
Combining learned and highly-reactive

management

Alva L. Couch1 and Marc Chiarini1

1Computer Science Department
Tufts University

Medford, MA, USA
couch@cs.tufts.edu,marc.chiarini@tufts.edu

Abstract. Learned models of behavior have the disadvantage that they
must be retrained after any change in system configuration. Autonomic
management methods based upon learned models lose effectiveness dur-
ing the retraining period. We propose a hybrid approach to autonomic
resource management that combines management based upon learned
models with “highly-reactive” management that does not depend upon
learning, history, or complete information. Whenever re-training is neces-
sary, a highly-reactive algorithm serves as a fallback management strat-
egy. This approach mitigates the risks involved in using learned models
in the presence of unpredictable effects, including unplanned configu-
ration changes and hidden influences upon performance not considered
in the learned model. We use simulation to demonstrate the utility of
the hybrid approach in mitigating pitfalls of both learning-based and
highly-reactive approaches.

Keywords: autonomic computing, convergent operators, computer im-
munology, self-organizing systems, emergent properties, Cfengine

1 Introduction

In the literature, the term “autonomic computing” seems to have become syn-
onymous with employing control loops to control a closed system[1–3]. In this
paper, we propose an alternate approach to autonomic resource management
based upon an open-world assumption that at least some influences upon the
managed system are not just unknown, but also unobservable, unlearnable, and
unknowable. While open-world systems may perchance behave like closed-loop
systems, such behavior is not guaranteed, and at any time, open-world behavior
may arise.

An open-world assumption is necessary in order to manage many kinds of
contemporary computing systems, e.g., virtual instances of servers in clouds. By
design, a cloud server instance is not supposed to know about co-location of
other services on the same physical server, but such co-location can and does
influence performance as a hidden variable. Thus any management strategy for
optimizing the behavior of cloud server instances must presume the existence of
unobservable influences upon the managed system.



1.1 Immunology and approximation

We cope with unobservable influences partly by adopting Burgess’ immunological
approach to autonomic control[4]. In the immunological approach, management
is expressed as voluntary cooperation between an ensemble of independently-
acting distributed agents; the result of management is an emergent property of
that ensemble. This is the philosophy behind the management tool Cfengine[5,
6], which provides one kind of management agent. Burgess demonstrated that
the Cfengine paradigm is guaranteed to converge to predictable states[4, 7] and
is perhaps best characterized as accomplishing management by seeking states
of “thermodynamic equilibrium”[8, 9], where that equilibrium is an emergent
property[10, 11] of the system and agents. Burgess and Couch demonstrated that
autonomic computing can be “approximated” by the Cfengine paradigm[12]. The
decentralized nature of the Cfengine paradigm is perhaps best described using
the concept of a promise[13, 14]: a non-binding statement of intent from one
agent to another. The input to a Cfengine agent is a set of promises, while its
output is a sequence of actions intended to seek equilibrium and thus put the
system into a desirable state.

We began this work by seeking an appropriate solution for the problem of au-
tonomic resource management via use of Burgess’ autonomous agents. Resource
management refers to the problem of matching resource availability for a com-
putation to the performance demands for the computation. For example, in an
elastic cloud, one must match the number of available servers for an application
with the demand for that application; if there is low demand, one server might
suffice, while a high-demand situation might require hundreds of servers. While
theoretical results implied that resource management is possible via autonomous
agents, no solution was obvious from the theory.

We thus sought a formulation of resource management compatible with
Burgess’ autonomic computing model. This paper is the third in a series on
this topic.

1.2 Closures and cost-value tradeoffs

In the first paper[15] in the series, we developed the idea of a resource closure
and the basics of open-world resource management. A closure is a predictable
(and thus closed) subsystem of an otherwise open system[16–19]. We proposed
a resource management paradigm based upon two kinds of agents: a resource

closure agent that manages the resource, and several gatekeeper agents that
provide performance feedback to the resource closure. The closure makes resource
allocation decisions based upon a cost-value tradeoff; the closure knows the cost

C of resources, while the gatekeepers know the value V of performance. Thus
the closure attempts to maximize reward, which is the difference between value
and cost (V − C). In the following, we will refer to V − C as the objective

function to be maximized. We demonstrated that V − C can be managed to
near-optimal levels by simple hill-climbing without knowledge of the (perhaps
hidden) performance influences, provided that there are sufficient constraints



on the behavior of those influences and the nature of V and C as functions. If
those constraints are violated, even catastrophically, the system still converges
eventually to a stable, near-optimal state, which stays near-optimal as long as
constraints (on hidden variables) continue to be satisfied. Thus the hill-climbing
approach is highly reactive in the sense that it can react to unforeseen changes
efficiently and without an appreciable learning curve.

The key result of the first paper is that one can trade constraints for model

precision in managing a complex system; constraints on the managed system
are as important as model precision in achieving management objectives. Man-
agement can meet objectives even if the model does not account for any perfor-
mance influences at all; hill-climbing still meets management objectives as long
as hidden influences obey reasonable constraints. Even if constraints are not met,
hill-climbing continues to eventually meet management objectives, although the
response time is slower than desired.

1.3 Step-function SLAs and level curve analysis

One weakness of the approach in the first paper is that hill-climbing requires that
value V and cost C are simply increasing functions that are never constant on
an interval. In realistic cases, cost and value are both step functions: one cannot
(usually) allocate part of a server as a resource, while Service-Level Agreements
(SLAs) specify value as a step-function depending upon performance.

In the second paper of this series[20], we discussed how to handle step func-
tions for cost C and value V . Value V is a function V (P ) of system performance
P , while cost C is a function C(R) of resources R. While closed-world man-
agement relates performance P and resources R via some (assumed or learned)
model of behavior, in an open-world system, performance P and resources R are
incommensurate, in the sense that no fixed model relates the two concepts to
one another. Thus the problem of choosing R to maximize V (P )−C(R) requires
first relating P and R in some meaningful way, so that one can estimate value
V (R) and cost C(R) both as functions of the same independent variable R.

As time progresses, costs C are fixed while performance P varies with time-
varying hidden influences. Thus the step function V (R) ≈ V (P (R)) varies with
time. While the range of V is fixed by the SLA, the resource levels R at which
V (R) changes in value vary over time and are predicted by a model of P (R).

Step-functions expose a weakness in the incremental strategy. Incremental
hill-climbing – which serves us well when value and cost functions have no steps
– now leads to situations in which the incremental search spends too much time
with sub-optimal reward. Increments to resources during hill-climbing are too
small to keep up with drastic step-changes in V − C.

1.4 A hybrid approach

In this paper, we take the final step in proposing an immunological approach
to resource management. We combine highly-reactive hill-climbing with simple
machine learning to exploit the strengths of both approaches. We first describe



From
outside

��
?

" !6

-

-

-

?

�

?

�

R

Cost C(R)

Resources R

Value V (R)

V (R) − C(R)

Value V (R)

Value V (P )

Performance P

Load L

Resources R
R

L

Response

Resources R

Managed system MClosure Q

Gatekeeper G

influences X
Outsideloop direction

Fig. 1. Our architecture for autonomic resource control. A closure Q controls the man-
aged system M , whose performance P is observed by the gatekeeper G, which informs
Q of an observed value function V , thus closing the control loop.

the control architecture and the hybrid model by which we accomplish control.
We simulate the model in simple cases to compare behaviors of the hybrid model
to behaviors of its components. Our conclusions include limitations of the hybrid
approach, as well as a discussion of remaining challenges in open-world resource
management.

2 Our control architecture

Our basic control architecture is depicted in Figure 1. A managed system M
is controlled through a vector of resource parameters R and influenced by a
known load L and unknown factors X . A gatekeeper (e.g., a load balancer) G
observes L and system performance P in response to L. G knows the resources
R utilized by the managed system. G also knows the value function V (P ) of
performance P (as specified by an SLA). G uses the history of observed triples
(P, R, L) that it observes over time to estimate P (R, L) and thus, to estimate
V (R, L) ≈ V (P (R, L)). Holding L constant at its current value, G communicates
an estimate of V (R) to the closure Q. Q combines that estimate with its own



knowledge of C(R) to obtain an estimate of the objective function V (P (R)) −
C(R). Q uses this estimate to choose the next value for R, thus closing the control
loop. P (R, L) is assumed to be simply increasing in R and simply decreasing in
L. C(R) and V (P ) are assumed to be increasing step functions in R and P ,
respectively.

In this paper, the notation P (R, L) refers to a hypothetical functional depen-
dency between P and V ; likewise writing V (P (R, L)) refers to a hypothetical
functional dependency between (R, L) and P , and between P and V . The state-
ment V (R, L) ≈ V (P (R, L)) means that there is a (hypothetical) functional
dependency between (R, L) and V that is a (transitive) result of the (hypo-
thetical) functional dependencies between (R, L) and P , and between P and
V . Sometimes, these functional relationships are known for sure, e.g., V (P ) or
C(R); sometimes they must be estimated, e.g., P (R, L).

This is an open control loop, because G and Q have no knowledge what-
ever of the managed system’s input X that might influence P . In theory,
P = P (R, L, X), and not P (R, L); estimates P (R, L) do not account for the
hidden (and unobservable) variable X , so that the estimates of V (P (R, L)) like-
wise do not account for X . The ideal of observing X and estimating P (R, L, X)
and V (P (R, L, X)) is considered to be impossible; X represents the unobservable

and unknowable component of influences upon M .
For example, consider a cloud computing environment. M represents the

cloud infrastructure, while G represents a load balancer at the border and Q
represents the elasticity manager. G can measure the performance of instances,
but does not have knowledge of external influences X such as co-location of
other services with the current services (on the same physical server). G cannot
obtain such information without agreements with other clients of the cloud; such
information is unobservable and thus unknowable.

This architecture differs from those we studied previously in one important
aspect: we allow G to utilize knowledge of L in modeling P (R, L); in previous
work, G modeled only P (R) and did not utilize L. Adding L to the model allows
the new architecture to intelligently deal with step-functions for cost and value.
As in prior work, however, X remains as an unknowable load parameter.

3 Two approaches to control

The controller Q in the proposed architecture utilizes a hybrid control strategy
incorporating two kinds of control:

1. Reactive control based upon localized state and behavior.
2. Learned control based upon accumulated history of behavior.

Reactive control incrementally changes R in a small neighborhood of the
current R setting, based upon observations and predictions that are local to the
current system state in both time and space. This control mechanism makes
mistakes due to lack of knowledge of X , but quickly corrects those mistakes via
aggressive experimentation[15]. It reacts slowly, however, to major situational



changes requiring large swings in R settings, and fails to determine optimal
behavior if the objective function V − C is not convex, i.e., if it has more than
one local maximum that is not a global maximum.

Learned control changes R according to some learned model of P (R, L) based
upon a long-term history. Learned control bases new R values upon global predic-
tion of future state. It reacts quickly to changes in observable requirements, e.g.,
rapid swings in L, but slowly to changes in hidden factors or system architec-
ture, e.g., replacements of system components that invalidate collected history.
Thus learned control is invalidated when current behavior becomes dissimilar to
historical data.

These control paradigms are in some sense opposites. Prior work demon-
strated that reactive control has an opposite character to that of machine learn-
ing[15]: incorporating more history into reactive control increases reaction time
to mistakes as well as recovery and convergence time.

4 Selecting a control mechanism

Our open-world assumption means that no learned model can ever be considered
definitive. Instead, we propose a hybrid architecture in which learned control and
highly-reactive control are chosen depending upon conditions. The key to our
hybrid strategy is to choose a mechanism by which the validity of the learned
model can be tested. If the learned model tests as valid, then learned control
is used, while if the learned model fails the validity test, the reactive model is
utilized instead.

After testing several validity measures, we settled upon studying the simplest
one: a statistical measure commonly referred to as the “coefficient of determi-
nation” or r21. If {Xi} is a set of samples, X̂i represents the prediction for Xi,
and X represents the mean of {Xi}, then the coefficient of determination is

r2 = 1 − (Σ(Xi − X̂i)
2))/Σ(Xi − X)2

r2 is a unitless quantity that varies between 0 and 1; it is 1 if the model exactly
predicts behavior, and 0 if the model is useless in predicting behavior. In our case,
the history consists of triples (Pi, Ri, Li) , and the coefficient of determination
for the model P is:

r2 = 1 − (Σ(P (Ri, Li) − Pi)
2)/(Σ(Pi − P )2)

where P is the mean of the {Pi}, and P (Ri, Li) represents the specific model
prediction of Pi from Ri and Li.

Use of the coefficient of determination to test goodness-of-fit is a subtle
choice, and not equivalent to using goodness-of-fit tests for the model itself. Our
goodness-of-fit test is intentionally less powerful than those utilized in model fit-
ting, but also more general in the sense that it is independent of the way in which

1 The name “r2” is traditional in statistics and has no relationship to our R, which is
a measure of resources.



the model was constructed. It can thus be used to compare models constructed
in different ways, even with offline models not fitted to the current history.

5 Simulations

Our proposed control system has many variables, and a quantitative study would
require specifying too many details. For this paper, we will instead simulate and
remark upon the qualitative behavior of the system when exposed to various
kinds of events.

We simulate the simplest possible system amenable to the two kinds of con-
trol. Our system obeys the linear response law

P = αR/(L + X) + β + ǫ(0, σ)

where α and β are constants, and ǫ represents a normally-distributed measure-
ment error function with mean 0 and standard deviation σ. Recall that the
gatekeeper G cannot measure or observe X . Learned control is thus achieved by
determining constant coefficients α and β such that

P (R, L) ≈ αR/L + β

through linear least-squares estimation. We can then maximize

V (P ) − C(R) ≈ V (αR/L + β) − C(R)

by choosing an appropriate R. If the r2 statistic for P (R, X) is sufficiently near to
1.0 (e.g., ≥ 0.9) then this estimate of R is used (the learning strategy); otherwise,
a short-term model of P is utilized to estimate local benefit from changing R
incrementally (the reactive strategy).

5.1 Simulator details

We experimented with the proposed algorithm using a simulator written in the R
statistics system[21]. Although there are now many ways to estimate the response
of a managed system via machine learning, several qualitative properties of our
proposed architecture arise from even the simplest systems. We simulate the
response of a simple system, employing statistical learning, to various kinds of
events. The system’s (hidden) response function is

P (R, L, X) = 1.0 ∗ R/(L + X) + 0.0

This is not known to the simulated gatekeeper G, which instead estimates α and
β according to:

P (R, L) ≈ αR/L + β

by linear least-squares estimation. The learned strategy utilizes 200 time steps
of history to estimate P , while the reactive strategy utilizes 10 time steps of
history and the same model.



The value function V (P ) is known to G while the cost function C(R) is
known to Q. The value V (P ) is given by:

V (P ) =







0 if P < 100
200 if 100 ≤ P < 175
400 if 175 ≤ P

while the cost C(R) is given by:

C(R) =







0 if R < 100
100 if 100 ≤ R < 200
300 if 200 ≤ R

These functions are arbitrary and were chosen mainly because they have inter-
esting properties, e.g., there is more than one optimal range for R.

Both learned and reactive strategies attempt to maximize V (P ) − C(R) by
changing R. In the learned strategy, R is set to the recommended value, while
in the reactive strategy, R is incremented toward the recommended value by 5
resource units at a time2. Using increments rather than settings compensates for
errors that inevitably arise from the small number of samples utilized to estimate
R in the reactive strategy.

Additionally, regardless of whether learned or reactive strategy is used, the
R value is left alone if the current value of R is predicted to be optimal. If R is
predicted to be optimal and does not change for 10 steps, it is incremented or
decremented temporarily to explore whether the situation has changed, and then
returned to its prior (optimal) value if no change is detected. This exploration
is necessary to inform the reactive strategy of changes in situation.

In all simulations, Load L varies sinusoidally between 0.5 and 1.5 every 500
time steps. This leads to sinusoidal variation in the cutoffs for optimal V − C.
Initially, measurement noise σ and unknown load X are set to 0. Each simulation
consists of 1500 time steps, of which the first 500 steps of settling time are
omitted from the figures.

In the following experimental results, plots consist of several layers as de-
picted in Figure 2. Acceptable goodness of fit is depicted as a light-gray back-
ground (upper left) when the goodness of fit measure r2 (depicted as a curve)
is greater than 0.9. When the background is light gray, learned management is
being used; a white background means that reactive management is being used.
The regions for R that theoretically maximize V − C are depicted in dark gray
(upper right); these always occur between horizontal lines representing where C
changes and wavy lines representing where V changes; these are not known to G
and G must estimate them. The trajectory of R over time (either recommended
or observed) is depicted as a series of black dots (lower left). The composite plot
shows the relationships between all four components (lower right).

2 In prior work we demonstrated that the size of this increment is a critical parame-
ter[15]. In this work we size it near to optimality and leave the increment constant,
because we are studying instead how to combine the two strategies.



0 200 400 600 800 1000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time

R

Goodness of fit

0 200 400 600 800 1000

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0

time

re
so

ur
ce

s

Regions of maximum V−C

0 200 400 600 800 1000

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0

re
so

ur
ce

s

Resource trajectory

0 200 400 600 800 1000

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0

re
so

ur
ce

s

Combined plot

Fig. 2. We depict behavior of the combined strategy via plots that overlay goodness
of fit (top left), maximum reward regions(top right), and actual resource trajecto-
ries(bottom left) into a single plot (bottom right). All horizontal axes represent time.
The vertical axis of the top left plot is the coefficient of determination r2, while the
vertical axes of the other plots depict R.

5.2 Effects of uncertainty

The combined strategy – not surprisingly – does relatively well at handling sit-
uations where there are no outside influences or small changes. However, there
were some small surprises during simulation. Even a constant hidden influence
X = 0.5 (50% of the average value of L) poses difficulties for the learned strat-
egy(Figure 3) and the reactive strategy must compensate. In Figure 3, the upper
left plot depicts goodness of fit, while the upper and lower right plots show the
recommendations of the learned and reactive strategies. When the background
becomes white, the reactive model is being used instead of the learned model.
The lower left plot shows the actual management response of the system; this



0 200 400 600 800 1000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time

R

Goodness of fit

0 200 400 600 800 1000

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0

time

re
so

ur
ce

s

Learned recommendations

0 200 400 600 800 1000

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0

re
so

ur
ce

s

R behavior

0 200 400 600 800 1000

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0

re
so

ur
ce

s

Reactive recommendations

Fig. 3. Even a constant hidden load factor X, where X is 1/2 of the average value of L,
periodically invalidates predictions of the learned model (top right, white background)
when the hidden influence becomes commensurate with known ones. During this time,
predictions of the reactive model (bottom right, white background) control R, resulting
in an actual R trajectory depicted on bottom left.

is also the plot whose construction is described in Figure 2. The goodness-of-fit
varies with the magnitude of L, in rough proportion to the ratio of signal L to
(hidden) noise X .

The behavior in Figure 3 is surprisingly similar to what happens when noise
is injected into the measurements of L.3 Again, goodness-of-fit varies with the
magnitude of L and its relative magnitude to the magnitude of the noise.

3 Results are omitted for brevity.



6 Dealing with discontinuities

The two management strategies differ greatly in how they deal with discontinu-
ities. A discontinuity is a relatively large change in some attribute of computa-
tion, e.g., load, hidden influences, policy, or model factors.

Discontinuities in input and discontinuous changes in objective function are
no problem for a learned model; the model suggests a jump to an optimal resource
level because the model is not compromised by the discontinuity. Discontinuities
in the model itself (or – equivalently – discontinuities in hidden variables not
accounted for by the model) are handled poorly by a learned model (whose
accuracy is compromised) and handled better by a reactive strategy.

By contrast, reactive management deals well with situations of model flux
but cannot easily cope with discontinuities in the input, such as sudden bursts of
load. There is no model; therefore, there is nothing to invalidate in situations of
great flux. But the exact same pattern of controlled, cautious experimentation
that compensates for errors in judgement also makes it difficult for reactive
management to deal with sudden, large changes in input and large discontinuities
in the objective (V − C) function.

An extreme form of model discontinuity is shown in Figure 4. At time t =
500, the underlying performance model changes from P = 1R/(L + X) + 0 to
P = 2R/(L+X)+3, simulating the complete and unexpected replacement of the
server with one that is roughly twice as fast. The learned model is temporarily
invalidated (and predicts resource values in the white region (upper right plot)),
and the reactive model takes over (lower left plot) and predicts near-optimal
values of R until the learned model can discover what to do in the new situation.
Other forms of model discontinuity behave similarly.

7 Conclusions

In designing this management approach, we utilized several unusual techniques,
including:

1. Trading accuracy of the model for constraints on changes in input. The
reactive strategy works well when changes are small, and requires no model
accuracy to work properly.

2. Exploiting opportunistic accuracy. The learned strategy is useful even if it
does not apply at all times, or even if its model oscillates between validity
and invalidity.

3. Compensating for inaccuracy via use of local data. The reactive strategy
avoids a learning curve by using only data from the immediate past.

4. Using models to cope with input and objective function discontinuities. The
model, when accurate, can deal with sudden changes in input or objective
function.

5. Using local exploration to cope with hidden variables and sudden model

changes and discontinuities. The reactive strategy deals well with small
changes and is not subject to validation limits of the learned model.



0 200 400 600 800 1000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time

R

Goodness of fit

0 200 400 600 800 1000

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0

time

re
so

ur
ce

s

Learned recommendations

0 200 400 600 800 1000

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0

re
so

ur
ce

s

R behavior

0 200 400 600 800 1000

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0

re
so

ur
ce

s

Reactive recommendations

Fig. 4. Discontinuities in P invalidate the learned model (in the region with a white
background) and require reactive help.

Several generalizations are relatively straightforward. Asynchrony between
actions of G and Q, as well as multiple G’s for one Q, is easy to handle and
simply slows down response time. L, R, X , and P can be multi-dimensional as
long as P (L, R) remains linear and V and C remain single-dimensional step-
functions of P and R.

But the door is closed permanently on several options previously believed
to be potentially useful. Inferring an unobservable X in this situation turned
out to be not just impractical, but impossible; brief experiments with non-linear
regression to predict γ in the model

P ≈ αR/(L + γ) + β



showed that this model has too much freedom and γ is underdetermined. Using
gradient-descent non-linear regression, γ could only be inferred when the initial
γ was very close to the real one.

Simulating the algorithm exposed many new quandaries.

1. A significant but constant unknown parameter (X) is just as problematic to
the validity of the learned model as is significant noise in the input (σ). X
does not even have to vary to be problematic. The resulting behaviors seem
to be indistinguishable.

2. All kinds of model discontinuity (e.g., changes in X and P ) look similar
from the point of view of the simulation. There is a recovery time in which
the learned model learns the new situation while the incremental model
handles management. During this recovery period, the incremental model
deals poorly with further discontinuities in either input or model.

Several open questions remain:

1. Can we improve the behavior of the incremental algorithm during long learn-
ing periods?

2. Should several learned models with different learning times be utilized?
3. Can static models (e.g., offline learning) be utilized effectively via this mech-

anism?
4. Can we analyze the transient response of a composite system?

We believe that the answers to all of these questions are “yes”, but only further
work will tell.

The problem of open-world management is a difficult one, and we have only
scratched the surface of the problem. The real underlying issue is one of human
expectation. An open world precludes exact guarantees of management behav-
ior. We can only estimate and bound behavior of such systems, and traditional
control theory – with its dependence upon exact models – proves less than useful.
Worse, in such a system, there is no way to know best-case behavior.

Ours is a story of complexity made simpler. Bounding behavior reduces the
complexity of management processes, and dealing with cost and value (rather
than more abstract ideas like “performance”) simplifies the description of the
management problem. A collection of simple management strategies – applied
opportunistically – works better than a single strategy. Absolute precision is a
thing of the past, and even the most imprecise strategies can contribute positively
when things go wrong. This is a fairly good description of human management,
as well as that accomplished by autonomic tools.

References

1. Hellerstein, J.L., Diao, Y., Parekh, S., Tilbury, D.M.: Feedback Control of Com-
puting Systems. John Wiley & Sons (2004)

2. Horn, P.: Autonomic computing: Ibm’s perspective on the state of informa-
tion technology. http://researchweb.watson.ibm.com/autonomic/manifesto/

autonomic_computing.pdf (October 2001) [cited 16 April 2009].



3. IBM: An architectural blueprint for autonomic computing. http://www-01.ibm.

com/software/tivoli/autonomic/pdfs/AC_Blueprint_White_Paper_4th.pdf

(June 2006) [cited 16 April 2009].
4. Burgess, M.: Computer immunology. Proceedings of the Twelth Systems Ad-

ministration Conference (LISA XII) (USENIX Association: Berkeley, CA) (1998)
283

5. Burgess, M.: Configurable immunity for evolving human-computer systems. Sci-
ence of Computer Programming 51 (2004) 197

6. Burgess, M.: A site configuration engine. Computing Systems 8(2) (1995) 309–337
7. Burgess, M.: On the theory of system administration. Science of Computer Pro-

gramming 49 (2003) 1
8. Burgess, M.: Thermal, non-equilibrium phase space for networked computers.

Physical Review E 62 (2000) 1738
9. Burgess, M.: Keynote: The promise of self-adapting equilibrium. In: Proceedings of

the Fifth IEEE International Conference on Autonomic Computing (ICAC). (June
2008)

10. Holland, J.H.: Emergence: From Chaos to Order. Oxford Univ Pr (Sd) (March
2000)

11. Johnson, S.: Emergence: The Connected Lives of Ants, Brains, Cities, and Soft-
ware. Scribner (September 2002)

12. Burgess, M., Couch, A.: Autonomic computing approximated by fixed-point
promises. In: Proceedings of the First IEEE International Workshop on Mod-
eling Autonomic Communication Environments (MACE), Multicon Verlag (2006)
197–222

13. Burgess, M.: An approach to understanding policy based on autonomy and vol-
untary cooperation. In: IFIP/IEEE 16th international workshop on distributed
systems operations and management (DSOM), in LNCS 3775. (2005) 97–108

14. Bergstra, J., Burgess, M.: A static theory of promises. Technical report,
arXiv:0810.3294v1 (2008)

15. Couch, A.L., Chiarini, M.: Dynamics of resource closure operators. In: to ap-
pear in AIMS ’09: Proceedings of the 3rd international conference on Autonomous
Infrastructure, Management and Security, Springer-Verlag (2009)

16. Couch, A., Hart, J., Idhaw, E.G., Kallas, D.: Seeking closure in an open world: A
behavioral agent approach to configuration management. In: LISA ’03: Proceedings
of the 17th USENIX conference on System administration, Berkeley, CA, USA,
USENIX (2003) 125–148

17. Schwartzberg, S., Couch, A.: Experience implementing a web service closure. In:
LISA ’04: Proceedings of the 18th USENIX conference on System administration,
Berkeley, CA, USA, USENIX (2004) 213–230

18. Wu, N., Couch, A.: Experience implementing an ip address closure. In: LISA ’06:
Proceedings of the 20th USENIX conference on System administration, Berkeley,
CA, USA, USENIX (2006) 119–130

19. Couch, A.L., Chiarini, M.: A theory of closure operators. In: AIMS ’08: Proceedings
of the 2nd international conference on Autonomous Infrastructure, Management
and Security, Berlin, Heidelberg, Springer-Verlag (2008) 162–174

20. Couch, A.L., Burgess, M., Chiarini, M.: Management without (detailed) mod-
els. In: ATC ’09: Proceedings of the 2009 Conference on Autonomic and Trusted
Computing, Berlin, Heidelberg, Springer-Verlag (2009)

21. R Development Core Team: R: A Language and Environment for Statistical Com-
puting. R Foundation for Statistical Computing, Vienna, Austria. (2008) ISBN
3-900051-07-0.


