
Modeling Next Generation
Configuration Management Tools

Mark Burgess (Oslo University College)
Alva Couch (Tufts University)

Aspects and Closures and
Promises (Oh My!)

• Theories of configuration management
employ three distinct terminologies:
– Aspects (Anderson)
– Closures (Couch)
– Promises (Burgess)

• How are these terms different or similar?
• We seek the “Rosetta Stone” that relates

the three theories.

The Rosetta Stone
• The three theories concentrate on different parts

of the problem.
• Aspects model dependencies
• Closures model behaviors
• Promises model interactions
• Comprehensive aspects+behavioral closure =

closures
• Closures+promises = distributed closures
• Any tool must incorporate some form of each

kind of model (consciously, or not!)

Why should we care?
• “Cost:” what we pay for the process.
• “Quality of service:” how quickly one can react to

changing needs.
• Myth: the tools and technologies we use

determine the cost and quality of configuration
management.

• Reality: cost and quality are more related to how
we conceptualize and define the configuration
management problem.

• It’s not what we use, but rather how we think.

Example: Cfengine

• Cfengine supports a particular way of
thinking about configuration management.
– Decentralized
– Incremental
– Partial
– Convergent

Example: Puppet

• By contrast, Puppet supports a different
way of thinking:
– Centralized
– Comprehensive
– Replacing
– Overriding

Which tool should I choose?

• So, which of the plethora of configuration
management tools is most appropriate to
my site or problem?

• Wrong question!
• Better question: Which way of thinking

best supports what I need to do?
• Then (and only then): what tools support

that kind of thinking?

Our contribution

• Better understanding of
– Complexity of configuration management.
– How various conceptualizations of the

problem relate to one another.
– The common ground there is between

conceptualizations.
– How future tools can share data and

cooperate with one another.
– How we can combine strategies toward a

better and less costly process.

How hard is configuration
management?

• How hard can it be to tell everyone exactly
what to do? Seems easy enough…

• But there are many risk factors:
– Interdependencies and interactions between

subsystems.
– Some are known, some are unknown!

Modeling interactions
• [Sun 2005]: complexity arises from interactions

between subsystems.
• An aspect [Anderson 2005] is a set of

configuration parameters whose values are
interdependent and constrained.

• Example: all of the locations in which the
hostname of the machine appears in /etc form
one local aspect.

• Example: it makes no sense to create a web
server without an advertised address. So its
address in its configuration and in DNS comprise
one distributed aspect.

A complex aspect

• For a webserver to work,
– The document root has to exist
– The content has to be located there.
– The protections have to allow the web server

access.
– The configuration of the web server has to

permit access.
– Etc

• These choices must be coordinated.

Everyday aspects

• The average system administrator copes
with aspects on a daily basis.

• Consider the following common story:
– You configure a system properly.
– It works.
– You add a package.
– Something breaks.

• Somehow, some aspect was violated by
the package installation.

Properties of aspects

• An aspect is a pair <P,C> where
– P is a set of parameters.
– C is a set of constraints.

• A single parameter is an aspect.
• A union of aspects is an aspect.
• A configuration is an aspect.

Why aspects are important

• A tool-independent way of describing
interaction and complexity.

• Allow approximating the difficulty of a
specific configuration management task.

• Allow intelligent tool choices based upon
task complexity.

Closures
• Aspects describe constraints operating within a

configuration.
• Closure: a deterministic map between

configuration and behavior.
• If we have identified all aspects, then that map is

well-defined. We say the union of all aspects is
closed.

• If some aspects remain unknown, the map might
not be well-defined. We would then say that the
union of all aspects is open.

Some examples

• One creates a web-service closure
[Schwartzberg 2004] by identifying and
controlling all aspects that determine web
service behavior.

• One creates an IP address closure [Wu
2006] by identifying and controlling all
aspects that determine IP address
assignment behavior.

Discovering closures

• The theory of aspects shows that closures
are not created, but instead discovered.

• If we identify and manage all pertinent
aspects, and map out behaviors, we’re
done; behavior is deterministic!

• Every configuration management tool tries
to do this.

How do closures communicate?

• To make larger closures from smaller
ones, smaller closures must communicate
with one another.

• Question: how is this accomplished?
• Answer: through promises.

Promise

• A unit of communication between two
autonomous systems.

• Describes intent of sender to receiver.
• A basic part of any kind of service

discovery

Promises glue closures together

• Very often, closures must coordinate
distributed aspects.
– Must map clients to servers.
– Must distribute resources to clients.
– Often, this is done via request/response.

• A promise is an offer, rather than a
request. It says “certain requests will be
granted by the sender”.

Practical promises

• Many might consider promises a purely
theoretical and abstract idea.

• In fact, they’re present in every distributed
system.

• We can think of a fileserver’s execution of
an NFS daemon as a “promise to provide
service”.

• We can think of an NFS client mount
request as a “promise to use service”.

Promises and exceptions

• One reason for promises: avoid dealing
with exceptions.

• In a request/response environment, must
always cope with requests that cannot be
satisfied.

• A promise does not explicitly require a
response.

• The response may come asynchronously,
or not at all.

Example of promises in action:
service binding

• Multiple servers, one client.
• Servers promise service to client.
• Client promises to use service from one

server.
• This establishes a binding.
• No central coordination necessary.

What does it all mean?

• Current tools manage aspects.
• Tools are for the most part unaware of

behavior.
• Mapping behaviors is a really hard

problem.
• Closures provide a tangible way to break

that hard problem up into simpler ones.
• Promises provide the glue that allows

closures to efficiently communicate.

The point

• Aspects define constraints.
• Closures define predictability.
• Promises define intent.
• This allows automatic verification of

configuration information!

CM-TNG

• Current tools do nothing more than assert
what they believe to be appropriate
aspects.

• The next frontier: automatic validation and
verification.

• Mechanism: closures and promises.

Verification

• Before binding a client to a server, check
that the server is functioning via a
promise.

• The server checks itself through a closure.
• The local aspect is not set to a value until

this remote check is made.
• No more broken service links!

“Present Work”

• “The other half” of this work:
• Burgess and Couch, “Autonomic

Computing Approximated by Fixed-Point
Promises,” Proc. MACE 2006.

• Purport: conceptualize the notion of
management entirely in terms of a set of
convergent operators acting in a
distributed network.

• A promise is a form of “operator.”

Conclusions (for developers)

• The combination of the theories is greater
than the sum of the parts.

• Aspects help one to discover closures.
• Closures and promises allow one to

manage verified aspects.
• This is the first step toward configuration

tools that are aware of and manage
behavior rather than configuration.

Conclusions (for users)

• Aspects provide a methodology by which one
can evaluate tools.

• A tool either “manages an aspect” or it does not.
• Some tools are “closer to managing closures”

than others.
• Aspects and closures provide a way of

comparing tool capabilities.
• Promises provide a way of describing and

comparing distributed management tools.

Thanks!

• Mark Burgess (Mark.Burgess@iu.hio.no)
• Alva Couch (couch@cs.tufts.edu)

mailto:Mark.Burgess@iu.hio.no�
mailto:couch@cs.tufts.edu�

	Modeling Next Generation Configuration Management Tools�
	Aspects and Closures and Promises (Oh My!)
	The Rosetta Stone
	Why should we care?
	Example: Cfengine
	Example: Puppet
	Which tool should I choose?
	Our contribution
	How hard is configuration management?
	Modeling interactions
	A complex aspect
	Everyday aspects
	Properties of aspects
	Why aspects are important
	Closures
	Some examples
	Discovering closures
	How do closures communicate?
	Promise
	Promises glue closures together
	Practical promises
	Promises and exceptions
	Example of promises in action:�service binding
	What does it all mean?
	The point
	CM-TNG
	Verification
	“Present Work”
	Conclusions (for developers)
	Conclusions (for users)
	Thanks!

