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Aspects and Closures and 
Promises (Oh My!)

• Theories of configuration management 
employ three distinct terminologies: 
– Aspects (Anderson)
– Closures (Couch)
– Promises (Burgess)

• How are these terms different or similar? 
• We seek the “Rosetta Stone” that relates 

the three theories.



The Rosetta Stone
• The three theories concentrate on different parts 

of the problem.
• Aspects model dependencies
• Closures model behaviors
• Promises model interactions
• Comprehensive aspects+behavioral closure = 

closures
• Closures+promises = distributed closures
• Any tool must incorporate some form of each 

kind of model (consciously, or not!) 



Why should we care?
• “Cost:” what we pay for the process.
• “Quality of service:” how quickly one can react to 

changing needs.
• Myth: the tools and technologies we use 

determine the cost and quality of configuration 
management. 

• Reality: cost and quality are more related to how 
we conceptualize and define the configuration 
management problem.

• It’s not what we use, but rather how we think. 



Example: Cfengine

• Cfengine supports a particular way of 
thinking about configuration management. 
– Decentralized
– Incremental
– Partial
– Convergent



Example: Puppet

• By contrast, Puppet supports a different 
way of thinking: 
– Centralized
– Comprehensive
– Replacing
– Overriding



Which tool should I choose?

• So, which of the plethora of configuration 
management tools is most appropriate to 
my site or problem?

• Wrong question! 
• Better question: Which way of thinking

best supports what I need to do?
• Then (and only then): what tools support 

that kind of thinking?



Our contribution

• Better understanding of 
– Complexity of configuration management. 
– How various conceptualizations of the 

problem relate to one another.
– The common ground there is between 

conceptualizations.  
– How future tools can share data and 

cooperate with one another.
– How we can combine strategies toward a 

better and less costly process.  



How hard is configuration 
management?

• How hard can it be to tell everyone exactly 
what to do? Seems easy enough… 

• But there are many risk factors: 
– Interdependencies and interactions between 

subsystems. 
– Some are known, some are unknown!



Modeling interactions
• [Sun 2005]: complexity arises from interactions 

between subsystems.
• An aspect [Anderson 2005] is a set of 

configuration parameters whose values are 
interdependent and constrained. 

• Example: all of the locations in which the 
hostname of the machine appears in /etc form 
one local aspect.

• Example: it makes no sense to create a web 
server without an advertised address. So its 
address in its configuration and in DNS comprise 
one distributed aspect.



A complex aspect

• For a webserver to work,
– The document root has to exist
– The content has to be located there. 
– The protections have to allow the web server 

access. 
– The configuration of the web server has to 

permit access. 
– Etc

• These choices must be coordinated. 



Everyday aspects

• The average system administrator copes 
with aspects on a daily basis.

• Consider the following common story: 
– You configure a system properly.
– It works.
– You add a package. 
– Something breaks. 

• Somehow, some aspect was violated by 
the package installation. 



Properties of aspects

• An aspect is a pair <P,C> where 
– P is a set of parameters. 
– C is a set of constraints. 

• A single parameter is an aspect. 
• A union of aspects is an aspect. 
• A configuration is an aspect. 



Why aspects are important

• A tool-independent way of describing 
interaction and complexity.

• Allow approximating the difficulty of a 
specific configuration management task. 

• Allow intelligent tool choices based upon 
task complexity.



Closures
• Aspects describe constraints operating within a 

configuration. 
• Closure: a deterministic map between 

configuration and behavior. 
• If we have identified all aspects, then that map is 

well-defined. We say the union of all aspects is 
closed. 

• If some aspects remain unknown, the map might 
not be well-defined. We would then say that the 
union of all aspects is open.



Some examples

• One creates a web-service closure 
[Schwartzberg 2004] by identifying and 
controlling all aspects that determine web 
service behavior.

• One creates an IP address closure [Wu 
2006] by identifying and controlling all 
aspects that determine IP address 
assignment behavior.



Discovering closures

• The theory of aspects shows that closures 
are not created, but instead discovered. 

• If we identify and manage all pertinent 
aspects, and map out behaviors, we’re 
done; behavior is deterministic!

• Every configuration management tool tries 
to do this.



How do closures communicate?

• To make larger closures from smaller 
ones, smaller closures must communicate 
with one another.

• Question: how is this accomplished? 
• Answer: through promises.



Promise

• A unit of communication between two 
autonomous systems.

• Describes intent of sender to receiver. 
• A basic part of any kind of service 

discovery



Promises glue closures together

• Very often, closures must coordinate 
distributed aspects. 
– Must map clients to servers. 
– Must distribute resources to clients. 
– Often, this is done via request/response.

• A promise is an offer, rather than a 
request. It says “certain requests will be 
granted by the sender”.



Practical promises

• Many might consider promises a purely 
theoretical and abstract idea.

• In fact, they’re present in every distributed 
system. 

• We can think of a fileserver’s execution of 
an NFS daemon as a “promise to provide 
service”. 

• We can think of an NFS client mount 
request as a “promise to use service”.  



Promises and exceptions

• One reason for promises: avoid dealing 
with exceptions.

• In a request/response environment, must 
always cope with requests that cannot be 
satisfied.

• A promise does not explicitly require a 
response. 

• The response may come asynchronously, 
or not at all. 



Example of promises in action:
service binding

• Multiple servers, one client. 
• Servers promise service to client. 
• Client promises to use service from one 

server. 
• This establishes a binding. 
• No central coordination necessary. 



What does it all mean?

• Current tools manage aspects.
• Tools are for the most part unaware of 

behavior. 
• Mapping behaviors is a really hard 

problem.
• Closures provide a tangible way to break 

that hard problem up into simpler ones.
• Promises provide the glue that allows 

closures to efficiently communicate.  



The point

• Aspects define constraints. 
• Closures define predictability. 
• Promises define intent. 
• This allows automatic verification of 

configuration information! 



CM-TNG

• Current tools do nothing more than assert 
what they believe to be appropriate 
aspects. 

• The next frontier: automatic validation and 
verification. 

• Mechanism: closures and promises.



Verification

• Before binding a client to a server, check 
that the server is functioning via a 
promise. 

• The server checks itself through a closure. 
• The local aspect is not set to a value until 

this remote check is made. 
• No more broken service links! 



“Present Work”

• “The other half” of this work:
• Burgess and Couch, “Autonomic 

Computing Approximated by Fixed-Point 
Promises,” Proc. MACE 2006.  

• Purport: conceptualize the notion of 
management entirely in terms of a set of 
convergent operators acting in a 
distributed network.  

• A promise is a form of “operator.” 



Conclusions (for developers)

• The combination of the theories is greater 
than the sum of the parts. 

• Aspects help one to discover closures. 
• Closures and promises allow one to 

manage verified aspects. 
• This is the first step toward configuration 

tools that are aware of and manage 
behavior rather than configuration. 



Conclusions (for users)

• Aspects provide a methodology by which one 
can evaluate tools. 

• A tool either “manages an aspect” or it does not. 
• Some tools are “closer to managing  closures” 

than others. 
• Aspects and closures provide a way of 

comparing tool capabilities.
• Promises provide a way of describing and 

comparing distributed management tools. 



Thanks!

• Mark Burgess (Mark.Burgess@iu.hio.no)
• Alva Couch (couch@cs.tufts.edu)
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