
Management of the 
Unknowable
Dr. Alva L. Couch
Tufts University

Medford, Massachusetts, USA
couch@cs.tufts.edu



A counter-intuitive story

• … about breaking well-accepted rules of 
practice, and getting away with it! 

• … about intentionally ignoring available 
information, and benefiting from 
ignorance!

• … about accomplishing what was 
considered impossible, by facing the 
unknowable.

• … in a way that will seem obvious!



What I am going to do

• Intentionally ignore dynamics of a 
system, and instead model static steady-
state. 

• “Manage to manage” the system within 
rather tight tolerances anyway. 

• Derive agility and flexible response from 
lack of assumptions. 

• Try to understand why this works. 



Management now: the knowable

• Management now is based upon what 
can be known. 
– Create a model of the world. 
– Test options via the model. 
– Deploy the best option. 



The unknowable

• Models of realistic systems are unknowable.
• The model of end-to-end response time for a 

network: 
– Changes all the time. 
– Due to perhaps unpredictable or inconceivable 

influences. 
• The model of a virtual instance of a service:

– Can’t account for effects of other instances running 
on the same hardware. 

– Can’t predict their use of shared resources. 



Kinds of unknowable

• Inconceivable: unforeseen circumstances, e.g., 
states never experienced before. 

• Unpredictable: never-before-experienced 
measurements of an otherwise predictable 
system.

• Unavailable: legal, ethical, and social limits on 
knowability, e.g., inability to know, predict, or 
even become aware of 3rd-party effects upon 
service. 



Lessons from HotClouds 2009

• Virtualized services are influenced by 3rd

party effects. 
• One service can discover inappropriate 

information about a competitor by 
reasoning about influences. 

• This severely limits privacy of cloud data.
• The environment in which a cloud 

application operates is unknowable.



Closed and Open Worlds

• Key concept: whether the management 
environment is open or closed. 

• A closed world is one in which all 
influences are knowable.

• An open world contains unknowable 
influences. 



Inspirations

• Hot Autonomic Computing 2008: “Grand 
Challenges of Autonomic Computing” 

• Burgess’ “Computer Immunology”
• The theory of management closures. 
• Limitations of machine learning.  



Hot Autonomic Computing 2008

• Autonomic computing as proposed now 
will work, provided that: 
– There are better models of system behavior. 
– One can compose management systems

with predictable results. 
– Humans will trust the result.

• These are closed-world assumptions 
that one can “learn everything” about the 
managed system. 



Burgess’ Computer Immunology

• Mark Burgess: management does not require 
complete information. 
– Can act locally toward a global result. 
– Desirable behavior is an emergent property of 

action. 
– Autonomic computing can be approximated by 

immunology (Burgess and Couch, MACE 2006). 
• Immunology involves an open-world 

assumption that the full behavior of managed 
systems is unknowable. 



Management closures

• A closure is a self-managing component of an 
otherwise open system. 
– A compromise between a closed-world (autonomic) 

and an open-world (immunological) approach. 
– Domain of predictability in an otherwise 

unpredictable system (Couch et al, LISA 2003).
• Closures can create little islands of closed-

world behavior in an otherwise open world. 



Machine Learning

• Machine learning approaches to management 
start with an open world and try to close it.
– Learning involves observing and codifying an open 

world. 
– Once that model is learned, the management system 

functions based upon a closed world assumption
that the model is correct. 

• Learning can make a closed world out of an 
open world for a while, but that closure is not 
permanent.



Open worlds require open minds

• “Seeking closure” is the best way to 
manage an inherently closed world. 

• “Agile response” is the best way to 
manage an inherently open world. 

• This requires avoiding the temptation to 
try to close an open world! 



Three big questions

• Is it possible to manage open worlds? 
• What form will that management take? 
• How will we know management is 

working? 



The promise of open-world 
management

• We get predictable composition of 
management systems “for free.”

• We gain agility and flexible response by 
refusing to believe that the world is closed.

• But we have to give up an illusion of 
complete knowledge that is very 
comforting.  



Some experiments

• How little can we know and still manage? 
• How much can we know about how well 

management is doing in that case? 



A minimalist approach

• Consider the absolute minimum of 
information required to control a resource.

• Operate in an open world. 
• Model end-to-end behavior. 
• Formulate control as a cost/value 

tradeoff. 
• Study mechanisms that maximize 

reward = value-cost. 
• Avoid modeling whenever possible. 



Overall system diagram
• Resources R: increasing 

R improves performance. 
• Environmental factors X

(e.g. service load, co-
location, etc). 

• Performance P(R,X): 
throughput changes with 
resource availability and 
load. 

Managed Service

Environmental
Factors X

Behavioral 
Parameters R

Service Manager

Performance
Factors P



Example: streaming service in a 
cloud

• X includes input load 
(e.g., requests/second) 

• P is throughput. 
• R is number of 

assigned servers.

Managed Service

Environmental
Factors X

Behavioral 
Parameters R

Service Manager

Performance
Factors P



Value and cost

• Value V(P): value of 
performance P. 

• Cost C(R): cost of 
providing particular 
resources R.

• Objective function 
V(P(R,X))-C(R): 
net reward for 
service. 

Managed Service

Environmental
Factors X

Behavioral 
Parameters R

Service Manager

Performance
Factors P



Closed-world approach

• Model X.
• Learn everything you 

can about it. 
• Use that model to 

maximize V(P(R,X))-
C(R).

Managed Service

Environmental
Factors X

Behavioral 
Parameters R

Service Manager

Performance
Factors P



Open-world approach

• X is unknowable. 
• Model P(R) rather 

than P(R,X). 
• Use that model to 

maximize V(P(R))-
C(R).

• Maintain agility by 
using short-term data.

Managed Service

Environmental
Factors X

Behavioral 
Parameters R

Service Manager

Performance
Factors P



An open-world architecture

• Immunize R based upon partial information about P(R,X).
• Distributed agent G knows V(P), predicts changes in value ΔV/ΔR.
• Closure Q 

– knows C(R), 
– computes ΔV/ΔR-ΔC/ΔR, and 
– increments or decrements R.

Managed Service
requests

responses

Environmental
Factors X

Behavioral 
Parameters R

Closure Q

Gatekeeper Operator G
measures performance P

requests

responses

Behavioral 
Parameters R

ΔV/ΔR



Key differences 
from traditional control model

• Knowledge is distributed.
– Q knows cost but not value
– G knows value but not cost. 
– There can be multiple, distinct concepts of 

value. 
• We do not model X at all. 



A simple proof-of-concept
• We tested this architecture via simulation. 
• Scenerio: cloud elasticity.
• Environment X = sinusoidal load function.
• Resource R = number of servers assigned. 
• Performance (response time) P = X/R.
• Value V(P) = 200-P
• Cost C(R) = R
• Objective: maximize V-C, subject to 1≤R≤1000
• Theoretically, objective is achieved when R=X½



Some really
counter-intuitive results

• Q sometimes guesses wrong, and is only 
statistically correct. 

• Nonetheless, Q can keep V-C within 5% 
of the theoretical optimum if tuned 
properly, while remaining highly adaptive 
to changes in X. 



A typical run of the simulator

• Δ(V-C)/ΔR is stochastic (left). 
• V-C closely follows ideal (middle).
• Percent differences from ideal remain small 

(right).



Naïve or clever?

• One reviewer: Naïve approaches 
sometimes work..

• My response: This is not naïve. Instead, it 
avoids poor assumptions that limit 
responsiveness. 



Parameters of the system

• Increment ΔR: the amount by which R is 
incremented or decremented. 

• Window w: the number of measurements 
utilized in estimating ΔV/ΔR.

• Noise σ: the amount of noise in the 
measurements of performance P. 



Tuning the system

• The accuracy of the estimator that G uses 
is not critical.

• The window w of measurements that G 
uses is not critical, (but larger windows 
magnify estimation errors!)

• The increment ΔR that Q uses is a critical 
parameter that affects how closely the 
ideal is tracked. 

• This is not machine learning!!!



Model is not critical
• Top run fits V=aR+b 

so that ΔV/ΔR≈a, 
bottom run fits to more 
accurate model 
V=a/R+b. 

• Accuracy of G’s 
estimator is not 
critical, because 
estimation errors from 
unseen changes in X 
dominate errors in the 
estimator! 



Why Q guesses wrong

• We don’t model or account for X, which is 
changing. 

• Changes in X cause mistakes in estimating 
ΔV/ΔR, e.g., load goes up and it appears that 
value is going down with increasing R.

• These mistakes are quickly corrected, though, 
because when Q acts incorrectly, it gets almost 
instant feedback on its mistakes from G. 

Wrong
guesses Experiments

expose error

Error due to increasing
load is corrected quickly



Increment ΔR is critical

• Plot of time versus V-C. 
• ΔR=1,3,5
• ΔR too small leads to undershoot. 
• ΔR too large leads to overshoot and instability.



Window w is less critical

• Plot of time versus V-C. 
• Window w=10,20,30
• Increases in w magnify errors in judgment and 

decrease tracking. 



0%, 2.5%, 5% Gaussian Noise

• Plot of time versus V-C. 
• Noise does not significantly affect the algorithm. 



w=10,20,30; 5% Gaussian Noise

• Plot of time versus V-C. 
• Increasing window size increases error due to 

noise, and does not have a smoothing effect. 



Limitations

For this to work, 
• One must have a reasonable concept of 

cost and value for R. 
• V, C, and P must be simply increasing in 

their arguments (e.g., V(R+ΔR)>V(R))
• V(P(R))-C(R) must be convex (i.e., a local 

maximum is a global maximum) 



Modeling SLAs

• SLAs are step functions describing 
value.

• Cannot use an incremental control model. 
• Must instead estimate the total value and 

cost functions. 
• Model of static behavior becomes critical.  



Handling step-function SLAs

• Distributed agent G knows V(P), R; predicts value V(R).
• Q knows C(R), maximizes V(R)-C(R) by incrementally 

changing R.

Managed Service
requests

responses

Environmental
Factors X

Behavioral 
Parameters R

Closure Q

Gatekeeper Operator G
measures performance P

requests

responses

Behavioral 
Parameters R

V(R)



Maximizing a step function

• Compute the estimated (V-C)(R) and the 
resource value at which it achieves its 
maximum Rmax.

• If R>Rmax, decrease R.
• If R<Rmax, increase R.



Estimating V-C
• Estimate R from P.
• Estimate V(R) from 

V(P).
• Subtract C(R).
• Levels V0, V1, V2, 

C0, C1 and cutoff R1 
do not change.

• R0, R2 change over 
time as X and P(R) 
change.

V(P)

V(R)

Estimate
R from P(R)

C0

C1

V0

V1

V2

V0

V1

V2

C(R)

V(R)-C(R)

R

R

P

R

P(R0) P(R2)

R0 R2

R0 R2R1

R2R1R0



Level curve diagrams
• Horizontal lines represent 

(constant) cost cutoffs. 
• Wavy lines represent 

(varying) theoretical 
value cutoffs. 

• Best V-C only changes at 
times where a value 
cutoff crosses a cost 
cutoff. 

• Regions between lines 
and between crossovers 
represent constant V-C. 

• Shaded regions are areas 
of maximum V-C.



Maximizing V-C

• Two approaches
– Estimate whole step-function V-C.
– Estimate “nearest-neighbor” behavior of V-C



Estimating value cutoffs
• Accuracy of P(R) estimate decreases with distance

from current R value. 
• Choice of model for P(R) is critical. 
• V-C need not be convex in R. 



Estimating nearest-neighbor 
value cutoffs

• Estimate the two steps of V(R) around the current R. 
• Fitted model for P(R) is not critical.
• V-C must be convex in R. 



In other words, 

• One can make tradeoffs between 
convexity of the value-cost function and 
accuracy!



How do we know how well we are 
doing?

• In a realistic situation, we don’t know 
optimum values for R. 

• Must estimate ideal behavior. 
• Our main tool: statistical variation of the 

estimated model. 



Exploiting variation

• Suppose that your estimate of V-C varies widely, 
but is sometimes accurate. 

• Suppose that on some time interval, the 
estimate of V-C is accurate at least once.

• Then on that interval, 
max(V-C)≥actual(V-C)

• Define 
– observed efficiency=sum(V-C)/n*max(V-C)
– Actual efficiency=sum(actual(V-C))/sum(ideal(V-C))



How accurate is the estimate?
• Three-value 

tiered SLA. 
• Sinusoidal load. 

.

loadPeriod optimum observed difference
100 0.800000 0.618421 0.181579
200 0.565310 0.453608 0.111702
300 0.751067 0.647853 0.103214
400 0.896478 0.760870 0.135609
500 0.826939 0.728775 0.098164
600 0.857651 0.760732 0.096919
700 0.946243 0.845524 0.100719
800 0.893867 0.807322 0.086545



In this talk, we…

• Designed for an open world. 
• Assumed that behavioral models are 

inaccurate and/or incomplete. 
• Mitigated inaccuracy of models via 

cautious action.  
• Traded time delays against potential for 

inaccuracy. 
• Exploited unpredictable variation to 

estimate efficiency. 



You can use this now

• Analyze what is knowable and what is 
unknowable. 

• Avoid assuming predictable behavior for 
the unknowable. 

• It’s fine to have models, provided that one 
doesn’t believe them!



Yes, we can!

• We can manage without models and still 
estimate how well we are doing. 

• We can utlilize inaccurate models at the 
cost of having inaccurate estimates of how 
well management is doing. 

• We can compose management systems 
without chaos, because systems assume 
an open world in which another system 
can exist.  



But…
• There are many algorithms between the 

extremes of model-based and model-free 
control. 

• We can model X and P(R,X) and still obtain 
these benefits…

• … provided that we are willing to stop using 
models that become observably incorrect over 
time! 

• More about this in the next installment (MACE 
2009)!



Questions?

Managing the unknowable
MMNS 2009

Dr. Alva L. Couch
Associate Professor of Computer Science

Tufts University
http://www.cs.tufts.edu/~couch

Email: couch@cs.tufts.edu

http://www.cs.tufts.edu/~couch�

	Management of the Unknowable
	A counter-intuitive story
	What I am going to do
	Management now: the knowable
	The unknowable
	Kinds of unknowable
	Lessons from HotClouds 2009
	Closed and Open Worlds
	Inspirations
	Hot Autonomic Computing 2008
	Burgess’ Computer Immunology
	Management closures
	Machine Learning
	Open worlds require open minds
	Three big questions
	The promise of open-world management
	Some experiments
	A minimalist approach
	Overall system diagram
	Example: streaming service in a cloud
	Value and cost
	Closed-world approach
	Open-world approach
	An open-world architecture
	Key differences �from traditional control model
	A simple proof-of-concept
	Some really�counter-intuitive results
	A typical run of the simulator
	Naïve or clever?
	Parameters of the system
	Tuning the system
	Model is not critical
	Why Q guesses wrong
	Increment ΔR is critical
	Window w is less critical
	0%, 2.5%, 5% Gaussian Noise
	w=10,20,30; 5% Gaussian Noise
	Limitations
	Modeling SLAs
	Handling step-function SLAs
	Maximizing a step function
	Estimating V-C
	Level curve diagrams
	Maximizing V-C
	Estimating value cutoffs
	Estimating nearest-neighbor �value cutoffs
	In other words, 
	How do we know how well we are doing?
	Exploiting variation
	How accurate is the estimate?
	In this talk, we…
	You can use this now
	Yes, we can!
	But…
	Questions?

