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Abstract. We consider the problem of investigating the \structure" of a set of points in high-dimensional space (n points in d dimensional Euclidean space) when n << d. The analysisof such data sets is a notoriously di�cult problem in both combinatorial optimization andstatistics due to an exponential explosion in d. A randomized non-linear projection methodis presented that maps these observations to a low-dimensional space, while approximatelypreserving salient features of the original data. Classical statistical analyses can then beapplied, and results from the multiple lower-dimensional projected spaces are combined toyield information about the high-dimensional structure. We apply our dimension reductiontechniques to a pattern recognition problem involving PET scan brain volumes.
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The problem. Let x1; : : : ; xn be a collection of n observations in <d. The goal is to clusterthe observations into g groups. We are concerned with this problem in the unsupervised case,where nothing is known a priori about the classi�cation of any of the data, as well as in thesupervised case, where some of the xi have associated with them a class label ci. The extremecase of this is called the classi�cation problem, where all observations xi have associated withthem a class label ci, and the goal is to use this training data to develop a discriminant rulewhich then can be used to classify unlabeled observations. These problems have been studiedextensively in the probability, statistics, engineering, and application-speci�c literature. See,for instance, [1, 2] and the references contained therein.Approximate Distance. Linial, London and Rabinovich [3] investigated algorithmic con-structions for embedding points from a high-dimensional Euclidean space into a lower di-mensional space while approximately preserving all the pairwise distances between points.Their work extended results of [4, 5, 6, 7] from the realm of functional analysis. Bourgain [4]showed that:Theorem Let X be a collection of n points in <d, with distances computed under the L2norm. Then there is a function  which maps X to  (X ), a set of points in r dimensional-space Euclidean space, such that 8xi; xj 2 X ,jjxi � xjjj � jj (xi)�  (xj)jj � 1C log n jjxi � xjjj:Furthermore, such a  can be found in randomized polynomial time. 2The work of [3] includes explicit constructions that are highly combinatorial in nature,where the construction of  combines small random subsets of the sample points themselves.Our point of departure from [3] is based on the observation that for pattern recognition3



purposes it is necessary only to preserve class or cluster separability, rather than all inter-point distances. If the intra-cluster distances collapse to near zero, this will only magnifythe ease of recognizing clustering behavior in the lower-dimensional space. This idea is alsothe basis of a deterministic method based on optimization techniques that appears in [8].Overview of the method.The method we employ has three stages: (1) �nd a useful set of projections to low-dimensionalspace, (2) explore the classi�cation or clustering properties of the data in the projections,and (3) use the information obtained to determine structure in the high-dimensional space.Here we focus mainly on (1), since this has been the bottleneck in successfully attackingpattern recognition problems for high-dimensional data. The reasoning behind using low-dimensional projections is that there are many classical pattern recognition methods thatwork well in low dimensions. Therefore, while the statistical method needs to be tailored tothe problem at hand, stage (2) can be accomplished by standard statistical techniques. Howto combine and use the information from stage (2) will also depend on the problem at hand;in this paper, we will investigate stage (3) in speci�c cases only.The ADC Maps. We now de�ne the family of maps that result in the non-linear pro-jections which are considered. We will call these the ADC maps, for approximate distanceclustering. The 1-dimensional ADC map is de�ned in terms of a a subset D of the originaldata. Each subset D speci�es a 1-dimensional ADC map; later we will choose D of a small�xed size randomly from the data.De�nition. Let X = fxig be a collection of data in <d. Let D � X . The associated1-dimensional ADC map is de�ned as the function that, 8xi 2 X , maps xi to the scalar4



quantity mind2D jjxi � djj. An r-dimensional ADC map is now de�ned in terms of subsetsD1; : : :Dr, where each xi 2 X is mapped to the point in <r whose jth coordinate is its valueunder the 1-dimensional ADC map with associated subset Dj .Notice that specifying stage (1) now means simply choosing r and determining how tochoose sets of subsets D1; : : :Dr. In fact, we will be choosing the D (of a particular sizek dependent on characteristics the data, speci�ed later) in a randomized fashion and, ashas been the case in many algorithmic problems studied of late (cf. [9])), it seems that therandomness itself is what helps us to get over the main computational bottleneck.Before we can begin a theoretical examination of how good the ADC projections are for�nding candidate clusterings, however, we must be able to de�ne what is a good clustering.This has not been in general an easy notion [10]. However, it is fairly easy to write down arestrictive de�nition of when data clusters into two clusters in one-dimension as follows:De�nition. Let x1; : : : ; xn 2 <, so that x(1); : : : ; x(n) are the ordered points s.t. x(i) � x(j).Let yi = x(i+1) � x(i) denote the spacings between points. Let yj = y(n�1) be the largestgap. If either x(j) � x(1) < y(n�1) or x(n) � x(j+1) < y(n�1) then x1; : : : ; xn are said to clusterperfectly in 1-dimension. The clusters are x(1) : : : x(j) and x(j+1) : : : x(n).Based on this, and for expository purposes, we �rst present a randomized algorithm basedon ADC projections into just one dimension. In this simple case we can describe completelyour algorithm's computational complexity for �nding clusters for a data set whose underlyingdistribution falls into two clusters. We apply the method to a simulation and to a set ofPET data. The extension to multiple dimensions and multiple clusters is then discussed inthe following section. 5



Measures of clustering.In what follows, let C be a cluster, with C = fx1; : : : xng; Let E = fxn+1; : : : ; xn+mg, whereC [ E is a set of n +m points embedded in an d-dimensional metric space with norm jj � jj(For the purposes of this paper, we will always consider the L2 norm). Here d >> n.De�nition. We say that C is k-clusterable if there exists a subset D of C such that jDj = kand 2maxc2C mind2D jjc� djj < mine2E mind2D jje� djjThe set D is called a witness that C is k-clusterable.For the purposes of this paper, k is constant, independent of n. More generally, k couldbe allowed to be a function of n, so that the size of D required will grow as n grows, forexample, allowing log n- clusterable sets.Lemma. Let C and E be as above. If C is k-clusterable, then the mapping which sendseach point u 2 C [ E to mind2D jju� djj, where D is a clusterability witness for C, clustersC perfectly in 1-dimension.Proof. Let D be the clusterability witness above, and f the associated mapping. Firstnotice that if x 2 C and y 2 E, then mind2D jjx � djj < mind2D jjy � djj by the propertyof D. Thus f maps all the points of E to the right of all the points in C, on the realline. Let y(j) be the gap between the rightmost point in C and the leftmost point in E,i.e. x(j) 2 C and x(j+1) 2 E. Then x(j) � x(1) = x(j), since f maps points in C whichare also in D to 0. Thus we need to show that x(j) < x(j+1) � x(j), or 2x(j) < x(j+1). But2x(j) = 2maxc2C mind2D jjc� dj < mine2E mind2D jje� djj = x(j+1). 26



We introduce a weaker notion called k-separability as well, by dropping the 2 in thede�nition above In this case, instead of perfect clusters in 1-dimension, the weaker propertyholds that all the points of C appear to the left of all the points of E in the image of f . Thisformulation is generalized to higher dimensions and multiple clusters below.De�nition. Let C and E be as above. Fix � > 0. We say that C is strongly (k; �)-clusterable,if for a random subset D of C of size k,Prob �2maxc2C mind2D jjc� djj < mine2E mind2D jje� djj� � �:If there exists any � > 0 such that C is strongly (k; �)-clusterable, we say C is stronglyk-clusterable.De�nition. Fix � > 0. Let C iid� FC with jCj = n, and E iid� FE, with jEj = m. We say C isstrongly (k; �)-clusterable in distribution if for a random subset D of size k drawn uniformlyfrom C, Prob [2maxc2C mind2D jjc� djj < mine2E mind2D jje� djj] � �:The same notions for this and the previous are de�ned for k-separable clusters by droppingthe factor of 2. The Algorithm.Consider the following procedure. Suppose x1 : : : xn are strongly (k; �) clusterable into clus-ters C and C. We choose D of size k1 at random from among the data points (if we havepartial classi�cation information available, choosing D either entirely or partially from datapoints known to lie within C speeds up the algorithm). We form the associated 1-dimensional1In practice, k is not known; the algorithm is run by hypothesizing kmax and k is �rst set to 1 andincreased incrementally. 7



ADC map, and check whether the data clusters perfectly in one dimension. (In the case ofpartial classi�cation information, we also require that all points known to be within C lieto the left of the biggest gap. In the case of total classi�cation information, we remove therequirement of perfect clustering and simply require that the points in C lie to the left ofthe points in C.) If this stage (2) analysis is successful in uncovering two resultant clusters,our goal has been met. If not, we select D at random again. How many times do we needto do this before we �nd a \good" ADC map? The following theorem provides an answer tothis, the fundamental question of stage (1).Theorem. Let � be a lower bound on the fraction of the data points that lie within C.Then if the data is completely unclassi�ed, the algorithm runs in time O((c(�)��k��1)(nk+n log n)) and recovers C with probability > 1 � 2��, for any �xed � > 0 . In the casethat the algorithm can sample from points known to be in C, the algorithm runs in timeO((c(�)��1)(nk + n log n)) and recovers C with probability > 1� 2��, for any �xed � > 0.Proof. We prove the second statement �rst. If x1 : : : xn are strongly (k; �) clusterable intoclusters C and C, checking 2=� samples Ri each chosen from points already classi�ed asbelonging to C gives probability < (1 � �)2=� < 1=2 that no sample is a witness, and thiscan be increased to 1 � 2��, for any �xed � by simply multiplying the number of sampleschosen by a constant. For the �rst statement, the probability that a sample of k points liesentirely within C is at least �k. Thus if we choose ��k samples, we expect to have chosen asample entirely from within C.For each sample Ri, taking the distances of n points to the k points in the sample takes8



O(kn) time. The cost of extracting the maximum gap is linear, and dominated by theO(n log n) cost of sorting the x(j). 2Notice that in the absence of any classi�cation data there is an extra factor of �k, whichis exponential in k. Thus only for small constant k, and large constant � � 1=2, will thisresult in a feasible bound on the number of samples required before the clustering is found.However, if there is even partial training data (i.e. samples known to come within C),for reasonable � the procedure will be nearly linear in k, and in practice we have indeedfound that interesting structure is found based on a small number of ADC projections. Inpractice, for clusterable data, setting a tolerance on running time and examining the \best"few projections produces dramatic results. For separable data one may expect only that thebest projections order the data correctly; recognition of these projections requires additionalinformation. In reality, of course, even separability is a strong assumption. In the absence offully classi�ed training data one must \look for clumps." If an independent statistical testis on hand to check the quality of each candidate projection, however, the algorithm abovebecomes a classi�cation algorithm. Given a fully classi�ed training sample, each projectionis evaluated for its utility in classi�cation using, for example, a leave-one-out cross-validationprocedure. The few best projections can then be used to classify unlabeled observations.Examples.The power of k. Performance of ADC in practice is fundamentally dependent on the choiceof k. For any �xed k, we could estimate �, i.e. what percentage of ADC maps give perfect(100 percent correct) clustering. Once this percentage is non-negligible, choosing samplesuniformly at random, will decrease the percentage as k increases, since clustering structure9



is typically observed when all k samples are drawn from the same cluster, which decreasesin probability exponentially in k. If we were able to restrict our consideration to those ADCmaps where samples were all chosen from within the same cluster, the quality of the clustersfound, and the percentage of the ADC maps that give perfect clustering, would increase sincewithin-cluster points are more likely to have a small distance to one of the within-clusterpoints in the sample. In the general case, we of course are not able to do this, since we donot know which points lie in each cluster. Note, however, that sometimes all k samples willlie in the same cluster by chance. Thus when the percentage of ADC maps which give 100percent correct clustering (or above any �xed percentage p correct clustering) is negligibleor 0, increasing k can increase the percentage of good ADC maps.We remark that when the percentage of good ADC maps is below half, the informationwe wish to retrieve lies only in a percentage of \best" ADC maps, and stage (3) comesinto play. In the 1-dimensional ADC map, we have the \perfect clustering test" describedabove and simply discard the bad projections in favor of the good ones. More complicatedimplementations of stage (3) can recover clustering structure that is more delicate. Also,since ADC is a randomized method, when deciding whether to reject the hypothesis of \noclustering", it is important to estimate and correct for the percentage of correctly classi�edobservations one would expect to see by chance.The following simulation example demonstrates the power of k. Consider n = 100 obser-vations in d = 10-dimensional Euclidean space comprising two classes with ni = 50 observa-tions per class, i = 1; 2: The class distributions Ni di�er only in two of the ten dimensions:for 8 of the dimensions we have Ni = MultivartiateNormal (0,1). For the last 2 dimensions,10



uncorrelated from the �rst 8, we take each cluster to be a mixture of multivariate normals.Letting I2 be the 2-dimensional identity matrix, dimensions 9 and 10 are distributed1=2(N 0BBB@26664 2:53:5a 37775 ; I21CCCA) + 1=2(N 0BBB@26664 �2:53:5a 37775 ; I21CCCA)for each cluster where a = 1 for cluster 1, and �1 for cluster 2. These data are thenrotated via a random orthogonal matrix (so that the clusters cannot be found by one of thestandard basis projections). 1000 random 1-dimensional ADC projections were calculated.The largest gap between two projected points (not including the points in the random sample)was calculated, and the points were classi�ed into two clusters based on whether they wereto the left or the right of the gap. The results from this simulation (Table 1) indicate that,when k = 2 there are a higher percentage of projections that yield 80 percent or highercorrect classi�cation rate. As we demand greater than 80 percent correct classi�cation, thepercentage gap between k = 2 and k = 1 widens: and only .5 percent of the k = 1 mapsgive 100 percent clasi�cation, whereas 1.5 percent of the k = 2 maps do. The table showsthe percent of ADC projections that correctly cluster the given percentage of the data.PET exampleWe now present an example from Positron Emission Tomography (PET).26 subjects (14 schizophrenic and 12 normal) are scanned in each of three conditions: Rest(R), Sensory Control (SC), and Tone Recognition (TR). These three conditions give rise totwo contrasts of interest for each subject: SC-R and TR-SC, yielding a data set of n = 26PET scan volume pairs. Each 65x87x26 voxel scan has been normalized and aligned using theSPM statistical image analysis software package [11]. A voxel's value represents a measureof the change in the amount of blood 
ow to that area of the brain, and thus regional neuralactivity [12]. The resulting scan volumepairs are not readily clusterable into \schizophrenics"11



and \normals" visually, due to a large inter-class variance.This volumetric image data is naively represented as having a dimension for each voxel.Thus we consider clustering n = 26 observations in d = 2(65x87x26)=294060 dimensions.In the PET community it is common practice, once SPM registration has been performed,to proceed by analyzing each voxel separately, i.e. disregarding spatial context [11]. ThusPET is a particularly good example for expository purposes: we can demonstrate the easeof applying our methods to small sample sizes in extremely high-dimensional settings andobtain signi�cant results without needing to incorporate complicating spatial pre-analysis.Figure 1 shows one mid-brain transverse slice for one subject.There are 26 1-dimensional ADC projections for this problem that use one point perset (k=1) and none provide any useful clustering{ not surprising, perhaps, as the high-dimensional structure is no doubt complicated. Figure 2 shows the results of the 1-dimensionalADC map for stage (1) of this problem using 5 observations per set. Both qualitatively andquantitatively (using the leftmost mode of the probability density estimator) it is indicatedthat normals seem to be more tightly clustered than schizophrenics. That is, for normalsthe majority of the probability mass tends to be at the smaller distances, whereas for theschizophrenics there is more at the larger distances.There is also behavioral evidence based on performance versus reaction time which pro-ports to explain the additional structure seen in Figure 2. Five of the schizophrenics behavesimilarly to the normals{ i.e., some schizophrenics perform this task normally. These maybe indicated in Figure 3 by the schizophrenic subjects with signi�cant probability mass atthe small distances and could indicate that the behavioral result has a physiological mani-12



festation.Discriminant analysis (leave-one-out cross-validation) based on ADC projections yieldscorrect classi�cation of 25 of the 26 observations into the classes normal and schizophrenic.This is a pleasant surprise since the volumetric images themselves, even for experienced PETscan analysts, do not readily yield the conclusion that such a classi�cation rule exists.This naive voxel-as-dimension approach is obviously not a solution to the general imageclustering application, as ignoring spatial information may be foolhardy for inherently con-textual data. However, image analysis is a notoriously di�cult application, and the ultimatesolution to any image clustering problem will involve a compendium of techniques. Further-more, in PET - a subtractive application in which registration is possible and for which thefeatures of interest are normalizable, anatomically-based, equi-located changes in blood 
ow- the non-contextual approach described above has potential application.Multiple Clusters.In some sense, using the 1-dimensional method to �nd 2 clusters is the general case froman algorithmic point of view, since given a set of data that clusters into g groups, we canseparate cluster Ci from the rest of the data, remove Ci and iterate. However, from anapproximate distance versus dimension reduction point of view, it is interesting to ask forprojections that can represent multiple clusters simultaneously. Here we show how therequired dimensionality will, in general, increase as a function of the number of clusters.Suppose d-dimensional data clusters into g clusters, C1; : : : Cg with g > 2. As before, wewish to represent this data in fewer than d dimensions, in such a way that the separationbetween clusters is not lost. In this section, it will be cleaner to generalize the 1-dimensional13



k-separable, rather than k-clusterable de�nitions.De�nition. Clusters C1; : : : Cg in <s are linearly separable if there exists g � 1 (s � 1)-dimensional hyperplanes that partition <s such that each C is contained in its own region.Let C be a collection of points in <d. Given a collection of s subsets D1; : : :Ds, D � C,we de�ne the associated s-dimensional ADC map M : <d �! <s to be the map which,for each c 2 C, M(c) = (m1; : : :ms), where mi = mind2Dijjd � cjj. In the theorem below,k-separable refers to the two clusters Cj and all the rest of the data, C n Cj.Theorem. Suppose C = C1 : : : Cg lie in <d so that for each Cj, Cj is k-separable from C nCj.Then (1) There exists an ADC map into s = g�1 dimensions so that the images of C1; : : :Cgare linearly separable. (2) There exists a collection C as above so that no ADC map with1 point per set into fewer than g � 1 dimensions results in linear separable clusters in theimage. (3) There exists a collection C as above so that no ADC map into fewer than log2 gdimensions results in linear separable clusters in the image.Proof (sketch). (1) For i = 1 : : : g � 1, let Di separate Ci from C n Ci, and let M be theADC map associated with D1 : : :Dg�1. Let �i = maxc2Cmind2Di jjc�djj. De�ne hi to be theg�1-dimensional hyperplane which contains each of the axes except i, and and goes throughthe ith axis at the coordinate �i. Clearly hi separates Ci from the rest of C. (2) Let C be asfollows. Ci consists of identical points, all of whom have 0s, except a 1 in the ith coordinate.Then each of the Ci is 1-separable from C n Ci; choosing a single point in Ci, all the pointsin Ci map to 0, whereas all the non-Ci points map to 1. Any point c 2 Ci will map to apoint with coordinates 0 or 1 under any ADC map: 0 in a coordinate where a point fromCi is chosen and 1 otherwise. Thus if only one point is chosen per set, we need a point from14



each set and g� 1 dimensions are required. (3) Choose the same collection C as in part (2).Suppose we have an ADC map that clusters C in s < log2 g dimensions. We can representeach cluster Ci by a binary string of length s, where we put a 1 in position i if some elementof Ci was chosen in Di. If s < log2 g, some Ci and some Cj will be represented by the samebinary string (by pigeonhole principle) and hence their elements will be mapped to the samepoints in <d. 2One easy specialization of the theorem above is the observation that the 1-dimensionalmethod cannot in general represent 3 distinct clusters. For example, if 3 clusters form pointsof an equilateral triangle in 2-space, any point in one cluster will be equidistant from pointsin both of the other clusters, no matter how well-separated the three clusters are in 2-space.However, the one-dimensional method can sometimes recover 3 clusters, for example, whenthey are at di�erent distances from each other. This representation of more clusters thanthe theory might indicate can occur frequently in practice.Discussion.We have introduced a new method for �nding clusters in high-dimensional space based onthe preservation of approximate distances between clusters. At the heart of the method isa randomized algorithm: in some sense, we can say that our de�nition of when a clusteringstructure can be recovered is a randomized one. The randomness can allow us to automat-ically �nd dense cluster regions and thus pull out cluster structure. J. Michael Steele hasasked us: is there a way to de�ne clustering along these lines, but in such a way that thecriteria is norm independent or at least is invariant over a wide class of distance metrics?Other open questions include: for what data is it possible to give a dimension reduction15



map that represents g clusters in less than f(g) dimensions? What alternative distancemetrics should be considered?For the purpose of this paper, we examined data that clustered; in many practical exam-ples, the raw data would not cluster because of misclassi�ed sample points, or outliers. Therehas been a large literature in the Optimization and Machine Learning communities aboutoptimizing mis-classi�cation rates. The de�nition of k-clusterable can be generalized to dealwith misclassi�cation, so that error rates can be better studied, and this is an importantarea of future research.Finally, as far as the PET data sets themselves are concerned, we have recently found thatrestricting the region of interest via pre-processing a la `statistical parametric mapping' [11]or spatial smoothing [13] is an e�ective way to combine the ADC procedure with informationabout spatial dependencies.Acknowledgment. The authors are very grateful to Nati Linial, and his student EranLondon, for bringing their work on the geometry of graphs to our attention. Thanks to HenryHolcomb for the PET data and expertise, and to Dave Marchette and Clyde School�eld fortheir assistance with the simulations. Thanks to Bill Bogstad and Margaret Zhao. LJC issupported in part by an ONRYoung Investigator Grant N00014-96-1-0829. CEP is supportedin part by ONR Young Investigator Grant N00014-95-1-0777 and ONR Grant N00004-96-1-0313.References[1] Duda, R. & Hart, P. (1973) Pattern classi�cation and scene analysis. (Wiley, New York.)16
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% Correct Clustering55 65 75 80 85 90 95 99 100% ADC correct: k = 1 23.5 9.6 7.9 6.3 5.3 4.5 3.5 1.2 .5% ADC correct: k = 2 18.5 9.1 7.2 6.3 6.1 6.0 5.4 3.2 1.8Table 1: The simulation example: if we wish a high percentage of the points to be correctlyclassi�ed, then it is better to select k = 2. The crossover occurs at precisely the percentageof ADC maps correctly classifying at least 80 percent of the points correctly.
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Patient 01 ; SLICE 13 ; Condition RECOG-SMCFigure 1: This shows one transverse slice from one of the 26 scan pairs.18



•

•Figure 2: This presents kernel density estimates of the distances for 2500 random ADCprojections using a random sample of k = 5 observations per set. The subjects on the leftare normals, and on the right, schizophrenics.
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