagonal entry

be the degree of vertex i, and 0’s off the diagonal, then one can define the transition

matrix of the random walk as P = D−1A where A is the adjacency matrix. Fix

t, the length of a random walk and let P t
i◦ denote the ith row of the matrix P t

The Walktrap algorithm [14] defines an an (i, j) distance ri,j depending on the

L2 distance between the two probability distributions P t
i◦ and P t

j◦. This internode

distance is then generalized to a distance between communities in a straightforward

way, by choosing a starting node randomly and uniformly among the nodes of the

community. This defines the probability P t
Cj

to go from community C to vertex

j in t steps and an associated probability vector P t
Cj◦. Then the distance rC1C2

is defined as the L2 distance between the two probability distributions P t
C1◦ and

P t
C2◦..

This algorithm is initialized by putting each vertex into its own cluster. Then two

adjacent communities (joined by at least one edge) are merged according to which

gives the lowest value of the quantity ∆α, where the change in ∆α that would result

when clusters C1 and C2 are instead merged into a new cluster C3 is given by:

∆α(C1, C2) =
1

n

|C1||C2|
|C1|+ |C2|

r2C1C2

Hall-Swan et al. Page 7 of 19

In our implementation, we set t, the length of the random walk to 4, which is

the recommended default. We also consider a modified version of Walktrap (again

setting t=4) that prevents the merging clusters if the merge would create a cluster

of of size > 100. Modified Walktrap is run until no more merges are possible, which

can be represented as a forest dendrogram (not a tree, because there are multiple

clusters at the top level that cannot merge because their union would contain more

than 100 nodes). We then cut the dendrogram at a lower level to produce some lower

number of output clusters: the final number of clusters output is all the clusters at

that level of size ≥ 3 (discarding clusters of size 1 or 2).

Spectral Clustering

Spectral Clustering was introduced by Ng, Jordan and Weiss [15] in 2001. It takes

as input a similarity matrix, and does a low-dimensional embedding of the nodes

according to that similarity matrix. Then K-means clustering is run on the nodes in

the embedded space, where K, the number of clusters, is an input to the algorithm.

In our case we construct the similarity matrix by computing 1/(the DSD distance).

The final number of clusters we produce is not K, since we discard any cluster of size

< 3. We consider also a modified version of spectral clustering where we recursively

split any cluster of size > 100, recursively calling spectral clustering with K = 2

clusters, until all cluster sizes are less than 100 nodes.

Clustering Implementations

In the case of Louvain, we used the implementations in the popular igraph package

[16]. In the case of spectral clustering, our implementation came from scikit-learn

[17]. In the case of both Walktrap and the modified Walktrap algorithm (which

restricted cluster sizes to be < 100 nodes), we worked directly from the Walktrap

source code from [14].

Results
For each algorithm we consider, we compare what would be obtained by running

that algorithm directly on the PPI network with weights taken directly from the

STRING confidence values, with no filtering or pre-processing, to what is obtained

by first running DSD on the network, filtering out edges where the DSD distance

between their endpoints exceeded a threshold, and otherwise running the algorithm

with edges weighted by 1/(DSD distance).

We first considered the Louvain and Walktrap algorithms without any restriction

on maximum cluster size. The Louvain algorithm is highly sensitive to the order in

which nodes are considered [13], so we report median results over 10 independent

runs of the algorithm (mean results over the 10 runs are highly similar and not

shown). The results appear in Tables 1 and 3. The best results occur when the

network is pre-processed with DSD at an appropriate threshold, however, run di-

rectly on the PPI network as well as some of the DSD thresholds, these algorithms

unmodified produce some large, uninformative clusters. For example, in every one

of the 10 times we ran Louvain directly on the PPI network, the largest cluster had

size greater than 1000 nodes. When we ran Walktrap directly on the PPI network,

the largest cluster had size greater than 3000 nodes, i.e. nearly half the network

Hall-Swan et al. Page 8 of 19

was placed into a single, uninformative cluster. Thus we also considered modified

versions of Louvain and Walktrap, as described above, that force cluster sizes be-

tween 3 and 100 nodes (where again, the specific values of 3 and 100 were set to

be consistent with the recent Dream community “disease module identification”

challenge [12].) These results appear in Tables 2 and 4. DSD plus Louvain performs

worse than Louvain alone, with bounded cluster sizes. However, DSD plus Walktrap

performs better than Louvain alone, with bounded cluster sizes. Note that while

modified Louvain can bound cluster sizes, it really has no way to tune the number

of clusters that are output by the algorithm. On the other hand, the number of

clusters that are output by modified Walktrap can be tuned by cutting the cluster

dendrogram at different levels.

Thus, in order to explore our chosen measure of cluster quality, namely, the percent

of the 6096 network nodes placed into an enriched cluster of size between 3 and 100

further, for Walktrap modified to have bounded cluster size run directly on the PPI

network versus run after pre-processing with various DSD thresholds, we explored

cutting the Modified Walktrap dendrogram at different numbers of clusters (before

filtering small clusters, so the resulting numbers of clusters may not necessarily

be exactly the same as the dendrogram cut level). The results appear in Table

5 and Table 6, for both the %NEC and %NEC S statistics. For the %NEC

statistic, the modified Walktrap algorithm with DSD preprocessing performs better

for every dendrogram cut level. For the %NEC S statistic, the algorithm with DSD

preprocessing performs better for lower dendrogram cut levels (i.e. fewer clusters),

but for a dendrogram cut level of 700, the algorithm run directly on the PPI network

performs better, although DSD with a cutoff of 5.5 performs nearly comparably for

this statistic.

Figure 3 gives some intuition for how the DSD thresholds were chosen: it shows a

histogram of all pairwise DSD distances between nodes in the PPI network; setting

the DSD threshold removes a fraction of these edges and sparsifies the network. For

example, setting the edge removal threshold to 4.5 will result in direct edges from

a vertex only to a small fraction of its close neighbors in DSD distance. Setting the

edge removal threshold to 6, on the other hand, preserves roughly half the pairwise

network distances.

Figure 4 directly compares the clusters at different size ranges by enrichment for

Louvain directly, and DSD followed by Louvain, with an edge removal threshold

of 5, and cluster sizes bounded to lie between 3 and 100. Detangling with DSD

decreased the percentage of nodes placed within enriched clusters. Figure 5 directly

compares the clusters at different size ranges by enrichment for Walktrap directly,

and DSD followed by Walktrap, with an edge removal threshold of 5.5, and cluster

sizes bounded to lie between 3 and 100. In this case, the two clusterings are actually

quite comparable in terms of the percentage of nodes placed within enriched clusters,

but without the DSD detangling, the algorithm creates a greater number of larger

clusters.

We next sought to make the comparison for spectral clustering, but like Walktrap,

spectral clustering has an additional parameter that must be set, namely K, the

number of clusters. We look at both a version of spectral clustering that does

not restrict maximum cluster size, as well as a variant of spectral clustering that

Hall-Swan et al. Page 9 of 19

recursively splits clusters of size greater than 100, in order to produce a clustering

with clusters of size between 3 and 100 nodes, as before. Note that the final number

of clusters output by our spectral clustering method will be different than K, the

input number of cluster centers, because our implementation of spectral clustering

recursively splits any cluster of size > 100. Figure 6 shows that the number of

clusters that spectral clustering plus DSD (modified to force a maximum cluster size

of 100) produces based on the number of input clusters is robust to the threshold

cutoff. In all cases, the number of output clusters rises for awhile based on the

number of input cluster centers, and then falls off. It rises compared to the number

of input clusters when cluster sizes are too large and get split by our method for

having > 100 nodes. It falls off when K is set large enough that many of the clusters

that spectral clustering produces have < 3 nodes, which we then discard and do not

include as output clusters according to the cluster size restrictions of our methods.

Based on this figure, we report results for K = 300 at different DSD thresholds in

Tables 7 and 8.

Figure 7 gives the number of clusters and the percentage of enriched clus-

ters for spectral clustering (with a maximum cluster size bounded at 100) and

DSD+spectral clustering for K = 300. As can be seen, DSD+spectral clustering

has a higher percentage of nodes in enriched clusters than spectral clustering us-

ing both NEC and NEC S statistics when cluster sizes are bounded by 100; with

unbounded cluster sizes, When the maximum cluster size is unbounded, this is the

one case where the results are mixed: the NEC statistic is better for spectral run

directly on the PPI network than DSD+spectral, because more nodes are placed

into a large enriched central cluster. However, DSD+spectral is better for the NEC

S statistic, which is the more informative statistic in the case of unbounded cluster

sizes. On the human network, DSD+spectral outperforms spectral run natively on

the PPI network by every statistic (see Discussion).

Discussion
We have shown that some popular clustering methods appear to perform better

when DSD is applied as a pre-processing step to help detangle the network, and

at least one popular clustering method performs worse. In particular, we tested

Louvain, Walktrap and Spectral Clustering methods, both native as well as modified

to keep the maximum cluster size bounded by 100 nodes, run on the yeast PPI

network directly, and then run on the PPI network after using DSD to sparsify and

detangle the network, for a total of 6 different methods. For four of the six methods,

applying the DSD pre-processing method at an appropriate threshold improved

the percentage of network nodes that were placed into clusters enriched for their

own functional label. For the fifth method, spectral clustering with no modification

to large clusters, the DSD detangling sometimes improved performance slightly

or sometimes hurt performance slightly, depending on other parameter settings.

For the sixth method, Louvain with bounded cluster sizes, the DSD detangling

was inferior to running the algorithm directly on the PPI network. Measuring the

number of nodes placed into enriched clusters (not necessarily enriched for their

own label) showed similar trends regardless of whether or not we filtered out the

most general GO terms; these statistics were also often improved at the appropriate

DSD threshold when sizes and and number of clusters were approximately matched.

Hall-Swan et al. Page 10 of 19

It is hard to definitively answer which of the six methods is best, since it is hard

to control the range of cluster sizes exactly. Clearly, without a bound on cluster

sizes, Spectral clustering is performing best. With bounded cluster sizes, Spectral

clustering plus DSD, the best DSD-modified algorithm is performing slightly better

than Louvain run directly on the PPI network, the second best overall performer.

Spectral clustering also makes it very easy to control the number and size range of

the clusters that are returned. For this reason, the spectral clustering method was

probably our favorite, though all three modified algorithms also performed quite

well, both with and without DSD.

It is natural to ask if our results were peculiar to the yeast network, or whether

they would generalize to other organisms. We were particularly interested in the hu-

man network, which has more nodes but is more sparsely annotated. We thus also

downloaded the protein-protein interaction network for H. sapiens from STRING

version 10 on 2/7/2017. As before, we removed all edges that had no direct exper-

imental verification. Edge weights were taken directly from the ’escore’ confidence

values given by STRING. In the human network, we consider only the largest con-

nected component which has 15,129 nodes.

Because there are fewer known edges and this is a sparser network than yeast, we

set higher DSD thresholds, ranging from 6 to 8. See Figure 8 for the corresponding

histogram of all pairwise DSD distances in this network.

As can be seen in Table 9, the advantages of detangling the network with DSD

before applying Spectral clustering seem even clearer on the human network. For

both of the %NEC thresholds, and robust to the exact value of the DSD cutoff,

results are better when the network is pre-processed with DSD.

Many open questions still remain. In future work, we will measure whether a sim-

ilar DSD pre-processing step improves algorithms for community detection in other

biological networks. We will verify that we get similar results on networks arising

from additional species, and also seek to investigate whether the results remain true

on networks built using different types of gene-gene or protein-protein association

data. We will continue to study the best way to measure cluster quality when faced

with a different number of clusters of different sizes. Finally, one way in which our

problem formulation was somewhat artificial is that we required our clusters to be

non-overlapping ; however, many proteins participate in multiple pathways, com-

plexes or processes, which would be more accurately represented by overlapping

clusters or communities. A recent survey of methods for overlapping community

detection appears in [18].

Code availability

Source code for the algorithms and experiments in this paper is available at

https://github.com/TuftsBCB/detangle-cd/.

Competing interests

The authors declare that they have no competing interests.

Author’s contributions

Conceived and designed the project: LC. Methods development: SHS, JC, RN and LC. Implemented the software:

SHS and JC. Analyzed the data: SHS, JC, and LC. Wrote the paper: JC and LC. All authors read and approved the

final manuscript.

https://github.com/TuftsBCB/detangle-cd/

Hall-Swan et al. Page 11 of 19

Method Enriched Clusters # NEC % NEC # NEC S % NEC S
PPI 29.5/47.5 (62.11%) 799.0 13.10% 548.5 8.99%
4.0 130.0/192.0 (67.71%) 1144.0 18.77% 1011.0 16.58%
4.5 175.0/265.5 (65.91%) 1960.5 32.16% 1562.0 25.62%
5.0 106.5/173.0 (61.56%) 1736.0 28.48% 967.0 15.86%
5.5 15.0/45.5 (32.97%) 361.5 5.93% 288.0 4.72%
6.0 5.0/21.5 (23.26%) 221.0 3.63% 178.5 2.93%

Table 1 The performance of Louvain run directly on the PPI network versus Louvain plus DSD at
different edge removal thresholds; the reported results of Louvain are median values from running the
algorithm over 10 random permutations of the nodes. We discard clusters of size < 3. NEC= “Nodes
in Enriched Clusters”. We calculate %NEC in two settings: %NEC is enrichment in the GO
hierarchy with terms above the fifth level filtered out, and %NEC S uses the same filtered GO
hierarchy, but then only gives a node credit if there is a match between one of the node’s labels and
one of the terms for which there is GO enrichment for the cluster. Note that without modifying
Louvain to restrict the maximum cluster size, the S statistic is the most meaningful. Running directly
on the PPI network and run with high DSD thresholds, Louvain produces a relatively small number of
clusters, and many are of very large size. It is worth noting that with a DSD threshold of 5, nearly
175 clusters are produced, and the enrichment statistics remain reasonable.

Acknowledgements
We thank the Tufts BCB group for helpful discussions, and the organizers of the CNB-MAC workshop, where

preliminary results were presented, for helpful feedback. We thank Tufts University for support. We note that we

have corrected errors in an earlier version of this paper that stemmed from a bug in our application of the igraph

graph library.

References
1. Song, J., Singh, M.: How and when should interactome-derived clusters be used to predict functional modules

and protein function? Bioinformatics 25(23), 3143–3150 (2009)

2. Arnau, V., Mars, S., Marin, I.: Iterative cluster analysis of protein interaction data. Bioinformatics 31, 364–378

(2005)

3. Girvan, M., Newman, M.E.: Community structure in social and biological networks. Proceedings of the National

Academy of Sciences USA 99(12), 7821–7826 (2002)

4. Verma, D., Meila, M.: A comparison of spectral clustering algorithms. University of Washington Tech Rep

UWCSE030501 1, 1–18 (2003)

5. Fortunato, S.: Community detection in graphs. Physics reports 486(3), 75–174 (2010)

6. Leskovec, J., Lang, K.J., Mahoney, M.: Empirical comparison of algorithms for network community detection.

In: Proceedings of the 19th International Conference on World Wide Web, pp. 631–640 (2010). ACM

7. Harenberg, S., Bello, G., Gjeltema, L., Ranshous, S., Harlalka, J., Seay, R., Padmanabhan, K., Samatova, N.:

Community detection in large-scale networks: a survey and empirical evaluation. Wiley Interdisciplinary

Reviews: Computational Statistics 6(6), 426–439 (2014)

8. Cao, M., Zhang, H., Park, J., Daniels, N.M., Crovella, M.E., Cowen, L.J., Hescott, B.: Going the distance for

protein function prediction. PLOS One 8, 76339 (2013)

9. Szklarczyk, e.a. Damian: String v10: protein–protein interaction networks, integrated over the tree of life.

Nucleic Acids Research 43(D1), 447–452 (2015)

10. Berriz, G.F., Beaver, J.E., Cenik, C., Tasan, M., Roth, F.P.: Next generation software for functional trend

analysis. Bioinformatics 25(22), 3043–3044 (2009)

11. Cao, M., Pietras, C.M., Feng, X., Doroschak, K.J., Schaffner, T., Park, J., Zhang, H., Cowen, L.J., Hescott,

B.: New directions for diffusion-based prediction of protein function: incorporating pathways with confidence.

Bioinformatics 30, 219–227 (2014)

12. Consortium, T.D.: The DREAM Disease Module Challenge. Manuscript in preparation. See

https://www.synapse.org/modulechallege. (2016)

13. Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks.

Journal of statistical mechanics: theory and experiment 2008(10), 10008 (2008)

14. Pons, P., Latapy, M.: Computing communities in large networks using random walks. J. Graph Algorithms Appl.

10(2), 191–218 (2006)

15. Ng, A.Y., Jordan, M.I., Weiss, Y., et al.: On spectral clustering: Analysis and an algorithm. In: NIPS, vol. 14,

pp. 849–856 (2001)

16. Csardi, G., Nepusz, T.: The Igraph software package for complex network research. InterJournal, Complex

Systems 1695(5), 1–9 (2006)

17. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,

Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. Journal of Machine Learning Research

12(Oct), 2825–2830 (2011)

18. Xie, J., Kelley, S., Szymanski, B.K.: Overlapping community detection in networks: The state-of-the-art and

comparative study. ACM computing surveys (CSUR) 45(4), 43 (2013)

Tables

Hall-Swan et al. Page 12 of 19

Method Enriched Clusters # NEC % NEC # NEC S % NEC S
PPI 264.5/361.0 (73.27%) 4646.0 76.21% 2765.5 45.37%
4.0 129.0/192.0 (67.19%) 1139.0 18.68% 1006.5 16.51%
4.5 207.5/304.0 (68.26%) 2220.5 36.43% 1754.0 28.77%
5.0 221.0/363.0 (60.88%) 3720.5 61.03% 2418.0 39.67%
5.5 131.0/227.0 (57.71%) 4107.5 67.38% 2380.5 39.05%
6.0 113.5/177.0 (64.12%) 4295.5 70.46% 2192.5 35.97%

Table 2 The performance of Louvain versus Louvain plus DSD at different edge removal thresholds;
the results of Louvain are median values from running the algorithm over 10 random permutations of
the nodes. We discard clusters of size < 3 and recursively split clusters of size > 100. NEC= “Nodes
in Enriched Clusters”. We calculate %NEC in two settings: %NEC is enrichment in the GO
hierarchy with terms above the fifth level filtered out, and %NEC S uses the same filtered GO
hierarchy, but then only gives a node credit if there is a match between one of the node’s labels and
one of the terms for which there is GO enrichment for the cluster. Louvain run directly on the PPI
network performs better than every DSD threshold we tested.

Method Enriched Clusters # NEC % NEC # NEC S % NEC S
PPI 8/18 (44.44%) 293.0 4.81% 235.0 3.85%
4.0 139/194 (71.65%) 1080.0 17.72% 960.0 15.75%
4.5 159/236 (67.37%) 1491.0 24.46% 1280.0 21.00%
5.0 99/166 (59.64%) 1439.0 23.61% 855.0 14.03%
5.5 24/67 (35.82%) 496.0 8.14% 345.0 5.66%
6.0 15/51 (29.41%) 493.0 8.09% 318.0 5.22%

Table 3 The performance of Walktrap versus Walktrap plus DSD at different edge removal
thresholds; We discard clusters of size < 3. NEC= “Nodes in Enriched Clusters”. We calculate
%NEC in two settings: %NEC is enrichment in the GO hierarchy with terms above the fifth level
filtered out, and %NEC S uses the same filtered GO hierarchy, but then only gives a node credit if
there is a match between one of the node’s labels and one of the terms for which there is GO
enrichment for the cluster. Walktrap run alone produces a very small number of clusters; because of
this only the S statistic is meaningful to compare the DSD versions against unmodified Walktrap.

Method Enriched Clusters # NEC % NEC # NEC S % NEC S
PPI 35/64 (54.69%) 3274.0 53.69% 1703.0 27.93%
3.5 56/91 (61.54%) 570.0 9.35% 468.0 7.68%
4.0 97/142 (68.31%) 1155.0 18.95% 915.0 15.01%
4.5 144/215 (66.98%) 1869.0 30.66% 1415.0 23.21%
5.0 96/174 (55.17%) 2785.0 45.69% 1724.0 28.28%
5.5 56/93 (60.22%) 4067.0 66.72% 1783.0 29.25%
6.0 51/81 (62.96%) 4155.0 68.16% 1667.0 27.35%

PPI 39/69 (56.52%) 3367.0 55.21% 1782.0 29.22%
3.5 55/91 (60.44%) 495.0 8.12% 463.0 7.60%
4.0 97/142 (68.31%) 1155.0 18.95% 915.0 15.01%
4.5 144/215 (66.98%) 1869.0 30.66% 1415.0 23.21%
5.0 95/174 (54.60%) 2686.0 44.06% 1676.0 27.49%
5.5 60/106 (56.60%) 3978.0 65.26% 1862.0 30.54%
6.0 66/96 (68.75%) 4077.0 66.88% 1680.0 27.56%

Table 4 The performance of Modified Walktrap versus Modified Walktrap plus DSD at different edge
removal thresholds; We discard clusters of size < 3, and restrict maximum cluster size to be < 100.
The numbers above the double line are for cutting the Walktrap dendrogram at 200 clusters; the
numbers below the double line are for cutting the Walktrap dendrogram at 300 clusters. NEC=
“Nodes in Enriched Clusters”. We calculate %NEC in two settings: %NEC is enrichment in the GO
hierarchy with terms above the fifth level filtered out, and %NEC S uses the same filtered GO
hierarchy, but then only gives a node credit if there is a match between one of the node’s labels and
one of the terms for which there is GO enrichment for the cluster. In both cases, for the S statistic
the best DSD threshold is 5.5, at which performance is slightly better than running Walktrap directly
on the PPI network. For cutoffs of both 200 and 300 nodes, DSD+Walktrap is slightly better than
Walktrap in the NEC measure, and in both cases the DSD version produces slightly more and
smaller clusters.

Hall-Swan et al. Page 13 of 19

Dendrogram cut level 200 300 500 700
PPI 55.3% 53.6% 54.9% 55.3%

DSD 4.5 30.7% 30.7% 30.7% 30.3%
DSD 5 44.1% 44.0% 44.1% 44.2%

DSD 5.5 66.7% 66.9% 65.1% 65.3%
DSD 6 72.6% 68.3% 66.2% 63.0%

DSD 6.5 65.5% 68.4% 61.8% 53.7%
Table 5 Exploring the dendrogram cut level for modified Walktrap with a maximum cluster size of
100. The reported number is the percentage of nodes placed into an enriched cluster (i.e. the statistic
we are calling % NEC). At different dendrogram cut levels, the best percentage is bolded; in every
case it is modified Walktrap plus DSD, at varying thresholds (5.5, 6, and 6.5).

Dendrogram cut level 200 300 500 700
PPI 29.0% 28.0% 30.2% 32.3%

DSD 4.5 23.3% 23.2% 23.2% 24.5%
DSD 5 27.3% 27.5% 27.4% 28.9%

DSD 5.5 29.6% 31.5% 30.6% 31.8%
DSD 6 28.4% 27.8% 27.5% 24.8%

DSD 6.5 25.0% 26.9% 23.6% 19.9%
Table 6 Exploring the dendrogram cut level for modified Walktrap with a maximum cluster size of
100. The reported number is the percentage of nodes placed into a cluster with a matching
annotation (i.e. the statistic we are calling % NEC S). At different dendrogram cut levels, the best
percentage is bolded; sometimes it is modified Walktrap run directly on the PPI network, and
sometimes it is Walktrap plus DSD at a threshold of 5.5.

Method Enriched Clusters # NEC % NEC # NEC S % NEC S
PPI 201/225 (89.33%) 5650.0 92.65% 2409.0 39.50%
4.5 185/244 (75.82%) 2190.0 35.93% 1322.0 21.69%
5.0 176/252 (69.84%) 5003.0 82.07% 2100.0 34.45%
5.5 175/251 (69.72%) 4651.0 76.30% 2223.0 36.47%
6.0 168/224 (75.00%) 4997.0 81.97% 2473.0 40.57%

Table 7 The performance of Spectral versus Spectral plus DSD at different edge removal thresholds
when the input parameter K in all cases is set to 300, but then we discard clusters of size < 3.
NEC= “Nodes in Enriched Clusters”. We calculate %NEC in two settings: %NEC is enrichment in
the GO hierarchy with terms above the fifth level filtered out, and %NEC S uses the same filtered
GO hierarchy, but then only gives a node credit if there is a match between one of the node’s labels
and one of the terms for which there is GO enrichment for the cluster. In this case, the Spectral
algorithm run directly on the PPI network results in a higher %NEC statistic than any of the
DSD-preprocessed results. However, without cluster size restrictions %NEC S is the most
meaningful statistic, and it is better than Spectral run alone at a DSD threshold of 6.0.

Method Enriched Clusters # NEC % NEC # NEC S % NEC S
PPI 234/324 (72.22%) 3082.0 50.54% 2158.0 35.39%
4.5 194/266 (72.93%) 1647.0 27.02% 1330.0 21.82%
5.0 199/309 (64.40%) 3589.0 58.87% 2203.0 36.14%
5.5 189/291 (64.95%) 3765.0 61.76% 2228.0 36.55%
6.0 177/249 (71.08%) 4670.0 76.61% 2490.0 40.85%

Table 8 The performance of Spectral versus Spectral plus DSD at different edge removal thresholds
when the input parameter K in all cases is set to 300, but then we discard clusters of size < 3 and
split clusters of size > 100. NEC= “Nodes in Enriched Clusters”. We calculate %NEC in two
settings: %NEC is enrichment in the GO hierarchy with terms above the fifth level filtered out, and
%NEC S uses the same filtered GO hierarchy, but then only gives a node credit if there is a match
between one of the node’s labels and one of the terms for which there is GO enrichment for the
cluster. For every threshold we tested ≥ 5, the percentage of nodes in enriched clusters is better than
Spectral run alone for both measures.

Hall-Swan et al. Page 14 of 19

Method Enriched Clusters # NEC % NEC # NEC S % NEC S
PPI 252/510 (49.41%) 4540.0 29.96% 2301.0 15.18%
6.0 268/543 (49.36%) 6632.0 43.84% 2453.0 16.21%
6.5 286/543 (52.67%) 7085.0 46.83% 2918.0 19.29%
7.0 269/537 (50.09%) 7485.0 49.47% 3092.0 20.44%
7.5 272/552 (49.28%) 7243.0 47.87% 3073.0 20.31%
8.0 268/491 (54.58%) 7689.0 50.82% 3208.0 21.20%

Table 9 The performance of Spectral versus Spectral plus DSD at different edge removal thresholds
when the input parameter K in all cases is set to 300, but then we discard clusters of size < 3 and
split clusters of size > 100 on the Human network. We calculate %NEC in two settings: %NEC is
enrichment in the GO hierarchy with terms above the fifth level filtered out, and %NEC S uses the
same filtered GO hierarchy, but then only gives a node credit if there is a match between one of the
node’s labels and one of the terms for which there is GO enrichment for the cluster. By both of the
NEC statistics, at every DSD threshold, detangling with DSD performs better.

Hall-Swan et al. Page 15 of 19

= “annotated with function f ”

12 of 18 nodes in enriched clusters (67%)

9 of 18 nodes in enriched clusters (50%)

Figure 1 Comparison of two example network partitions under the NEC statistic. Edges are
omitted for visual clarity and only a single function f is considered in this simple case. The clusters
outlined in bold blue are “enriched” and those outlined in dotted red are not. Although the lower
partition is more specific for f (i.e. its enriched clusters contain fewer false positives), by the NEC
statistic it does not score as well as the upper partition. Note that in this case, the distribution of
cluster sizes is indeed much different between partitions; that is, the upper partition has a single
giant cluster, and the lower partition contains clusters having a more uniform size distribution.

Hall-Swan et al. Page 16 of 19

GO:00002
GO:00003
GO:00018

GO:00002
GO:00003 GO:00003

GO:00004

GO:00002
GO:00014
GO:00018

GO:00005
GO:00012

GO:00006
GO:00018

= “correctly clustered”

4 of 6 nodes correctly clustered (67%)

Figure 2 Example of scoring a single cluster using the NEC S statistic. GO annotations are listed
for each node and for the cluster as a whole, and only those nodes with an annotation matching
the cluster (the shaded nodes) are counted. In this case, 4 of the 6 total nodes (67%) are
correctly clustered.

Hall-Swan et al. Page 17 of 19

0e+00

2e+06

4e+06

6e+06

0.0 1.0 2.0 3.0 4.0 4.5 5.0 6.06.0 7.0 8.0 9.0 10.0 11.0
DSD distance

N
um

be
r

of
 e

dg
es

Figure 3 Histogram of all DSD distances in the STRING PPI network for yeast; edge removal
thresholds of 4.5 and 6.0 are marked.

3­4 5­8 9­16 17­32 33­64 65­100
Cluster size range

0

20

40

60

80

100

120

140

N
um

be
r

of
 c

lu
st

er
s

not significantly enriched ­ Louvain
not significantly enriched ­ DSD+Louvain
enriched ­ Louvain
enriched ­ DSD+Louvain

Figure 4 This figure compares median cluster sizes running Louvain (with cluster sizes restricted
to 3-100) directly on the PPI network with Louvain running on the DSD-detangled network (again
with cluster sizes restricted to 3-100), with an edge removal threshold of 5.0. The overall
percentage of nodes in enriched clusters is 76.21% for Louvain directly and 70.46% for
DSD+Louvain.

Hall-Swan et al. Page 18 of 19

3­4 5­8 9­16 17­32 33­64 65­100
Cluster size range

0

10

20

30

40

50

60

N
um

be
r

of
 c

lu
st

er
s

not significantly enriched ­ Walktrap
not significantly enriched ­ DSD+Walktrap
enriched ­ Walktrap
enriched ­ DSD+Walktrap

Figure 5 This figure compares cluster sizes running Walktrap (with cluster sizes restricted to
3-100) directly on the PPI network with Walktrap running on the DSD-detangled network (again
with cluster sizes restricted to 3-100), with an edge removal threshold of 5.5, using a dendrogram
cutoff of 300. The percentage of nodes in enriched clusters is 55.21% for Walktrap directly and
65.26% for DSD+Walktrap.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

100

200

300

400

500

200 400 600 800
Input number of cluster centers

A
ct

ua
l n

um
be

r
of

 o
ut

pu
t c

lu
st

er
s

Filter distance
●

●

●

●

●

5

5.5

6

6.5

spectral

Figure 6 This figure plots the number of clusters output by spectral clustering and spectral
clustering run on the DSD reweighted network, for different filter distance thresholds, based on
the number K of clusters input to the method; in all cases, the number of output clusters starts
out as less than K since clusters of size < 3 are not included in the count of output clusters.
Then the number of clusters grows larger than the number of input clusters (because large
clusters are recursively split) until K grows so large that the number of clusters of size < 3
counterbalances that increase.

Hall-Swan et al. Page 19 of 19

3­4 5­8 9­16 17­32 33­64 65­100
Cluster size range

0

20

40

60

80

100

120

N
um

be
r

of
 c

lu
st

er
s

not significantly enriched ­ Spectral
not significantly enriched ­ DSD+Spectral
enriched ­ Spectral
enriched ­ DSD+Spectral

Figure 7 This figure compares cluster sizes running Spectral (with cluster sizes restricted to
3-100) directly on the PPI network with Spectral running on the DSD-detangled network (again
with cluster sizes restricted to 3-100), with an edge removal threshold of 5.5. The percentage of
nodes in enriched clusters is 50.54% for Spectral directly and 61.76% for DSD+Spectral.

0.0e+00

5.0e+06

1.0e+07

1.5e+07

2.0e+07

0.0 1.0 2.0 3.0 4.04.55.0 6.06.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0
DSD distance

N
um

be
r

of
 e

dg
es

Figure 8 Histogram of all DSD distances in the Human STRING PPI network; previous edge
removal thresholds of 4.5 and 6.0 for yeast are marked.

	Abstract

